
1
Monitoring and Alerting

In previous chapters, we built a state of the art infrastructure and implemented a number of
engineering best practices following the DevOps principles. One of the principle we haven't
covered yet is the concept of measuring everything.

The core concept of measuring everything is the goal of collecting actionable feedback. We
want to create the following feedback loop that will let us assess the impact of a change:

This idea isn't unique to DevOps. Most reputable companies will rely on similar systems to
dynamically steer their teams in the right direction, as intuition and gut feeling isn't enough
anymore when making most decisions and trying to stay competitive.

Monitoring and Alerting Chapter 1

[2]

By applying this concept to our infrastructure and services, we can take them to the next
level and implement a monitoring and alerting solution, which is, of course, a must to have
for any production environment. In the first part of the chapter, we will make changes to
our application to better expose how our application is behaving. Following this, we will do
the same to our infrastructure. Thanks to our understanding of infrastructure as code, we
will be able to add those crucial components by extending the different CloudFormation
templates we created.

Finally, we will implement an alert functionality on some of the public key metrics
indicators to help us improve the availability of our application. This chapter will contain
the following sections:

Instrumenting our application for monitoring
Monitoring our infrastructure
Creating alarms using CloudWatch and SNS

Technical requirements
AWS CloudWatch
ELK (ElasticSearch, Logstash, and Kibana)
Kinesis Firehose
Ansible
CloudFormation
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/
Chapter08/EffectiveDevOpsTemplates/elasticsearch-cf-template.py

https:// github. com/ yogeshraheja/ Effective- DevOps- with- AWS/ blob/ master/
Chapter08/ EffectiveDevOpsTemplates/ firehose- cf- template. py

Instrumenting our application for monitoring
In this section, we are going to make a couple of changes to our application to provide
insight into what our code is doing and how it's behaving.

Because monitoring isn't as trivial as it may sound, there is no shortage of monitoring
solutions. Since this book is focused on AWS, we will want to utilize what AWS provides as
much as possible, starting with CloudWatch.

Furthermore, because of the rudimentary nature of the application, most of what we will

Monitoring and Alerting Chapter 1

[3]

implement won't be very meaningful, aside from demonstrating you different options, as
well as the ideas behind the process.

AWS CloudWatch
CloudWatch centralizes most essential functionalities for a monitoring solution. We used
some of its functionalities previously when we created our Auto Scaling Groups and
needed an alarm to trigger Auto Scaling Events, but CloudWatch can do a lot more.

In the world of infrastructure, data mostly comes in two forms—metrics and logs.
CloudWatch supports both data types. In addition, they also have a third type of data
called events.

As with most services, you can access it using the web console, the command-line interface,
and, of course, the API and various SDKs. We will first look at the different types of data.

Metrics
Metrics are often used to monitor things that can be quantified, such as system metrics
(CPU utilization, free memory, network consumption), page views, or HTTP status (the
current error rate in my application). In CloudWatch, metrics are defined as tuples and
contain the following:

Resource ID
Service name
Metric name
A metric value
A timestamp

For example,

Monitoring and Alerting Chapter 1

[4]

The above screenshot shows that the CPU utilization of the EC2 instance ID
i-098a175cf4b6880b7 was at Average.

Most of the AWS Services will get integrated natively with CloudWatch. By going to
https://console. aws. amazon. com/ cloudwatch, you can start browsing the different
metrics already generated by the different services we used using the metrics menu on the
left-hand side or the Browse Metrics button on the Metrics Summary page.

For example, we can display a metric representing how much data we have in our S3
bucket as follows:

From the CloudWatch dashboard, click on Browse Metrics.1.
Select the S3 service from the Namespaces section.2.
Select Storage Metrics.3.
Find the bucket used to store artifacts and pick the metric BucketSizeBytes:4.

Monitoring and Alerting Chapter 1

[5]

Logs
Log files are probably the most well-known way of monitoring systems. They are a great
complement to metrics as they provide more flexibility. Because you aren't limited to a key-
value pair system, like our metrics, you can use log files to provide very detailed
information on events occurring in your application. For instance, you may capture,
through your metric system, an increase in the error rate of your application, but to know
what exactly is happening, you will want to access your application logs to see if there are
exceptions, stack traces, or error messages that can help you troubleshoot that issue. The
downside of logs is that they are much bigger than metrics. This means that they are more
expensive to store, but also harder to index, search, and aggregate.

CloudWatch logs are organized around a few key concepts:

Each log is called a log event and contains a raw message and a timestamp. The
logs events produced by a unique source are grouped into a log stream.
Log streams send their log event to log groups. Each log group has its own policy
in terms of data retention (how many days you want to keep your log event for,
who can access those logs, and so on).

As an example of that, we can retrieve the events produced by our CodeBuild execution
logs:

Monitoring and Alerting Chapter 1

[6]

In your browser, open the CloudWatch service at https:/ /console. aws. amazon.1.
com/cloudwatch.
Click on Logs in the left-hand side menu.2.
From there, you can see the different log groups. Select one of the3.
/aws/codebuild/ groups to access the log streams, as shown in the following
screenshot:

Open one of the log streams to access the logs produced by CodeBuild:4.

Monitoring and Alerting Chapter 1

[7]

Events
CloudWatch Events are a concept particular to AWS. You can see them as a hybrid of logs
and metrics. Events have identifiers and context the same way metrics have a name and
resources ID, but can also carry a payload with custom information. AWS uses it
extensively in their infrastructure and services. Every time resources in your environment
change, AWS creates an event that goes into a stream that the CloudWatch events service
can subscribe to. You can create rules to match events of interest and either send the
information to a service, such as SQS or SNS, or directly execute code using some pre-
program functionalities or Lambda.

Using CloudWatch to monitor our helloworld
application
Now that we know a bit more about the different monitoring functionalities that
CloudWatch offers, we will make changes in our helloworld application to get the best
out of CloudWatch. We will first look at producing better logs. Following this, we will add
metrics and finally events. Once the changes are in place, we will then make some changes
to our infrastructure and its permission to start collecting that data.

Adding logs to our application
When we initially created our application, we added a console log to state that the
application is running on the last line:

console.log('Server running')

As you might imagine, this is not enough. In order to improve this, we will create a new
logger.

Creating a custom logger for our application
To be useful, the logs need to be put in a context. In an environment where things are
quickly changing, you want to provide some extra information in your messages, including
the type of log (info, warning, critical, and so on), which version of your application
produced it, and an accurate timestamp of when the error was produced. If your logs are all
aggregated in the same place, you may also want to include the name of the service and the
server that produced it. We will change our code to include that information.

Monitoring and Alerting Chapter 1

[8]

When we first created the application, we kept the code to a bare minimum and avoided
the use of extra packages. This made it easy to initially deploy the service. Now that we
have more tooling around it, adding extra libraries will not be an issue. To improve our
logging, we will rely on a library called winston (https:/ /www. npmjs. com/ package/
winston). Winston is one of the most common logging libraries in JavaScript. The library
has many features and lets you manipulate your logs in several powerful ways, as we will
see shortly.

On your server, go to the root directory of the helloworld application:

$ cd helloworld

Then install the winston library, as follows:

$ npm install winston@2.4.4 --save-dev

Adding the --save option will make NPM include the package definition in the
package.json file. With your text editor, open the helloworld.js file containing your
application. After the initialization of the http variable, we will initialize the winston
library as follows:

var http = require("http")
var winston = require("winston")

Next, we will create a new variable to specify the version of the code. One of the ways we
can achieve this is by assuming that this information will be provided later through the use
of environment variables. For now, we will simply import the values as follows:

var version = process.env.HELLOWORLD_VERSION

We will now create our custom logger. This will allow us to specify that we want a
timestamp and provide the code to define that timestamp:

var logger = new winston.Logger({
 transports: [new winston.transports.Console({
 timestamp: function() {
 var d = new Date()
 return d.toISOString()
 },
 })]
})

To add the remaining context to all our logs, we will use a feature of the library called a
rewriter, which allows us to modify the content of the meta.

Under the definition of the var logger variable definition, add the following:

Monitoring and Alerting Chapter 1

[9]

logger.rewriters.push(function(level, msg, meta) {
 meta.version = version
 return meta
})

Lastly, we now need to use the logger we just created and configured. For that, we will
select the following code fragment:

console.log("Server running")

We replace this code fragment with the following:

logger.info("Server running")

We can now test our application by running it locally:

$ node helloworld.js

As the application starts, it produces logs that look as follows:

2018-10-03T08:54:19.321Z - info: Server running version=undefined

Your helloworld.js file should look as shown at: https:/ /raw. githubusercontent. com/
yogeshraheja/Effective- DevOps- with- AWS/ master/ Chapter08/ helloworld/ helloworld-
part-1.js. The collection of logs on EC2 and ECS are typically different. We will show how
to make both collections starting with EC2.

At this point, the console log isn't captured anywhere on EC2. We need to make some
changes to our upstart script to save the console log and set the HELLOWORLD_VERSION
environment variable.

Making changes to provide the version and save the
console log
Our upstart configuration is located in the subdirectory scripts. With your code editor,
open the file scripts/helloworld.conf.

We will edit the script section of the file as follows:

script
 set -a

Monitoring and Alerting Chapter 1

[10]

 . /usr/local/helloworld/version mkdir -p /var/log/helloworld/
 chown ec2-user:ec2-user /var/log/helloworld/
 exec su --session-command="/usr/bin/node
/usr/local/helloworld/helloworld.js >> /var/log/helloworld/helloworld.log
2>&1" ec2-user
end script

The first set of changes will allow us to define the HELLOWORLD_VERSION environment
variable. To get there, we will add a call to set -a to force our variables to be exported and
source a new file, /usr/local/helloworld/version, which we will create later. The
second part of the changes will allow us to log the console output onto the filesystem. To do
that, we need to create a directory in /var/log and change the command that starts the
application to save stdout and stderr into that new directory.

We now have a log file containing our console log. Whenever you add new logs, you
should always think about how to rotate those logs. We will do that using logrotate.

We will create a new folder and configuration file for it. In the root of the helloworld
directory, create a new folder conf and a new file called logrotate:

$ mkdir conf
$ touch conf/logrotate

We will now edit that file and put the following configuration in it:

/var/log/helloworld/*.log {
rotate 3
size=100M
copytruncate
nocompress
}

You may, of course, adjust it to your liking.

We will now address the creation of the /usr/local/helloworld/version file. Our goal
is to generate a new version file every time new code is released with CodeDeploy. One of
the functionalities that we didn't cover is that whenever CodeDeploy runs, it sets some
environment variables of its own. We will use those to generate a version.

Create a new script in the script directory, call it setversion.sh, and set its permissions to
be executable:

$ touch scripts/setversion.sh
$ chmod +x scripts/setversion.sh

Open the file and simply put the following:

Monitoring and Alerting Chapter 1

[11]

#!/bin/sh
echo "HELLOWORLD_VERSION=${APPLICATION_NAME}-${DEPLOYMENT_GROUP_NAME}-
${DEPLOYMENT_GROUP_ID}-${DEPLOYMENT_ID}" > /usr/local/helloworld/version

We can now make changes to CodeDeploy to incorporate all our changes.

