
1
Monitoring Windows

So far, we have explored the monitoring of various services and Linux systems. While
monitoring Microsoft Windows is very similar in many aspects, some Windows-
specific support is available in Zabbix. Most of the things we learned about the
Zabbix agent, using items and even user parameters, are still relevant on Windows. In
this chapter, we will explore installing the Zabbix agent on Windows, monitoring
Windows performance counters, and using the built-in Windows Management
Instrumentation (WMI) support. We will also try out Windows service monitoring,
including the ability to discover them automatically, and the event log system
support in the Zabbix agent. For this section, you will need a Windows machine that
is accessible from the Zabbix server.

In this chapter, we will cover the following topics:

Installing the Zabbix agent for Windows
Querying performance counters
Querying WMI
Monitoring Windows services
Windows event-log monitoring

Monitoring Windows Chapter 1

[2]

Installing the Zabbix agent for Windows
To install the agent, it first has to be obtained. On Windows, compiling software is
less common and most users get binary distributions, which is exactly what we will
do now.

The Windows build of the Zabbix agent can be obtained from two official
locations—either from the download page at http://www.zabbix.com/download.php,
or from the source archive. While the practice of keeping binaries in the sources is not
suggested, that's how Zabbix does it and sometimes, we can use it to our advantage.
If you installed from source, it might be a good idea to use the Windows agent binary
from the same archive so that the versions match. The agent executable is located in
the bin/win32 or bin/win64 subdirectory—choose the one that is appropriate for
your architecture. If you installed from the packages, visit the download page and
grab the Windows agent archive, but make sure to use the same or older major
version of the Zabbix server. With the agent at hand one way or another, place it in
the same directory on the Windows machine.

For simplicity, we'll use C:\zabbix this time, but you are free to use any other
directory. We will also need the configuration file, so grab the example provided at
conf/zabbix_agentd.win.conf if you used the binary from the sources, or from
the conf/ directory inside the archive if you downloaded the binaries from the
Zabbix website. Place the configuration file in the same directory—there should be
two files now. Before we continue with the agent itself, let's figure out whether we
need to alter the configuration in any way. Open
C:\zabbix\zabbix_agentd.win.conf in your favorite text editor and look for any
parameters we might want to change. First, the log file location isn't quite right—it's
set to C:\zabbix_agentd.log, so let's change it, as follows:

LogFile=c:\zabbix\zabbix_agentd.log

You can use both forward and back slashes on the Windows Zabbix agent daemon
command line and in the configuration file.

Monitoring Windows Chapter 1

[3]

We have already learned that the server line, which currently reads
Server=127.0.0.1, will have to be changed. Replace the 127.0.0.1 part with the
IP address of your Zabbix server. And to be sure that active items will work as
expected, let's check the Hostname directive; it is set to the Windows host by default
and we could leave it like that. Another parameter for active checks was
ServerActive. Replace 127.0.0.1 here with the Zabbix server IP address as well
and save the file.

If we were to start our agent now, it would automatically register on the Zabbix
server, based on the configuration we created in Chapter 11, Automating Configuration.

While it would be convenient, we want to test things in a stricter fashion this
time—go to Configuration | Actions, switch to Auto registration in the Event source
drop-down, and click on Enabled, next to Testing registration—this should disable
the auto-registration we set up earlier.

Now let's try to start the agent up. Start the Windows cmd.exe and execute the
following:

C:\zabbix>zabbix_agentd.exe -c c:/zabbix/zabbix_agentd.win.conf

You might have to prefix the commands with .\ on some versions
of Windows.
If you see no output or another window appears very briefly, you
should start Command Prompt as the admin user. In recent versions
of Windows, the menu entry is called Command Prompt (Admin).

The agent daemon refuses to start up:

zabbix_agentd.exe [6348]: use foreground option to run Zabbix agent as
console application

Let's find out how we can supply the foreground option, then. The agent daemon
executable on Windows has additional options that can be passed to it, so execute it in
Command Prompt (when located in the directory where zabbix_agentd.exe
resides):

C:\zabbix>zabbix_agentd.exe --help

Monitoring Windows Chapter 1

[4]

Looking at the Options section, the foreground parameter is listed there:

-f --foreground Run Zabbix agent in foreground

Let's try to use that option:

C:\zabbix>zabbix_agentd.exe --foreground -c
c:/zabbix/zabbix_agentd.win.conf
Starting Zabbix Agent [Windows host]. Zabbix 3.0.0 (revision 58455).
Press Ctrl+C to exit.

It looks like the agent has started up. For a quick test, try running the following from
the Zabbix server. On the Zabbix server, execute the following:

$ zabbix_get -s <Windows host IP> -k system.cpu.load
0.316667

The agent is running and we can query values from it; it looks great. There's one
issue, though—we are currently running it in our Terminal. If we were to close the
Terminal, the agent wouldn't run anymore. If the system were rebooted, the agent
would not be started automatically. Running the agent in the foreground is nice, but
we can also run it as a Windows service. How, exactly? First, stop it by pressing Ctrl +
C, then look at the --help output again. Among all the parameters, we are interested
in the Functions section this time:

Functions:
-i --install Install Zabbix agent as service
-d --uninstall Uninstall Zabbix agent from service
-s --start Start Zabbix agent service
-x --stop Stop Zabbix agent service

--multiple-agents in the Options section is intended to run multiple agents on the
same system as separate Windows services. If used, the service name will include the
Hostname parameter value from the specified configuration file in the service name.

The Zabbix agent daemon for Windows includes the functionality to install it as a
standard Windows service, which is controlled by the options in this section. Unless
you are simply doing some testing, you'll want to properly install it, so let's do that
now:

C:\zabbix>zabbix_agentd.exe -c c:/zabbix/zabbix_agentd.win.conf -i

Monitoring Windows Chapter 1

[5]

A confirmation dialog might come up at this time. Click on Yes. If you were running
Command Prompt as an administrative user, installing the service should succeed:

zabbix_agentd.exe [6248]: service [Zabbix Agent] installed
successfully
zabbix_agentd.exe [6248]: event source [Zabbix Agent] installed
successfully

If not, this command might fail with the following:

zabbix_agentd.exe [3464]: ERROR: cannot connect to Service Manager:
[0x00000005] Access is denied.

In this case, you should either run Command Prompt as an administrative user, or
allow the program to run as the administrative user.

To do the latter, right-click on zabbix_agentd.exe, and choose Troubleshoot
compatibility.

In the resulting window, perform the following steps:

Click on Troubleshoot program and mark the checkbox for The program1.
requires additional permissions:

Click on Next, then Test the program, and Next again2.
In the final window, choose Yes, save these settings for this program, then3.
click on Close

Monitoring Windows Chapter 1

[6]

If running the agent daemon seems to have no input or shows a window very briefly,
use the administrative Command Prompt.

If everything was successful, the Zabbix agent daemon will have been installed as a
Windows service using the configuration file, specified by the -c flag. You can verify,
in the Windows Control Panel | Services section, that the Zabbix service has indeed
been installed:

While it has been set to start up automatically, it is stopped now. We can start it by
either right-clicking on the Zabbix Agent service entry and choosing Start, or by
using the command line to switch to zabbix_agentd.exe. Let's try the latter method
now:

C:\zabbix>zabbix_agentd.exe --start

You might have to answer another security prompt here, but the service should start
up successfully. We can verify in the services list that the Zabbix service has started
up:

If you opened the service list earlier, refresh the contents by pressing
F5.

It looks like everything is fine on the monitored host, which we will now have to
configure in the frontend:

Open Configuration | Hosts and click on Create host, then fill in the1.
following values:

Host name: Windows host
Groups: If there's any group in the In groups box, remove it
New group: Windows servers
Agent interfaces, IP address: Enter the IP address of that
host

Monitoring Windows Chapter 1

[7]

When done, click on the Add button at the bottom.2.
Now select Windows servers in the Group drop-down. Click on Items next3.
to Windows host, then click on Create item. Enter these values:

Name: CPU load
Key: system.cpu.load
Type of information: Numeric (float)

When done, click on the Add button at the bottom.4.

We can now check out incoming data at Monitoring | Latest data—clear out the
other filter fields, select Windows host in the Host group field, and then click on
Filter:

CPU load on Windows works in a similar manner as on Unix
systems, although Windows administrators are less familiar with it.
CPU utilization is more often used on Windows.

We have now successfully retrieved data on the CPU load for this Windows machine.
Notice how the key syntax is the same as for Linux. This is true for several other keys,
and you can check out the Zabbix documentation to determine which keys are
supported on which platform.