Making changes to CodeDeploy to better handle
logging
We will first make CodeDeploy generate the version file. To do that, we will open the
appspec.yml file at the root of the helloworld application directory.

At the bottom of the file, after the ValidateService hook, we will use a new hook to
trigger our setversion script. This operation will need to happen after the helloworld
application is installed. As such, we will want to add the following hook:

AfterInstall:
 - location: scripts/setversion.sh
 timeout: 180

We now need to handle our new files. The first one is the logrotate configuration. In the
files section at the top of our appsec file, add the following:

- source: conf/logrotate
 destination: /etc/logrotate.d/helloworld

Lastly, we need to handle the installation of our libraries now that we have some extra
dependencies. There are a few ways to deal with dependencies. The most obvious one is to
run npm install during the deployment. This allows you to keep your code base small
and light. The downside is that you now rely on https:/ /www. npmjs. com/ to be working to
get a deployment out, which can be risky.

Imagine the scenario where you have to deploy a fix for a major bug, but can't because the
installation of your dependencies is failing. To avoid this, it is best practice to also commit
the node_modules directory with your code.

After the previous configuration to deploy the logrotate configuration, add the
following:

- source: node_modules
 destination: /usr/local/helloworld/node_modules

Your new appsec file should look like this https:/ /raw. githubusercontent. com/
yogeshraheja/Effective- DevOps- with- AWS/ master/ Chapter08/ helloworld/ appspec. yml.

Monitoring and Alerting Chapter 1

[12]

We can now commit all the changes:

$ git add helloworld.js node_modules package.json conf
scripts/setversion.sh appsec.yml scripts/helloworld.conf
$ git commit -m "Adding logging to helloworld"
$ git push

Thanks to our pipelines, those changes will be deployed to our EC2 instances, and in no
time, we will start seeing logs populated on the hosts.

We will now add metrics and events to our application.

Adding metrics and events to our application
As you might expect, there are several ways to add metrics. You can either opt for a generic
protocol, such as StatsD, which will let you reuse your metrics across a variety of products,
both SaaS and open source or, if you want to get something working quickly, use the AWS
native SDK. Both options have pros and cons, but we will focus on the AWS native SDK.

We will once again start off from the root directory of our helloworld application. We will
first start by installing the AWS SDK for JavaScript as follows:

$ npm install aws-sdk --save

Monitoring and Alerting Chapter 1

[13]

This will install into the node_modules directory the library and its dependencies and
update the package.json file.

Once the library is installed, open the helloworld.js file with your editor. We will first
instantiate the library.

At the top of the file, after the initialization of the winston library, add the following:

var http = require("http")
var winston = require("winston")
var AWS = require("aws-sdk")

The AWS object will let us interact with all AWS services. Our infrastructure is located in
us-east-1. We will configure our application to use this region to access the different
services. After the definition of the AWS variable, add the following:

AWS.config.update({region:"us-east-1"})

Next, we will create a variable to access the CloudWatch metric and event service:

var cwevents = new AWS.CloudWatchEvents({apiVersion: "2015-10-07"})
var cw = new AWS.CloudWatch({apiVersion: "2010-08-01"})

In a more realistic world, an application will have a different use case for events and
metrics. You would add an event if you wish to run a Lambda function when a specific
event happens, while you would add metrics extensively to measure everything that's
happening in your application. Here, since our application is only doing one thing, we
don't need that luxury, and we will create a metric and an event whenever someone
accesses the application.

We will add an event inside the http. We will start by creating an event variable to define a
simple event. We will join the content of the request header to that event:

http.createServer(function (request, response) {
 var event = {
 Entries: [{
 Detail: JSON.stringify(request.headers),
 DetailType: "hellworld application access request",
 Source: "helloworld.app"
 }]
 }

We will also create a metric. A lot of the time, you want your metrics to be associated with
several dimensions. We will create a simple metric of page_viewed, but to illustrate the
concept of dimensions better, we will associate the version of our application with the
metric.

Monitoring and Alerting Chapter 1

[14]

We can do that as follows:

 var metric = {
 MetricData: [{
 MetricName: "page_viewwed",
 Dimensions: [{
 Name: "Version",
 Value: version
 }],
 Unit: "None",
 Value: 1.0
 }],
 Namespace: "Helloworld/traffic"
 }

We will see the metrics used to monitor disk space on the root partition of our instances a
bit later in this chapter. In that case, for example, the dimensions will be partitions, mount
paths, and instance-id.

We will now emit those two events just after the response.end("Hello World\n") call,
as follows:

response.end('Hello World\n')
 cwevents.putEvents(event, function(err, data) {
 if (err) {
 logger.error("error", "an error occurred when creating an event",
{error: err})
 } else {
 logger.info("created event", {entries: data.Entries})
 }
 })
 cw.putMetricData(metric, function(err, data) {
 if (err) {
 logger.error("an error occurred when creating a metric", {error:
err});
 } else {
 logger.info("created metric", {data: JSON.stringify(data)});
 }
 })

Note how we are relying on the logging capability to catch possible issues with putting
metrics or events into CloudWatch.

The helloworld.js should look like https:/ /raw. githubusercontent. com/
yogeshraheja/Effective- DevOps- with- AWS/ master/ Chapter08/ helloworld/ helloworld.
js.

Monitoring and Alerting Chapter 1

[15]

Log cardinality

If you look closely at the logs we just produced, you will notice that our
logs are made of constant strings. The extra information, such as the detail
of the error or the event ID, is provided in a separate meta.
Having structured logs makes querying and indexing a lot better. For
example, thanks to that format, we will be able to extract all logs matching
an error occurred when creating a metric and group the error message
that follows. This will, in turn, allow us to state the reason why we fail to
create a metric by count. We will see that in action a bit later when we
send logs to ElasticSearch.

At this point, if we were to run this code on our EC2 instances, we would see some errors in
our logs because we don't have the permissions to send logs and metrics to AWS. In
addition, we are producing our logs, but we aren't sending them to the CloudWatch logs
yet. We will address those issues in the next 2 sections.

Sending logs, events, and metrics to CloudWatch
from EC2
Our application is now producing logs, metrics, and events. We are going to make changes
to Ansible and CloudFormation to collect all those elements. We will add a new service to
collect the logs and grant sufficient permissions to our EC2 instance roles.

Creating an Ansible role for CloudWatch logs
To send our logs to CloudWatch, AWS provides a daemon called awslogs. We are going to
install and configure it through Ansible.

Go into your ansible/roles directory:

$ cd ansible/roles

Create a new role called awslogs:

$ ansible-galaxy init awslogs
- awslogs was created successfully

We will first edit the task file awslogs/tasks/main.yml. Our first operation will be to
install the package. For that, we will use the yum module:

Monitoring and Alerting Chapter 1

[16]

tasks file for awslogs

- name: install awslogs
 yum:
 name: awslogs
 state: present

We will want to configure the service dynamically with Ansible. For that, we will want to
create a handler to restart awslogs when the configuration changes.

Edit the file awslogs/handlers/main.yml and add the following:

handlers file for awslogs
- name: restart awslogs
 service:
 name: awslogs
 state: restarted

We can now configure the service. You can refer to http:/ /amzn. to/ 2qMhaEt for the full
documentation of the configuration of the service. In our case, we will keep it very simple.
The service is configured through a set of INI files. The first one goes into
/etc/awslogs/awslogs.conf.

We will create the file using the file module from Ansible. Create a new file in
awslogs/files/, call it awslogs.conf, and put the following in it:

[general]
state_file = /var/lib/awslogs/agent-state

Now that the file is created, we are going to copy it to its target destination,
/etc/awslogs/awslogs.conf. For that, we will use the copy module. Back in the
awslogs/tasks/main.yml task file, we will add the following:

- name: copy global configuration
 copy:
 src: awslogs.conf
 dest: /etc/awslogs
 notify: restart awslogs

Thanks to the notify handler we created, if we were to change our configuration file,
awslogs would automatically restart and, through that, load the new configuration.

We now want to use Ansible to configure which file needs to be collected. We will do that
by creating new INI files inside the /etc/awslogs/config directory. To make it easy to

Monitoring and Alerting Chapter 1

[17]

operate, we will create one INI file per log file we want to collect. We will take advantage of
the INI file module that Ansible provides to implement that. At the bottom of the task file,
create a new command as follows:

- name: configure awslogs to collect {{ file }} ini_file:

We want our role to be generic and able to collect a variety of logs. As such, we will take
advantage of the variable system that Ansible provides. The idea is that whenever we call
this role, we will provide the information needed, such as the file to collect and its name.

The INI module requires us to provide the path of the INI file we want to configure. We
will do that as follows:

path: "/etc/awslogs/config/{{ name }}.conf"

Here as well, we are calling the variable name that will be provided when we instantiate
the module. The section of the configuration file will be the filename we want to collect:

section: "{{ file }}"

Now that the section is created, we are going to configure the different options. We will
want to configure six different options. To keep the code dry, we will take advantage of the
with_items keyword to iterate over the list of options and values:

option: "{{ item.option }}"
value: "{{ item.value }}"

Finally, we can list the different options and values as follows:

 with_items:
 - { option: file, value: "{{ file }}" }
 - { option: log_group_name, value: "{{ file }}" }
 - { option: log_stream_name, value: "{instance_id}" }
 - { option: initial_position, value: "start_of_file" }
 - { option: buffer_duration, value: "5000" }
 - { option: datetime_format, value: "{{ datetime_format | default('%b
%d %H:%M:%S') }}" }

Here too, we rely heavily on the fact that most values will be provided later. Note how we
are making the datetime_format field optional. If it's not provided, we will try to read
our logs as if they were formatted by the syslog. You can refer to the Python
datetime.strptime() documentation for the full list of format variables.

We will conclude this call with a notify to restart awslogs if the configuration changed:

notify: restart awslogs

Monitoring and Alerting Chapter 1

[18]

The last call of our task file will be to start the service and enable it so that awslogs starts
right away, and upon reboot:

- name: start awslogs and enable it
 service:
 name: awslogs
 state: started
 enabled: yes

Our role is ready, we will use it inside our nodeserver.yml file. We will
collect /var/log/messages and /var/log/helloworld/helloworld.log. Each entry
will have a unique name (messages and helloworld) and their full path. In addition, we
need to specify the logging format that our helloworld application is using:

- hosts: "{{ target | default('localhost') }}"
 become: yes
 roles:
 - nodejs
 - codedeploy
 - { role: awslogs, name: messages, file: /var/log/messages }
 - {
 role: awslogs,
 name: helloworld,
 file: /var/log/helloworld/helloworld.log, datetime_format: "%Y-%m-
%dT%H:%M:%S.%f"
}

Your code should be similar to https:/ / raw.githubusercontent. com/ yogeshraheja/
Effective-DevOps- with- AWS/ master/ Chapter08/ ansible/ roles/ awslogs/ tasks/ main.
yml.

Before we commit those changes, we are going to update our CloudFormation template to
add proper permissions.

Updating our CloudFormation template
The last time we worked on EC2 was in Chapter 6, Scaling Your Infrastructure, when we
implemented the Auto Scaling Groups. We are going to edit the troposphere script we used
for this and make the necessary changes.

Go to your template directory and with your text editor, open the file nodeserver-cf-
template.py from our EffectiveDevOpsTemplates repository

Monitoring and Alerting Chapter 1

[19]

Previously, we created a policy to allow access to S3, which we needed for CodeDeploy. We
will add a second policy and grant access to CloudWatch, CloudWatch logs, and
CloudWatch events. After the creation of the IAM policy AllowS3, add the following
resource:

t.add_resource(IAMPolicy(
 "MonitoringPolicy",
 PolicyName="AllowSendingDataForMonitoring",
 PolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[
 Action("cloudwatch", "Put*"),
 Action("logs", "Create*"),
 Action("logs", "Put*"),
 Action("logs", "Describe*"),
 Action("events", "Put*"),
],
 Resource=["*"])
]
),
 Roles=[Ref("Role")]
))

We can save our template and generate the new CloudFormation template:

$ git add nodeserver-cf-template.py
$ git commit -m "Adding permissions to interact with CloudWatch Logs,
Events"
$ git push

To update our existing stack, we are going to use the AWS CLI. In this particular instance,
the main change is at the IAM level where we are creating the monitoring policy. The
parameters we previously set when we initially created our stacks don't need to be
changed. Instead of providing the same parameters again, we are going to use the
UsePreviousValue option to update our helloworld stacks as follows:

$ python nodeserver-cf-template.py > nodeserver-cf.template
$ aws cloudformation update-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-staging \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,UsePreviousValue=true \
 ParameterKey=KeyPair,,UsePreviousValue=true \
 ParameterKey=PublicSubnet,,UsePreviousValue=true \

Monitoring and Alerting Chapter 1

[20]

 ParameterKey=ScaleCapacity,,UsePreviousValue=true \
 ParameterKey=VpcId,,UsePreviousValue=true

$ aws cloudformation update-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-production \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,UsePreviousValue=true \
 ParameterKey=KeyPair,UsePreviousValue=true \
 ParameterKey=PublicSubnet,UsePreviousValue=true \
 ParameterKey=ScaleCapacity,UsePreviousValue=true \
 ParameterKey=VpcId,UsePreviousValue=true

Once the stack update is done, we can commit and merge our ansible changes. Your code
should be similar to the one present at the following link: https:/ / raw.
githubusercontent. com/ yogeshraheja/ Effective- DevOps- with- AWS/master/ Chapter08/
EffectiveDevOpsTemplates/ nodeserver- cf-template- part- 1.py.

$ cd ansible
$ git add nodeserver.yml roles/awslogs
$ git commit -m "Adding awslogs role and permission to use CloudWatch"
$ git push

$ cd helloworld
$ git add .
$ git commit -m "Adding CloudWatch support to our application"
$ git push

Within a few minutes, you should be able to see your new log groups in CloudWatch under
the Logs section, and inside them, the different log streams of our different hosts, and in the
Metrics section, our Helloworld/traffic graph:

We now have an elegant solution to send logs from an EC2 instance into CloudWatch.

We won't cover this in the book, but CloudWatch has a dashboard feature that will let you
create custom views to group some of the critical metrics. For example, if you are
monitoring a web application, you may create a dashboard with your application error rate,

Monitoring and Alerting Chapter 1

[21]

latency, and queries per second (QPS).

Average, 95th, and 99th percentile

Averages can be misleading when looking at certain metrics. A classic
example is latency. To monitor the latency of your application, you want
to collect and graph the worst 95th and 99th percentiles as opposed to
simply the mean or average. These two graphs will often tell you a
different story of how some users are perceiving the latency on the site.

We now need to provide the same functionalities to ECS.

Handling logs, events, and metrics in ECS
In the previous section, we added an extra step in our deployment process to identify and
export the version for our application. In the case of EC2 and CodeDeploy, we created a
version string using the deployment execution information. As such, we can easily correlate
the logs produced by the deployment execution. In the case of ECS, what matters the most
is to be able to identify the container ID within the ECR registry, as we are working with
immutable containers. Therefore, we will update our code to use the container tag
information as our application version.

In addition, we collected logs on EC2 instances using the awslogs agent. In the case of
ECS, while we could do something similar by mounting the /var/log volume onto the
ECS host and running the same agent, there is a much better way to do that.

ECS has many settings that we didn't explore, among them, the ability to configure
environment variables and change how logs are managed. We will edit the troposphere
script helloworld-ecs-service-cf created in the last chapter to send the logs produced
in the console directly to the CloudWatch logs.

With your text editor, open the file helloworld-ecs-service-cf-template.py.

We will first add a new troposphere.ecs import as follows:

from troposphere.ecs import (
 TaskDefinition,
 ContainerDefinition,
 LogConfiguration,
 Environment,
)

We will use these classes inside the TaskDefinition section. Locate the

Monitoring and Alerting Chapter 1

[22]

TaskDefinition, and after the port mapping definition, add the following to define our
HELLOWORLD_VERSION variable and the logging configuration:

PortMappings=[ecs.PortMapping(
 ContainerPort=3000)],
Environment=[
 Environment(Name='HELLOWORLD_VERSION', Value=Ref("Tag"))
],
LogConfiguration=LogConfiguration(
 LogDriver="awslogs",
 Options={
 'awslogs-group': "/aws/ecs/helloworld",
 'awslogs-region': Ref("AWS::Region"),
 }
),

Once those changes are in place, we will create the volume group using the command-line
interface:

$ aws logs create-log-group --log-group-name /aws/ecs/helloworld

In the last chapter, we created our cluster with all the permissions that we need to go
through this chapter, therefore we won't need to do anything else to get our logs, events,
and metrics sent to CloudWatch.

We can save the changes and commit them, as follows:

$ git commit -am "Configuring logging"
$ git push

You can then generate the new CloudFormation template and commit it to the template
directory of our helloworld application.

$ cd helloworld
$ curl -L
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter08/EffectiveDevOpsTemplates/helloworld-ecs-service-cf-
template.py| python > templates/helloworld-ecs- service-cf.template

$ git commit -am "Configuring logging"
$ git push

Thanks to our pipeline, a new version of the container will soon be deployed and you will
be able to observe the logs and metrics produced by your container.

Our monitoring infrastructure is now looking good. We are collecting and indexing metrics,
events, and logs. In most cases, this is enough to get started. We can improve our metrics by

Monitoring and Alerting Chapter 1

[23]

creating dashboards to display some of the key metrics and search in our logs for a
particular event or timeframe. As applications get more complex, it is common for these
types of monitoring architectures to reach their limits. Sometimes, you would like to be able
to group logs to find out what type of errors are happening often, or do some complex
queries. In addition, you may want to have a more hybrid approach to how you store your
logs and keep them indexed for just a few days, but archive them on S3 for a much longer
period. To do that, we will need a logging infrastructure made up of ElasticSearch, Kibana,
and Kinesis Firehose.

Creating a health check endpoint

It is a good practice to create a route dedicated to monitoring in your
application. This endpoint can then be used with your load balancers and
ECS tasks to validate that the application is in a working state. The code
behind that route will commonly check that the application can connect to
your databases, storages, and other services that it depends on before
returning an HTTP 200 (OK) to signal that the application is healthy.

Advanced logging infrastructure with
ElasticSearch, Kibana, and Firehose
In the world of telemetry, one of the favorite sets of tools that engineers like to use to store
their logs is called the ELK stack. The ELK stack consists of ElasticSearch, Logstash, and
Kibana. Logs are captured and filtered by Logstash, converted into JSON documents and
sent to ElasticSearch, a distributed search and analytics engine. ElasticSearch is then
queried via Kibana, which lets you visualize your data. You can look at this stack on
https://www.elastic. co/ .

AWS has a very similar system that you can use that also involves ElasticSearch and
Kibana, but instead of Logstash, we will use Kinesis Firehose. That variation on the classic
ELK stack is a very compelling option as you have even fewer services to manage, and
potentially, the fact that Kinesis will retain information for up to five days makes it a better
candidate than Logstash to transit your logs.

In addition, Kinesis will let us write our logs to both ElasticSearch and S3 such that if a log
fails to be written to ElasticSearch, it will be saved to S3:

Monitoring and Alerting Chapter 1

[24]

To create our stack, we will once again rely on CloudFormation templates and the
troposphere. We will first create an ElasticSearch stack. AWS provides ElasticSearch as a
service, and it comes with Kibana preinstalled and configured for your cluster.

Following this, we will create a Kinesis—the reasoning for Firehose stack. The reasoning for
this is that you may want to use multiple Firehose streams for your different services, but
also centralize all your logs into a single ElasticSearch cluster.

Once the new stack is in place, we will change our application a bit to deliver our logs to
the Kinesis stream.

Creating and launching an ElasticSearch cluster
As mentioned, AWS has a managed service for ElasticSearch. We will use it to create our
cluster.

Create a new file and call it elasticsearch-cf-template.py. Our script will start
almost like the nodeserver-cf-template.py file, but with a number of imports,
including some for the elasticsearch service:

Monitoring and Alerting Chapter 1

[25]

"""Generating CloudFormation template."""

from ipaddress import ip_network

from ipify import get_ip

from troposphere import (
 GetAtt,
 Join,
 Output,
 Export,
 Parameter,
 Ref,
 Template,
)

from troposphere.elasticsearch import (
 Domain,
 EBSOptions,
 ElasticsearchClusterConfig,
)

We will continue the script with the creation of the template and the extraction of the IP
address. In the context of ElasticSearch, limiting who can access your cluster is very
important, as there is no other authentication mechanism in place:

t = Template()
PublicCidrIp = str(ip_network(get_ip()))

We will now provide a brief description and collect the different parameters. The first
parameter to select, the instance size. We will provide a few options here, but you can refer
to http://amzn.to/ 2s32Vvb for the full list of available instance types:

t.add_description('Effective DevOps in AWS: Elasticsearch')

t.add_parameter(Parameter(
 "InstanceType",
 Type="String",
 Description="instance type",
 Default="t2.small.elasticsearch",
 AllowedValues=[
 "t2.small.elasticsearch",
 "t2.medium.elasticsearch",
 "m4.large.elasticsearch",
],
))

We will also provide the ability to set the number of instances present in our cluster. In the

Monitoring and Alerting Chapter 1

[26]

context of the book, we are assuming that the cluster will store just a few GB of logs. For
bigger clusters, you may consider altering the template to also provide the ability to have
dedicated master instances:

t.add_parameter(Parameter(
 "InstanceCount",
 Default="2",
 Type="String",
 Description="Number instances in the cluster",
))

The t2 and m4 instances don't come with any attached storage. We will use EBS volumes to
store our logs. This next option will let us set the size of the EBS volumes:

t.add_parameter(Parameter("VolumeSize", Default="10", Type="String",
Description="Size in Gib of the EBS volumes",
))

The different parameters we wish to configure are now all present. We can proceed with
the creation of our ElasticSearch cluster. ElasticSearch clusters are called domains. We will
create a domain resource and give it a name as follows:

t.add_resource(Domain(
 'ElasticsearchCluster',
 DomainName="logs",

We then configure which version of ElasticSearch to use. We will pick version 5.3 which is
the most recent version of ElasticSearch released when this was published:

ElasticsearchVersion="5.3",

Next, we will configure our cluster. As mentioned earlier, we are assuming that the cluster
will stay fairly small, and, therefore, we won't need dedicated master instances. For the
same reason, we will also opt out of the zone awareness feature, which creates node
replicas on the different AZ of the region the cluster is created in. Finally, we will reference
the desired instance count and instance type from the parameters of the template:

ElasticsearchVersion="6.3",
 ElasticsearchClusterConfig=ElasticsearchClusterConfig(
 DedicatedMasterEnabled=False,
 InstanceCount=Ref("InstanceCount"),
 ZoneAwarenessEnabled=False,
 InstanceType=Ref("InstanceType"),
),

We will also want to specify a few advanced options as follows:

Monitoring and Alerting Chapter 1

[27]

 AdvancedOptions={
 "indices.fielddata.cache.size": "",
 "rest.action.multi.allow_explicit_index": "true",
 },

After configuring the cluster, we will configure the EBS volume for our instances. Here too,
we will reference our parameters to get the volume size of our volumes:

EBSOptions=EBSOptions(EBSEnabled=True,
 Iops=0,
 VolumeSize=Ref("VolumeSize"),
 VolumeType="gp2"),

We will conclude the creation of our domain with the configuration of the access policy:

 AccessPolicies={
 'Version': '2012-10-17',
 'Statement': [
 {
 'Effect': 'Allow',
 'Principal': {
 'AWS': [Ref('AWS::AccountId')]
 },
 'Action': 'es:*',
 'Resource': '*',
 },
 {
 'Effect': 'Allow',
 'Principal': {
 'AWS': "*"
 },
 'Action': 'es:*',
 'Resource': '*',
 'Condition': {
 'IpAddress': {
 'aws:SourceIp': PublicCidrIp
 }
 }

 }
]
 },
))

Finally, we will conclude the creation of our template with two outputs and our final print
statement. The output will be the Kibana URL and the DomainArn of our ElasticSearch
domain, which we will use in the next section. To do so, we are going to export it under the
name LogsDomainArn:

Monitoring and Alerting Chapter 1

[28]

t.add_output(Output(
 "DomainArn",
 Description="Domain Arn",
 Value=GetAtt("ElasticsearchCluster", "DomainArn"),
 Export=Export("LogsDomainArn"),
))

t.add_output(Output(
 "Kibana",
 Description="Kibana url",
 Value=Join("", [
 "https://",
 GetAtt("ElasticsearchCluster", "DomainEndpoint"),
 "/_plugin/kibana/"
])
))

print t.to_json()

Our template is now completed. Your script should be similar to http://bit.ly/2v3DHRG.
We can commit it, and create our ElasticSearch domain:

$ python elasticsearch-cf-template.py > elasticsearch-cf.template
$ git add elasticsearch-cf-template.py
$ git commit -m "Adding ElasticSearch template"
$ git push
$ aws cloudformation create-stack \
 --stack-name elasticsearch \
 --template-body file://elasticsearch-cf.template \
 --parameters \
 ParameterKey=InstanceType,ParameterValue=t2.small.elasticsearch \
 ParameterKey=InstanceCount,ParameterValue=2 \
 ParameterKey=VolumeSize,ParameterValue=10

Your script should look like https:/ /raw. githubusercontent. com/ yogeshraheja/
Effective-DevOps- with- AWS/ master/ Chapter08/ EffectiveDevOpsTemplates/
elasticsearch-cf- template. py.

Creating and launching a Kinesis Firehose stream
Within a few minutes, our ElasticSearch cluster should be up and running. We will now
focus on the Kinesis Firehose component of our stack, which will let us feed data into
ElasticSearch.

We will create a new script and call it firehose-cf-template.py.

Monitoring and Alerting Chapter 1

[29]

The script starts as usual with several imports, the creation of a template variable, and a
brief description:

"""Generating CloudFormation template."""

from troposphere import (
 GetAtt,
 Join,
 Ref,
 Template,
 ImportValue
)

from troposphere.firehose import (
 BufferingHints,
 CloudWatchLoggingOptions,
 DeliveryStream,
 S3Configuration,
 ElasticsearchDestinationConfiguration,
 RetryOptions,
)

from troposphere.iam import Role

from troposphere.s3 import Bucket

t = Template()

t.add_description('Effective DevOps in AWS: Kinesis Firehose Stream')

t.a dd_description('Effective DevOps in AWS: Kinesis Firehose
Stream')

The first resource we will create is an S3 bucket:

t.add_resource(Bucket(
 "S3Bucket",
 DeletionPolicy="Retain"
))

Following this, we will create a new role to give the permissions to our Firehose stream to
communicate with ElasticSearch and S3. To save a bit of time, we are going to use some of
the managed policies that AWS provides. In a production environment, these policies
might be too open for your liking, and you may instead opt for writing your own:

t.add_resource(Role(
 'FirehoseRole',

Monitoring and Alerting Chapter 1

[30]

 ManagedPolicyArns=[
 'arn:aws:iam::aws:policy/AmazonS3FullAccess',
 'arn:aws:iam::aws:policy/AmazonESFullAccess',
],
 AssumeRolePolicyDocument={
 'Version': '2012-10-17',
 'Statement': [{
 'Action': 'sts:AssumeRole',
 'Principal': {'Service': 'firehose.amazonaws.com'},
 'Effect': 'Allow',
 }]
 }
))

Finally, we will create our Firehose stream. We will create a new resource of the type
DeliveryStream and give it the name FirehoseLogs:

t.add_resource(DeliveryStream(
 'FirehoseLogs',
 DeliveryStreamName='FirehoseLogs',

DeliveryStreams can be used to deliver data to several services. In our case, we want it to
deliver data to ElasticSearch. For that, we will create an
ElasticSearchDestinationConfiguration parameter as follows:

ElasticsearchDestinationConfiguration=ElasticsearchDestinationConfiguration
(

The first piece of information we need to provide is the identifier of the ElasticSearch
domain. We will do that by referencing the LogsDomainArn variable that we exported in
the previous section:

DomainARN=ImportValue("LogsDomainArn"),

Next, we will reference the IAM role we just defined before the creation of our
DeliveryStream:

RoleARN=GetAtt("FirehoseRole", "Arn"),

We will then specify the index name. You can picture that as the name of the database you
want your logs to be in. We call our index logs to keep things simple:

IndexName="logs",

In addition, in ElasticSearch, indices contain documents of different types (each type has its
own name and mapping). We will name ours Logs:

Monitoring and Alerting Chapter 1

[31]

TypeName="Logs",

One of the common ways to shared data across an ElasticSearch cluster is to use temporal
sharding. In our case, we will pick a daily rotation. For instance, an index containing the
logs of March 24, 2020 will be called logs-2020.03.24. To do that, we will configure the
IndexRotationPeriod to rotate logs every day:

IndexRotationPeriod="OneDay",

Occasionally, ElasticSearch might get congested and won't reply right away. We will
configure our stream to retry delivering data for 5 minutes:

RetryOptions=RetryOptions(DurationInSeconds="300"),

Kinesis Firehose works by buffering data until you reach a certain duration or a certain size.
We will set them to do the minimum which, is 1 minute and 1 MB:

BufferingHints=BufferingHints(IntervalInSeconds=60, SizeInMBs=1),

At this point, Kinesis Firehose has all the information it needs to send data to ElasticSearch.
We will now configure it to also store all those logs on S3. We will first configure the stream
to back up all documents (the alternative is backing up only the ones that failed being
inserted into ElasticSearch):

S3BackupMode="AllDocuments",

Following this, we will configure the S3. This will involve configuring the buffering like we
did for ElasticSearch, referencing the bucket we created at the beginning of the template,
stating whether we want to compress those logs, referencing the prefix for our files and,
finally entering the role to use for these operations:

 S3Configuration=S3Configuration(
 BufferingHints=BufferingHints(
 IntervalInSeconds=300,
 SizeInMBs=5
),
 BucketARN=Join("", [
 "arn:aws:s3:::", Ref("S3Bucket")
]),
 CompressionFormat='UNCOMPRESSED',
 Prefix='firehose-logs',
 RoleARN=GetAtt("FirehoseRole", "Arn"),
),
)
))

We will conclude our script by printing the JSON output of our template:

Monitoring and Alerting Chapter 1

[32]

print t.to_json()

Your script should look as follows https:/ /raw.githubusercontent. com/ yogeshraheja/
Effective-DevOps- with- AWS/ master/ Chapter08/ EffectiveDevOpsTemplates/ firehose-
cf-template.py.

We can now commit the script, create the template and launch it:

$ git add firehose-cf-template.py
$ git commit -m "Adding Firehose template"
$ git push
$ python firehose-cf-template.py > firehose-cf.template
$ aws cloudformation create-stack \
 --stack-name firehose \
 --template-body file://firehose-cf.template \
 --capabilities CAPABILITY_IAM

At this point, we have a working Firehose-to-ElasticSearch pipeline (also known as the
EKK stack—Amazon ElasticSearch Service, Amazon Kinesis, and Kibana). We now need to
circle back to our application and make some changes to deliver our logs to it.

Updating our application to send logs to the Firehose endpoint
Our options to send logs to Kinesis Firehose are very similar to CloudWatch logs. We could
use the aws-kinesis-agent provided in the yum repo as a replacement for the awslogs
agent, but instead, we will demonstrate another way to do that. We are going to make our
application send its logs directly to Kinesis instead of writing them on disk first.

Before making those changes, we will adjust the permissions to allow our instances to
interact with Firehose.

Adding permissions to EC2 to communicate with Firehose
We will once again edit our nodeserver-cf-template.py script. Open the file with your
editor and in the MonitoringPolicy policy, add the following to allow our EC2 instance
to communicate with Firehose and put a record into the stream:

t.add_resource(IAMPolicy(
 "MonitoringPolicy",
 PolicyName="AllowSendingDataForMonitoring",
 PolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[

Monitoring and Alerting Chapter 1

[33]

 Action("cloudwatch", "Put*"),
 Action("logs", "Create*"),
 Action("logs", "Put*"),
 Action("logs", "Describe*"),
 Action("events", "Put*"),
 Action("firehose", "Put*"),
],
 Resource=["*"])
]
),
Roles=[Ref("Role")],
))

Save the new script, commit your changes, and, following the same step as before, deploy
the new version of the template. Your new template should look like https:/ /raw.
githubusercontent. com/ yogeshraheja/ Effective- DevOps- with- AWS/master/ Chapter08/
EffectiveDevOpsTemplates/ nodeserver- cf-template- part- 2.py.

$ git add nodeserver-cf-template.py
$ git commit -m "Allowing our application to send logs to Firehose"
$ git push
$ python nodeserver-cf-template.py > nodeserver-cf.template
$ aws cloudformation create-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-staging \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,ParameterValue=t2.micro \
 ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS \
 ParameterKey=PublicSubnet,ParameterValue=subnet-e67190bc\\,subnet-
 658b6149\\,subnet-
d890d3e4\\,subnet-6fdd7927\\,subnet-4c99c229\\,subnet-
 b03baebc \
 ParameterKey=ScaleCapacity,ParameterValue=3 \
 ParameterKey=VpcId,ParameterValue=vpc-4cddce2a

$ aws cloudformation create-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-production \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,ParameterValue=t2.micro \
 ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS \
 ParameterKey=PublicSubnet,ParameterValue=subnet-e67190bc\\,subnet-
 658b6149\\,subnet-
d890d3e4\\,subnet-6fdd7927\\,subnet-4c99c229\\,subnet-
 b03baebc \
 ParameterKey=ScaleCapacity,ParameterValue=3 \

Monitoring and Alerting Chapter 1

[34]

 ParameterKey=VpcId,ParameterValue=vpc-4cddce2a

If you have helloworld-staging and helloworld-production stack
already present, then run the following command to update the stack.

$ aws cloudformation update-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-staging \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,UsePreviousValue=true \
 ParameterKey=KeyPair,,UsePreviousValue=true \
 ParameterKey=PublicSubnet,,UsePreviousValue=true \
 ParameterKey=ScaleCapacity,,UsePreviousValue=true \
 ParameterKey=VpcId,,UsePreviousValue=true
$ aws cloudformation update-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-production \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,UsePreviousValue=true \
 ParameterKey=KeyPair,UsePreviousValue=true \
 ParameterKey=PublicSubnet,UsePreviousValue=true \
 ParameterKey=ScaleCapacity,UsePreviousValue=true \
 ParameterKey=VpcId,UsePreviousValue=true

In the case of ECS, we already added the proper permissions in the last chapter when we
created our clusters.

Now that this is in place, we will make changes to our code.

Changing the logging transport to send logs to Firehose
Our logging library, winston, has a system to extend some of its functionalities, including
its transport system. We will install a new transport system that can talk to Kinesis
Firehose.

In your terminal, go to the root directory of your helloworld application and run the
following command:

$ npm install winston-firehose@1.0.6 --save --save-exact

Monitoring and Alerting Chapter 1

[35]

This will install specifically version 1.0.6 of the winston-firehose package and update
the package.json accordingly. We need to enforce this version because our EC2 instance
is running an old version of Node.js.

Then, open the helloworld.js file with your code editor. After the declaration of our
winston variable, we will define a new variable as follows:

var WFirehose = require('winston-firehose')

When we used the awslogs agent or the ECS logging driver, the service was able to specify
the hostname or container ID that the logs were coming from. In addition, each log file was
in its own log group, which made it easy to identify what service and what instance of this
service emitted a given log. The new architecture we are migrating to doesn't offer this. We
will make some changes to our code to expose the service name and the host that produced
the logs.

After the creation of the version variable, add the following:

var hostname = process.env.HOSTNAME

This will get the hostname of the server from our environment. A bit below, we will edit the
rewriter to include this extra information as follows:

logger.rewriters.push(function(level, msg, meta) {
 meta.version = version
 meta.hostname = hostname
 meta.appname = "helloworld"
 return meta
})

Lastly, we will replace the logger variable definition. Find the following code:

var logger = new winston.Logger({
 transports: [new winston.transports.Console({
 timestamp: function() {
 var d = new Date();
 return d.toISOString()
},
})]
})

Monitoring and Alerting Chapter 1

[36]

Replace this code with the reference to our Firehose endpoint:

var logger = new (winston.Logger)({
 transports: [new WFirehose({
 'streamName': 'FirehoseLogs',
 'firehoseOptions': {
 'region': 'us-east-1'
}
})]
})

Once those changes are in place, we can add the new module to git, commit, and push the
changes:

$ git add helloworld.js package.json node_modules
$ git commit -m "Sending logs to Firehose directly"
$ git push

Within a few minutes, CloudWatch logs should stop receiving logs, while your Firehose
delivery service should start seeing traffic. You can open https:/ /console. aws. amazon.
com/firehose/home? region= us- east- 1#/ details/ Firehose Logs? edit= false to verify
that the last changes are working:

Monitoring and Alerting Chapter 1

[37]

We can now look at our logs in Kibana.

Using Kibana to visualize logs
At this point, our application logs are going to ElasticSearch via Kinesis Firehose. One of
the best ways to access our logs now is to use Kibana. You can find the URL of your Kibana
instance by looking at the output of the ElasticSearch CloudFormation stack we launched
earlier:

$ aws cloudformation describe-stacks \
 --stack-name elasticsearch \
 --query 'Stacks[0].Outputs'

Using your browser, open the Kibana URL:

Monitoring and Alerting Chapter 1

[38]

This brings you to a screen resembling the one shown in the preceding screenshot where
you will have to do the initial configuration:

Set the value of the Index name or pattern field to logs-*.
Doing so will make Kibana analyze your logs to find out the possible time field
names. We will select the one called timestamp.
Once you have selected the proper values, click on Create.

This will lead you to the management screen of the index pattern we just created. As you
will see, each meta has been analyzed. At that point, you can click on Discover to see all
your logs and explore the different visualization options to create dashboards for your logs.

You can Google kibana to get some inspiration on what you can do and what to put in
your dashboards:

Monitoring and Alerting Chapter 1

[39]

Deleting old logs using Curator

Unlike CloudWatch logs, the deletion of old logs isn't a built-in feature of
this stack. To delete old logs, look at Elastic Curator at http:/ /bit. ly/
2rFHzUT. You can easily deploy it using a Lambda function that will run
once a day, for example.

Over the course of the last few pages, we went over several concepts to improve logging.
With the help of several AWS services, we were able to collect logs, events, and metrics
from our application and send them to different services, including CloudWatch, S3, and
ElasticSearch. Of course, logging doesn't stop here. The monitoring stack we explored can
be reused to monitor virtually anything that would matter to you and your company.

Among the other functionalities worth exploring is how to monitor the rest of our AWS
infrastructure.

Monitoring our infrastructure
Monitoring is one of those tasks with no finish line. There is always something that you
could add or improve. Because of that, it is important to prioritize the areas on which you
will focus most of your efforts, especially at the beginning, or when new services are
released. In addition, different services require different levels of attention. For instance,
services such as Lambda, S3, or DynamoDB are considered serverless. AWS takes care of
almost everything. You don't need to handle failures, security patches, scaling, high
availability, and so on. At the opposite end of the spectrum, you have services such as EC2
where, aside from the hardware itself, you control every aspect of the instance, and
therefore, you need to also invest time and effort in monitoring. Lucky for us, most services
that AWS creates have a native integration with CloudWatch. Rather than going down the
full list of services we used so far and seeing how monitoring is done, we will look at the
different ways to add monitoring to our existing templates.

Monitoring EC2
EC2 instances are created on top of a hypervisor, which is controlled by AWS. Thanks to
the hypervisor, AWS is able to extract several metrics and feed them into CloudWatch
metrics. This includes CPU utilization, network utilization (NetworkIn and NetworkOut),
and disk performance (DiskReadOps, DiskWriteOps, DiskReadBytes, DiskWriteBytes).

Those metrics are available in the EC2 console when you select your instances and also in

Monitoring and Alerting Chapter 1

[40]

the CloudWatch metrics menu:

By default, the resolution of those metrics is 5 minutes. This means that new data points for
your EC2 instances are collected every 5 minutes. If you have critical hosts where you wish
to have a higher resolution, you can enable a feature called detailed monitoring on a per
instance basis, which will increase the frequency of those metrics to a 1 minute resolution.

Unfortunately, only relying on the hypervisor metrics isn't enough. As you might have
noticed, CloudWatch has information on how your disk performs, for example, but not on
how much disk space you have left. That's because the hypervisor doesn't have visibility of
the operating system. To supply that information, we will need to install an agent on our
EC2 instances to collect those extra metrics.

Providing custom metrics to CloudWatch
We are going to complement the metrics we already have with OS-specific information.
This will include more detailed information about the CPU, disk usage, and memory.

When browsing the EC2 metrics, you will notice that you can query those metrics by Auto
Scaling Group:

Monitoring and Alerting Chapter 1

[41]

It is important to retain this ability to query a set of metrics by specific criteria, especially by
Auto Scaling Groups. To provide the same capability to our custom metrics, we need to
make a change in our CloudFormation template to allow our EC2 instances to get the Auto
Scaling Group information.

Updating our CloudFormation template
Open the nodeserver-cf-template.py script.

After the first IAM policy, add the following MonitoringPolicy IAM policy. Simply add
the following action to the statement:

t.add_resource(IAMPolicy(
 "MonitoringPolicy",
 PolicyName="AllowSendingDataForMonitoring",
 PolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[
 Action("cloudwatch", "Put*"),
 Action("logs", "Create*"),
 Action("logs", "Put*"),
 Action("logs", "Describe*"),
 Action("events", "Put*"),

Monitoring and Alerting Chapter 1

[42]

 Action("firehose", "Put*"),
 Action("autoscaling", "DescribeAutoScalingInstances"),
],
 Resource=["*"])
]
),
 Roles=[Ref("Role")]
))

Save the file. It should be similar to https:/ / raw.githubusercontent. com/ yogeshraheja/
Effective-DevOps- with- AWS/ master/ Chapter08/ EffectiveDevOpsTemplates/ nodeserver-
cf-template-part- 3. py.

Then, once again, update the stacks:

$ git add nodeserver-cf-template.py
$ git commit -m "Allowing the instance to describe the ASG instances"
$ git push
$ python nodeserver-cf-template.py > nodeserver-cf.template
$ aws cloudformation update-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-staging \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,UsePreviousValue=true \
 ParameterKey=KeyPair,UsePreviousValue=true \
 ParameterKey=PublicSubnet,UsePreviousValue=true \
 ParameterKey=ScaleCapacity,UsePreviousValue=true \
 ParameterKey=VpcId,UsePreviousValue=true

$ aws cloudformation update-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-production \
 --template-body file://nodeserver-cf.template \
 --parameters \
 ParameterKey=InstanceType,UsePreviousValue=true \
 ParameterKey=KeyPair,UsePreviousValue=true \
 ParameterKey=PublicSubnet,UsePreviousValue=true \
 ParameterKey=ScaleCapacity,UsePreviousValue=true \
 ParameterKey=VpcId,UsePreviousValue=true

Next, we are going to create a new role in our Ansible repository to install and configure a
tool to emit those metrics.

Monitoring and Alerting Chapter 1

[43]

Creating a CloudWatch role in Ansible
We first need to go into the roles directory of our Ansible repository:

$ cd roles

We will use the ansible-galaxy command to generate our new role:

$ ansible-galaxy init cloudwatch
- cloudwatch was created successfully

We will create a minimal role that allows us to report some of those missing stats. With
your text editor, open the file cloudwatch/tasks/main.yml.

We will use an open source tool called cloudwatchmon. You can access its code source and
documentation on the GitHub page of the project at http:/ /bit. ly/2pYjhI9. The tool is
written in Python and is available through pip. To install PIP packages, Ansible provides a
pip module. After the initial comment of the task, add the following:

tasks file for cloudwatch
- name: Installing cloudwatchmon
 pip:
 name: cloudwatchmon

This tool works through the intermediary of cronjob. We will use the cron module of
Ansible to create what we will call cloudwatchmon.

After the call to the pip module, call the cron module as follows:

- name: Execute cloudwatchmon every 5min
 cron:
 name: "cloudwatchmon"
 minute: "*/5"
 job: /usr/local/bin/mon-put-instance-stats.py --auto-scaling --loadavg-
percpu --
 mem-util --disk-space-util --disk-path=/ --from-cron"

In this case, we are configuring our job to trigger the mon-put-instance-stats.py every
5 minutes. We are also specifying the list of metrics we want to collect in the command. The
mem-util option will provide the percentage of memory utilization while disk-space-
util will do the same, but referring to the disk space on the / partition. You can refer to
the documentation of the script to check the full list of options available.

Monitoring and Alerting Chapter 1

[44]

Percentage versus raw values

There are two ways to report these resource usages. You can provide the
utilization percentages (for example, the partition is full at 23%) or look at
the exact value (for example, there are 2 GB free on that partition). For our
purposes, suffice it to say that monitoring infrastructures using
percentages tends to speed up iteration time as you can create more
generic alerts. This tends to change over time, as your different
applications will often have different constraints requiring different types
of hardware.

Before committing our change, we are going in go one directory up and edit the file
nodeserver.yml:

$ cd ..

We need to include the new role we just created to our service. We can do that simply by
adding a new entry to the roles section, as shown here:

- hosts: "{{ target | default('localhost') }}"
 become: yes
 roles:
 - nodejs
 - codedeploy
 - cloudwatch
 - { role: awslogs, name: messages, file: /var/log/messages }
 - {
 role: awslogs, name: helloworld,
 file: /var/log/helloworld/helloworld.log,
 datetime_format: "%Y-%m-%dT%H:%M:%S.%f"
 }

We can save all the changes and commit them:

$ git add roles/cloudwatch nodeserver.yml
$ git commit -m "Adding new role for CloudWatch monitoring"
$ git push

Since Ansible pulls changes every 10 minutes, within 15 minutes at most we should start
seeing a new section in CloudWatch called Linux System, containing the new metrics of
our hosts:

Monitoring and Alerting Chapter 1

[45]

Now that we have all the visibility we need on our EC2 instances, we can put some alarms
in place.

In many cases, especially with applications exposed to the internet, you tend to observe
occasional strange behavior, but can't easily understand how the application gets in that
state. One of the most useful pieces of information to have in those cases is the access logs
of your load balancer.

Currently, our load balancer exposes several metrics in CloudWatch, but can't tell us the
full story. What routes are causing a 5xx error? What is the latency? Where are the users
coming from? How aggressively are they using your application? To gain access to those
insights, we make a few changes to our ELB and ALB instances.

Monitoring ECS clusters
When it comes to monitoring, EC2 and ECS are very similar. We can slice ECS into three
components: the ECS hosts, the ECS service, and the containers.

Monitoring ECS hosts
ECS runs on top of EC2. Therefore, everything that can be done for EC2 can and should be
done for ECS, including disk space monitoring. The main difference is that you have more

Monitoring and Alerting Chapter 1

[46]

options on how to implement it:

Your first option consists of duplicating what we did with EC2 and have the1.
cloudwatchmon run on every EC2 instance running ECS. To implement this, you
can create a new Ansible role for the ECS host and add the installation and
execution of Ansible to the UserData variable of the ecs-cluster-cf-
template.py, the way we did it in nodeserver-cf-template.py.
Your second option also relies on the UserData field, but this time, you create a2.
new container that runs cloudwatchmon and creates a task for it. The UserData
file would end with something like:

$ aws ecs start-task \
 --cluster $cluster \
 --task-definition cloudwatchmon:1 \
 --container-instances $instance_arn \
 --region $region

Your last option is to take advantage of the task placement feature that ECS3.
offers. This will let you run your containers using a spread strategy such that, by
launching as many containers as you have ECS hosts, you will be able to collect
the stats of each ECS server. You can read more about task placement at http:/ /
amzn.to/ 2kn2OXO.

Once you have that part under control, you can look at the ECS service itself.

Monitoring the ECS service
Often with managed services, AWS natively provides the metrics you need to care about. If
you go into the console and look at the monitoring tabs, you will see two graphs. The first
graph focuses on CPU allocation and the second one on memory utilization. Because we
configured Auto Scaling Groups, the usage shown in these graphs should always stay
within the thresholds we set:

Monitoring and Alerting Chapter 1

[47]

Lastly, you can monitor your tasks and containers.

Monitoring your containers
We containerized our applications, but, fundamentally, nothing about the application really
changed. The best way to monitor your application is through the creation of metrics and
logs, as we did in the earlier part of this chapter. That said, if you experience some issues
with your containers, you may want to search for unhealthy events in the ECS clusters
menu:

Those issues are often caused by misconfiguration of the tasks, when you don't provide
enough CPU and memory reservation, or by bugs or bad user behavior. For those issues, it
is often hard to diagnose them by solely looking at metrics. To help with the diagnosis of
these issues, we can turn on logging on our load balancers.

Monitoring and Alerting Chapter 1

[48]

Monitoring ALB and ELB instances
ALB and ELB both provide a fair amount of top-level metrics, giving you a sense of how
your services are behaving, but sometimes, metrics aren't enough. You want to produce an
access log and track the detail of each request hitting your services. Both ELB and ALB
provide the ability to generate an access log and store it on S3. We will illustrate how to
turn on this feature by making changes to our CloudFormation templates. We will take the
example of our ALB template to turn on logging.

With your editor, open the file helloworld-ecs-alb-cf-template.py located in the
EffectiveDevOpsTemplates repository.

In order to create the access log, we will need to create an S3 bucket and provide it a special
policy so that AWS can access our bucket. This will require including a few extra classes. In
the import section, add the following:

from awacs.aws import Allow, Policy, Principal, Statement

from awacs.s3 import PutObject, ARN

from troposphere.s3 import (
 Bucket,
 BucketPolicy,)

Next, we will create our S3 bucket. After the creation of the template variable and the
addition of its description, add the following resource:

t.add_resource(Bucket(
 "S3Bucket",
 DeletionPolicy="Retain",
))

We are setting a deletion policy such that if we delete the CloudFormation template, the S3
bucket will remain and the logs will still be available. The next resource we are going to
create is the special policy for that bucket. The policy will start by referencing the bucket we
just created:

t.add_resource(BucketPolicy(
 'BucketPolicy',
 Bucket=Ref("S3Bucket"),

The next part is the creation of the policy. The policy contains a statement that tells the
bucket that the AWS account 127311923021 is allowed to put object operations into the
/AWSLogs/511912822958/ prefix.

Monitoring and Alerting Chapter 1

[49]

The account 127311923021 is a special account that AWS operates. You can refer to http:/
/amzn.to/2r8AqPI for the list of account IDs in case your bucket isn't in us-east-1. In
addition 511912822958 needs to be replaced with your own AWS account ID:

 PolicyDocument=Policy(
 Version='2012-10-17',
 Statement=[
 Statement(
 Action=[PutObject],
 Effect=Allow,
 Principal=Principal("AWS", ["127311923021"]),
 Resource=[Join('',
 [ARN(''),
 Ref("S3Bucket"),
 "/AWSLogs/511912822958/*"])],
)
]
)
))

Now that the bucket is created and contains the specific policy, we can turn on the access
log in our ALB resource as follows:

t.add_resource(elb.LoadBalancer(
 "LoadBalancer",
 Scheme="internet-facing",
 Subnets=Split(
 ',',
 ImportValue(
 Join("-",
 [Select(0, Split("-", Ref("AWS::StackName"))),
 "cluster-public-subnets"]
)
)
),
 SecurityGroups=[Ref("LoadBalancerSecurityGroup")],
 LoadBalancerAttributes=[
 elb.LoadBalancerAttributes(
 Key="access_logs.s3.enabled",
 Value="true",
),
 elb.LoadBalancerAttributes(
 Key="access_logs.s3.bucket",
 Value=Ref("S3Bucket"),
)
],
))

Monitoring and Alerting Chapter 1

[50]

Once those changes are in place, you can save and commit your changes, generate the new
template, and update your stack. The code should be similar to https:/ /raw.
githubusercontent. com/ yogeshraheja/ Effective- DevOps- with- AWS/master/ Chapter08/
EffectiveDevOpsTemplates/ helloworld- ecs-alb- cf- template- part- 1. py.

$ git add helloworld-ecs-alb-cf-template.py
$ git commit -m "Sending ALB logs to S3"
$ git push
$ python helloworld-ecs-alb-cf-template.py > helloworld-ecs-alb-cf.template
$ aws cloudformation update-stack \
 --stack-name staging-alb \
 --template-body file://helloworld-ecs-alb-cf.template
$ aws cloudformation update-stack \
 --stack-name production-alb \
 --template-body file://helloworld-ecs-alb-cf.template

Logs will now be automatically uploaded every 5 minutes to the S3 bucket.

Using AWS Athena to efficiently retrieve logs

Once your logs are in S3, you can either download them and analyze them
locally or, if you are looking for specific information, you can use AWS
Athena (http:/ / amzn. to/ 2rSsrn7) to run SQL queries against your logs.
For example, to get the list of the most active IP addresses, you can run
the following query:

SELECT client_ip, COUNT(*) as count
FROM logs.alb
GROUP BY client_ip
ORDER BY COUNT(*) DESC LIMIT 100;

As you would expect, each service AWS releases comes with documentation that covers
every aspect of its monitoring. You can refer to it to see what you need to expose and
implement it with code using one of the strategies we showed in this section.

The last part of adding a monitoring solution is to create alarms to automatically notify
engineers when something abnormal is happening. We will use CloudWatch in conjunction
with SNS to create those alarms.

Creating alarms using CloudWatch and SNS
Up to this point, we have focused on exposing metrics to better understand what is
happening around us. We can now access the data and create nice visualizations of it, but

Monitoring and Alerting Chapter 1

[51]

that is not enough. Meantime to discover (MTD) and Mean time to recover (MTTR) are
two very common metrics used to see how the operations team, and by extension the
DevOps team, is performing. To keep those two metrics as low as possible, automated
alerts are essential. A good alerting system will often help to rapidly identify issues in your
systems and help minimize service degradation and disruption. That said, creating the
proper alarms isn't always as easy as it sounds.

What should we be alerted about? Measuring everything doesn't mean being alerted about
everything. As a rule of thumb, aim at creating alerts about symptoms rather than causes,
and be mindful of when to page someone versus sending a less distributive email or
message (like slack) notification. You want to avoid alert fatigue as much as possible. This
is when on-call engineers become numb to certain alerts that occur too often. In addition,
you want to avoid flooding the on-call engineer with a sea of noisy alerts.

Alerts, and in particular the ones that create pages, should always be timely and actionable:

Think about limiting the scope of what your alerts are covering to important resources,
such as your production environment, only. Make sure that planned maintenance is also
factored into your alerting policy. We won't show that in this book, but you might extend
the work done in the AWS health section of this chapter to disable the alarms of the services
impacted by some of the planned maintenance around EC2.

As your infrastructure grows and the number of EC2 instances needed to run a service
increases, you may want to avoid sending a page of information if only a small portion of
your infrastructure is having issues. For instance, the architectures we used in this book put
our EC2 instances behind load balancers. If one of your instances stops working, the user
impact will be minimal and paging someone is likely not required.

To create our alerts, we will once again turn to CloudWatch. In addition to its capacity to
log metrics, create logs, and trigger events, CloudWatch also features many functionalities
to watch metrics. We already used some of its features in Chapter 6, Running Containers in
AWS, when we configured the scaling component of our Auto Scaling Groups in EC2 and
ECS. We will use it here in conjunction with SNS.

AWS Simple Notification Service (SNS)
SNS is a web service that enables applications, end users, and devices to send and receive
notifications. We already briefly used it in our deployment pipeline to receive email
notifications to approve production deployment. We will use SNS to notify us about
important events.

The service is logically broken up into four parts: producers, topics, protocols, and

Monitoring and Alerting Chapter 1

[52]

subscriptions.

The message producers are the applications and services producing the messages, and
those messages are organized around topics. Topics are like access points. As you create
your SNS topics, AWS will associate them with an ARN that other services can subscribe to.

Once the topic is created, other systems or end users can subscribe (or be subscribed) to
those topics via a number protocols, such as HTTP(S), email, Amazon SQS, Amazon
Lambda, SMS, or the mobile endpoint (mobile application and devices):

We will type of notifications, one for non-urgent issues. In this case, we will simply send
emails. The second one will be used to notify us of critical and time-sensitive issues. For the
latter, we will rely on SMS notifications.

We will use the AWS command-line interface to create them. The first step will be to create
the two topics as follows:

$ aws sns create-topic --name alert-email
{
 "TopicArn": "arn:aws:sns:us-east-1:511912822958:alert-email"
}
$ aws sns create-topic --name alert-sms

Monitoring and Alerting Chapter 1

[53]

{
 "TopicArn": "arn:aws:sns:us-east-1:511912822958:alert-sms"
}

This part is straightforward: the only difference is the same for those topics. We will now
put our protocols in place, starting with the email protocol. To do that, we will use the sns
subscribe option and specify the following:

The topic-arn returned by the previous command
The protocol, in this case email
The notification-endpoint, which should be your email address:

$ aws sns subscribe \
 --topic-arn arn:aws:sns:us-east-1:511912822958:alert-email \
 --protocol email \
 --notification-endpoint email@domain.com
{
 "SubscriptionArn": "pending confirmation"
}

At this point, you should check your inbox and confirm that you want to subscribe:

The SMS subscription is very similar to the email subscription, with the addition of an extra
step of setting a DisplayName attribute, which is required for the SMS protocol
subscription:

$ aws sns set-topic-attributes \
 --topic-arn arn:aws:sns:us-east-1:511912822958:alert-sms2 \
 --attribute-name DisplayName \
 --attribute-value helloworld

The notification endpoint should be your cell phone number prefixed with the country
code (for example, in the US, if your number is +1 (222) 333-4444, you will need to use
12223334444):

$ aws sns subscribe \
 --topic-arn arn:aws:sns:us-east-1:511912822958:alert-sms2 \

Monitoring and Alerting Chapter 1

[54]

 --protocol sms \
 --notification-endpoint 12223334444

At that point, the first time around, you will receive an SMS to confirm your subscription.

Integrating with PagerDuty, Opsgenie, or Victorops

We are showing in this book a minimum viable solution to send SMS
notifications for important issues using only SNS. If you want to use a
more feature-rich solution, such as PagerDuty, Opsgenie, or VictoOps, to
name a few, you will simply need to change the type of subscription in the
last command. Instead of using SMS, you will use the HTTPS protocol and
provide the WebHook URL of your service provider.

Now that our notification system is in place, we can start feeding notifications to our topics.
For that, we will turn to AWS CloudWatch.

Creating an alert of an elevated error rate in our
application
As a reminder, our helloworld application has a very simple design:

Monitoring and Alerting Chapter 1

[55]

All user traffic is going through an ELB instance. Since we use the HTTP to communicate,
we can easily identify when something unexpected is happening.

If you take a closer look at the monitoring tab of one of your load balancer instances
(http://amzn.to/ 2rsEaLY), you will see some of the top-level metrics you should care
about:

While each application has its own behavior, an increase in latency or HTTP 5XXs is
usually a good signal that someone needs to take a closer look at the service.

We will incorporate the monitoring of those two metrics in our template. We will reopen
our troposphere script helloworld-ecs-alb-cf-template.py. We will first add some
new import as such:

from troposphere.cloudwatch import (
 Alarm,
 MetricDimension,
)

Then, we will go to the bottom of the file, where we already created the alarms CPU too
low

and CPU too high.

Just before the last print statement, we will add a new Alarm resource as follows:

t.add_resource(Alarm(
 "ELBHTTP5xxs",

Monitoring and Alerting Chapter 1

[56]

 AlarmDescription="Alarm if HTTP 5xxs too high",

We are giving it a reference and a description. To target the proper metric, we need to
specify the namespace of the ELB service and the name of the metric, as shown here:

Namespace="AWS/ELB", MetricName="HTTPCode_Backend_5XX",

We want our alert to target the load balancer instance created with that template. For that,
we'll reference the load balancer resource in the metric dimension as follows:

 Dimensions=[
 MetricDimension(
 Name="LoadBalancerName",
 Value=Ref("LoadBalancer")
),
],

We want the alert to trigger if the number of HTTP 5xx is, on average, greater than 30 for
three consecutive periods of 1 minute. This is done using the following properties:

 Statistic="Average",
 Period="60",
 EvaluationPeriods="3",
 Threshold="30",
 ComparisonOperator="GreaterThanOrEqualToThreshold",

The last part of the alert consists of selecting the action to perform when the alert triggers.
In our case, we will want to send a message with the alert-sms SNS topic. In order to do
that, we need to get this topic's ARN. We can do it using the following command:

$ aws sns list-topics

Once you have the information, you can specify the information in AlarmActions and
OKActions. Additionally, we will leave the InsufficientDataActions action empty as
this metric is what we call a sparse metric, meaning that if no 5xxs are emitted, the service
will not produce any data points, as opposed to creating an entry with a value of 0. The
OKActions is also somewhat optional and is more a question of taste. Configured as such,
CloudWatch will emit another SMS when the alert resolves:

AlarmActions=["arn:aws:sns:us-east-1:511912822958:alert-sms"],
 OKActions=["arn:aws:sns:us-east-1:511912822958:alert-sms"],
 InsufficientDataActions=[],

This concludes the creation of that alarm. We can close our open parenthesis:

))

Monitoring and Alerting Chapter 1

[57]

After that new alarm, we will create the alarm to target the latency. Almost everything is
identical. We are going to create a new resource and give its identifier and description as
follows:

t.add_resource(Alarm(
 "ELBHLatency",
 AlarmDescription="Alarm if Latency too high",

We will use the same namespace, but with a different metric name:

Namespace="AWS/ELB",
MetricName="Latency",

The dimensions are the same as before:

Dimensions=[
 MetricDimension(
 Name="LoadBalancerName",
 Value=Ref("LoadBalancer")
),
],

For the case of latency, we are looking at five evaluations of 1 minute and a threshold of 500
ms to trigger the alarm:

 Statistic="Average",
 Period="60",
 EvaluationPeriods="5",
 Threshold="0.5",
 ComparisonOperator="GreaterThanOrEqualToThreshold",
 AlarmActions=["arn:aws:sns:us-east-1:511912822958:alert-sms"],
 OKActions=["arn:aws:sns:us-east-1:511912822958:alert-sms"],
 InsufficientDataActions=[],

This concludes the creation of our alarms. Your new template should look as follows
https://raw.githubusercontent. com/ yogeshraheja/ Effective- DevOps- with- AWS/
master/Chapter08/ EffectiveDevOpsTemplates/ helloworld- ecs- alb-cf- template. py

You can commit the changes, generate the new CloudFormation template, and deploy it
using the usual steps.

$ git add helloworld-ecs-alb-cf-template.py
$ git commit -m "Creating SNS alarms"
$ git push
$ python helloworld-ecs-alb-cf-template.py > helloworld-ecs-alb-cf.template
$ aws cloudformation update-stack \
 --stack-name staging-alb \
 --template-body file://helloworld-ecs-alb-cf.template

Monitoring and Alerting Chapter 1

[58]

$ aws cloudformation update-stack \
 --stack-name production-alb \
 --template-body file://helloworld-ecs-alb-cf.template

Blameless post-mortems

To close our feedback loop, we need to talk about learning. When failures
happen, one of the best approaches to building that learning component is
to create post-mortem documents that describe the incident, the timeline,
the root cause, and how it was resolved. John Allspaw, one of the
founding fathers of the DevOps movement, did some extensive thinking
in that area and created the concept of blameless post-mortems, which
describe in more detail this approach that emphasizes learning over
finger-pointing.

One of the restrictions that CloudWatch has is the notion of alarm dimensions. In our last
example, the ELB represents only one resource, which made it easy to create our alert as we
could reference the resource name. For more dynamic resources, such as our EC2 instances,
we might want to monitor a resource that's not exposed at the load balancer level.

To accomplish such things, we need to look at CloudWatch events.

Using CloudWatch events and Lambda to create alerts
on custom metrics
In the previous section, we added two alarms to our CloudFormation template. Whenever
possible, keeping your monitoring information with the resources they are monitoring is
good practice. Unfortunately, it isn't always easy to do. For instance, we are keeping track
of the disk space usage of our EC2 instances. Those EC2 instances are created by our Auto
Scaling Group. Because of that, adding alerts for that metric in our troposphere code is a lot
more complicated as we don't have some of the critical information, such as the instance ID.
To get around that issue, we are going to see how to create alerts based on infrastructure
changes.

As we saw earlier, whenever a change occurs in your AWS infrastructure, the event is
emitted in real time to a CloudWatch event. This includes the creation of EC2 instances. We
will create a rule to capture those events and send that information to a Lambda function
that will create our alarms.

We will implement that using the serverless framework (https:/ /serverless. com/) that
we looked at in Chapter 6, Scaling Your Infrastructure.

Monitoring and Alerting Chapter 1

[59]

We will first create a new serverless application. In Chapter 6, Scaling Your Infrastructure,
we demonstrated how to create a helloworld application using Node.js. Lambda and
serverless are also both able to handle other languages, including Python. We will use
Python and the Boto library to manage the creation of our alarms. To get started, we need
to create a new application using the following command:

serverless create --template aws-python \
 --name disk-free-monitoring \
 --path disk-free-monitoring

This will create all the boilerplate we need inside a directory called disk-free- monitoring:

$ cd disk-free-monitoring

The directory contains two files, handler.py and serverless.yml. The handler file will
contain the code of our Lambda function while serverless.yml will have the information
about how to deploy and configure our function. We will start there.

With your text editor, open the serverless.yml file. The file is broken up into different
sections.

The first change we will do is to add IAM permissions to our function. We want our
function to be able to create and delete alarms. For that, find the provider block in the
configuration file and add the following:

provider:
 name: aws
 runtime: python2.7
 iamRoleStatements:
 - Effect: "Allow"
 Action:
 - "cloudwatch:PutMetricAlarm"
 - "cloudwatch:DeleteAlarms"
 Resource: "*"

Toward the middle of the file, a section defines the name of the handler:

functions:
 hello:
 handler: handler.hello

While ultimately we could create a function and call it hello, we can also come up with
something more descriptive about the action. We will change the name to alarm as follows:

functions:
 alarm:
 handler: handler.alarm

Monitoring and Alerting Chapter 1

[60]

Lastly, we need to define how our function will get triggered. After the handler definition,
add the following (events and handler are aligned):

events:
 - cloudwatchEvent:
 event:
 source:
 - "aws.ec2"
 detail-type:
 - "EC2 Instance State-change Notification"
 detail:
 state:
 - running
 - stopping
 - shutting-down
 - stopped
 - terminated

We will now edit the handler.py file.

When you first open the file, it shows a basic hello function. We won't keep any of it. As a
first step, delete everything in that file. We will start our file with the import and
initialization of the boto3 library.

import boto3
client = boto3.client('cloudwatch')

We will now create a function and call it alarm in reference to the handler value defined in
our last file (handler.alarm). The function takes two arguments, event and context:

def alarm(event, context):

The event will contain a JSON with the information that the EC2 instance state change
received. You can see sample events by using the CloudWatch event web interface.

With your browser, open https:/ /console. aws.amazon. com/ cloudwatch/ home? region=
us-east-1#rules:action= create and then provide the new information of the event you
want to match, as shown in this screenshot:

Monitoring and Alerting Chapter 1

[61]

In our case, we want to extract two pieces of information, the instance-id and the state.
We will do that as follows:

instance = event['detail']['instance-id']
state = event['detail']['state']

We want to create alarms when an instance is running and delete them when they are in
one of the other states listed in the serverless.yml file (stopping, shutting-down,
stopped, terminated). We will create two alarms: a warning email alert when the partition
is filled to 60% and a page for when we reach 80%.

We will do that by creating two functions, put_alarm and delete_alarms. For now, we

Monitoring and Alerting Chapter 1

[62]

will simply call them as follows:

if state == "running":
 warning = put_alarm(instance, 60, 'alert-email')
 critical = put_alarm(instance, 80, 'alert-sms')
 return warning, critical
else:
 return delete_alarms(instance)

We can now define our two functions, starting with the put_alarm function:

def put_alarm(instance, threshold, sns):

The function takes three arguments, the instance ID, the threshold of the alarm, and the
topic information.

We will first define the sns_prefix information. We can get that value using the following
command:

$ aws sns list-topics \
 sns_prefix = 'arn:aws:sns:us-east-1:511912822958:'

The next step will be to create the alarm. We will want to store the response so that we can
return that to the Lambda execution:

response = client.put_metric_alarm(

We now need to provide all the information needed to create the alarm, starting with its
name. The name of the alarm has to be unique to the AWS account. We will make sure this
is the case by using the instance ID and sns suffix to generate the alarm name:

AlarmName='DiskSpaceUtilization-{}-{}'.format(instance, sns),

We now need to provide the details of the metric to monitor as follows. We will first
provide the metric name and namespace followed by the dimensions. In the dimensions
section, we are able to limit the monitoring to only our instance ID thanks to the
information provided by CloudWatch through the event variable:

MetricName='DiskSpaceUtilization',
Namespace='System/Linux',
Dimensions=[
{
 "Name": "InstanceId",
 "Value": instance
},
{
 "Name": "Filesystem",

Monitoring and Alerting Chapter 1

[63]

 "Value": "/dev/xvda1"
},
{
 "Name": "MountPath",
 "Value": "/"
}
],

We are going to define the threshold information as follows:

Statistic='Average',
Period=300, Unit='Percent',
EvaluationPeriods=2,
Threshold=threshold,
ComparisonOperator='GreaterThanOrEqualToThreshold',
TreatMissingData='missing',

In this particular case, we want to have two consecutive executions of 5 minutes where the
average disk usage is higher than 60 or 80% to trigger the alarms. Finally, we are going to
specify the topics to send the message to when the alert triggers and recovers:

AlarmActions=[
 sns_prefix + sns,
],
OKActions=[
 sns_prefix + sns,
]
)
return response

The function finishes with the return of the response. We will now create the function that
deletes them. For that, we will create the function and call it delete_alarms. The code to
delete the alarm is a lot simpler. We simply need to call the boto function,
delete_alarms, and provide it an array with the two names of the alert we created:

def delete_alarms(instance):
 names = [
 'DiskSpaceUtilization-{}-alert-email'.format(instance),
 'DiskSpaceUtilization-{}-alert-sms'.format(instance)
]
return client.delete_alarms(AlarmNames=names)

The handler.py is done, but in order to make this code work, we need to create a few
extra files. The first file we want to add is requirements.txt. This file defines the
libraries required by our Python code to run. In our case, we need boto.

In the same directory as handler.py and serverless.yml, create a file and call it

Monitoring and Alerting Chapter 1

[64]

requirements.txt. In it, add boto3==1.4.4.

The serverless file doesn't automatically handle those requirement files. In order to handle
them, we need to create a package.json file in the same directory as the other files and
put the following in it:

{
"name": "disk-free-monitoring",
"version": "1.0.0",
"description": "create cloudwatch alarms for disk space",
"repository": "tbd",
"license": "ISC",
"dependencies": {
 "serverless-python-requirements": "^2.3.3"
}
}

We now can run the command npm install.

With those two extra files created, we are ready to deploy our application as follows:

$ serverless deploy
Serverless: Packaging service... Serverless: Creating Stack...
Serverless: Checking Stack create progress...
.....
Serverless: Stack create finished...
Serverless: Uploading CloudFormation file to S3...

Serverless: Uploading artifacts...
Serverless: Uploading service .zip file to S3 (1.17 KB)... Serverless:
Updating Stack...
Serverless: Checking Stack update progress...
.....................
Serverless: Stack update finished...
Service Information
service: disk-free-monitoring stage: dev
region: us-east-1 api keys:
None endpoints:
None functions:
alarm: disk-free-monitoring-dev-alarm

From that point on, any EC2 instance that gets created in us-east-1 will automatically get
two dedicated alarms while the instances are running:

Monitoring and Alerting Chapter 1

[65]

We won't show it in the book, but there are many things you can improve in this script,
including looking at the EC2 tags of your instances to see if it's a production system or not.

Lastly, we will take a closer look at a service that AWS calls personal health.

Monitoring and alerting with AWS health
While AWS is mostly stable, and outages are rare, it is not exempt from occasional service
degradation. To check on the general health of their service, you go to their main dashboard
at https://status. aws. amazon. com.

Note that this dashboard also provides an RSS feed, which can be integrated with most
communication services, such as Slack:

In addition to that global status page, you can also access a personalized health dashboard
in the AWS console by clicking on the bell icon:

Monitoring and Alerting Chapter 1

[66]

You can also access the dashboard directly by opening https:/ /phd. aws. amazon. com in
your browser. The personalized health dashboard will display information affecting all
customers in the region and also notifications that are specific to your account, such as
when one of your instances is scheduled for maintenance and reboot. The personalized
health dashboard doesn't have an RSS feed, but instead is integrated into the CloudWatch
event.

We are going to create a new rule in the CloudWatch event to send us email notifications of
the different alerts.

We will do that using the command-line interface:

The first step will be to create a rule that matches all events coming from the1.
endpoint aws.health. We will do that with the following command:

$ aws events put-rule \
 --name AWSHealth \
 --event-pattern '{"source":["aws.health"]}' \
 --state ENABLED
{

Monitoring and Alerting Chapter 1

[67]

 "RuleArn": "arn:aws:events:us-
east-1:511912822958:rule/AWSHealth"
}

Next, we will get the information of our target. In our case, the target is the SNS2.
topic created earlier in the chapter. We will need to get the TopicARN, which you
can get with the following command:

$ aws sns list-topics | grep alert-email
 "TopicArn": "arn:aws:sns:us-east-1:511912822958:alert-email"

Finally, we can tie the two together. The target's command expects a JSON entry,3.
which we provide here using the following shorthand syntax:

aws events put-targets \
 --rule AWSHealth\
 --targets Id=1,Arn=arn:aws:sns:us- east-1:511912822958:alert-
email

Throughout the course of this section, we explored how to create alerts and applied this
method to a few of our key public indicators. If you wish, you can continue that exercise,
reusing some of the techniques we explored to put in place more alarms to make sure you
don't miss any important events.

Documentation

All the work done so far will only be useful if you create good
documentation to go with it. At the very least, your documentation
should cover the different failure scenarios and how to recover from them.

Summary
In this chapter, we explored several ways to add monitoring and alerting to our application
and infrastructure. We could do it reasonably well by taking advantage of some of the
services AWS provides, including CloudWatch, ElasticSearch, and SNS. You can now
continue the work of measuring everything. Ultimately, measurement needs to become
part of the company culture.

There are several areas to explore, including the following:

At the infrastructure level, you can start tracking AWS costs and create budgets.
You can also put monitoring around your backups to make sure that you aren't
missing backup failures.

Monitoring and Alerting Chapter 1

[68]

At the service level, you can look at X-Ray, the distributed request tracking
service, to monitor performance.
At the build and release pipelines level, with a couple of changes to
CloudFormation, CodeDeploy, and CodePipeline, you can start tracking the
frequency of deployments and rollbacks. In addition, you can do the same to
Ansible and create an alert when Ansible returns an error when it runs.

Quality can also get this kind of treatment. You can start collecting test code coverage
information to make sure you don't push new code without unit testing. It is also
interesting to compare outage frequency and bugs/tickets. You can sometimes find a
correlation between quality going down and outages going up.

While it may not seem obvious at times, the DevOps movement is first and foremost about
people. All those improvements in our process and the adoption of new technologies are
means to that end. For that reason, you also want to find ways to track the impact all those
changes have on the different people in the company.

In Chapter 8, Hardening the Security of Your AWS Environment, we will continue using some
of the components we built in this chapter, but this time from the perspective of security.

Questions
What is AWS CloudWatch?1.

CloudWatch is a native monitoring solution for all most all AWS services. It
supports three different type of data stream named metrics, logs and events.
We can access CloudWatch using the web console, the command-line
interface, and, of course, the API and various SDKs.

What is ELK stack?2.

ELK is the acronym for three open source projects: Elasticsearch, Logstash,
and Kibana. Elasticsearch is a search and analytics engine. Logstash is a
server‑side data processing pipeline that ingests data from multiple sources
simultaneously, transforms it, and then sends it to a stash like Elasticsearch.
Kibana lets users visualize data with charts and graphs in Elasticsearch.

What is EKK stack?3.

The EKK solution eliminates the undifferentiated heavy lifting of deploying,
managing, and scaling your log aggregation solution, which means you can

Monitoring and Alerting Chapter 1

[69]

remove Logstash with AWS Kinesis Solution. With the EKK stack, you can
focus on analyzing logs and debugging your application, instead of
managing and scaling the system that aggregates the logs.

Further reading
winston logger: https:/ /www. npmjs. com/package/ winston

ELK Information: https:/ / www.elastic. co/

Amazon ElasticSearch Service: https:/ /aws. amazon. com/ elasticsearch-
servic