Monitoring Windows Chapter 1

[8]

Querying performance counters
While many keys match between platforms, there's a whole category that is specific to
Windows. Zabbix supports Windows built-in metrics-gathering
system—performance counters. People who are familiar with Windows probably
know that these can be found at Control Panel | Administrative Tools |
Performance in older versions of Windows, and Administrative Tools | Performance
Monitor in more recent versions, with a lot of counters to add. How exactly it
operates depends on the Windows version; in older versions, we can click on the +
icon in the child toolbar, or press Ctrl + I to see available counters:

Monitoring Windows Chapter 1

[9]

In this dialog, we can gather the information required to construct a performance-
counter string. First, the string has to start with a backslash, \. The Performance
object drop-down follows; in this case, Processor. Then we have to include the
desired instance in parentheses, which makes our string so far \Processor(_Total)
(notice the leading underscore before Total). The counter string is finished by
adding an individual counter string from the Select counters from list radio button,
again separated by a backslash. So the final performance-counter string looks like
this:

\Processor(_Total)\% Idle Time

In recent Windows versions, we expand Data Collector Set:

Right-click on User Defined, and choose New | Data Collector Set:1.

In the resulting window, enter a name for the data collector set, choose2.
Create manually, and click on Next
Choose Performance Counter Alert, and click on Next again, then click on3.
Add
Expand Processor and click on % Idle Time, then click on Add...4.

Monitoring Windows Chapter 1

[10]

Click on OK to see the constructed performance-counter string:5.

Now that we have constructed it, what do we do with it? Create an item, of course.

Back in the frontend, navigate to Configuration | Hosts, click on Items next to the
Windows host, and click on Create item. Fill in these values:

Name: CPU idle time, %
Key: This is where things get more interesting, although the principle is
quite simple—the perf_counter key has to be used with the performance-
counter string, like the one we constructed before as a parameter; thus,
enter perf_counter[\Processor(_Total)\% Idle Time] here
Type of information: Numeric (float)
Units: %

Monitoring Windows Chapter 1

[11]

When you are done, click on the Add button at the bottom. This item should show us
the total time all CPUs spend idling on the machine, so let's look at Monitoring |
Latest data. We can see that the data is directly fetched from the built-in performance
counter:

Looking at the list of available performance objects and corresponding counters in
Windows, we can see many different metrics. Navigating this window is
cumbersome at best, thanks to small widgets, no proper filtering or searching
capabilities, and the fact that constructing the required string to be used as a key is a
manual typing job, as entries can't be copied. Luckily, there's a solution
available—the typeperf.exe command-line utility. To see how it can help us,
execute the following:

 C:\zabbix>typeperf -qx > performance_counters.txt

This will direct all output of this command to be saved in
the performance_counters.txt file. Open that file with a text editor and observe
the contents. You'll see lots and lots of performance-counter strings, covering various
software and hardware information. There is no need to struggle with that clumsy
dialog anymore; we can easily search for and copy these strings.

Using numeric references for performance
counters
If you have a localized Windows installation, you have probably noticed by now that
all performance counters are in the localized language, not in English. This becomes
especially cumbersome to handle if you have to monitor several Windows machines
with different locales configured for them. For example, a counter that, on an English
Windows installation, is \System\Processes ,would be \Système\Processes in a
French one. Would it be possible to use some other, more universal, method to refer to the
performance counters? Indeed, it would; we can use numeric references, but first, we
have to find out what they are.

Monitoring Windows Chapter 1

[12]

Launch regedit and look for
the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Perflib key. Under this key, you'll see one or more entries,
with one being 009, which is the entry for the English language. Select this entry and
pay attention to the Counter key, which has suspiciously similar contents to
performance-counter names. Expect to see something like this in older versions of
Windows:

You would see something like this in a more recent version:

Monitoring Windows Chapter 1

[13]

Double-click this value to see its contents in a somewhat more manageable form:

Each performance-counter string can be translated into a number. Figuring out exact
conversions in this tiny window is hard, so let's copy all the contents and save them
to a file, which we'll then be able to search; name it numeric.txt. To see how this
works, let's translate the performance-counter string we used before:
\Processor(_Total)\% Idle Time.

First we have to translate the performance object, Processor. While it is possible to
search these contents in any text editor, it soon becomes cumbersome, especially if we
have to translate lots of values. In that case, we can turn to the basic GNU tools, such
as grep, which you might have installed on the Windows machine—if not, copy this
file over to the Zabbix server:

$ grep -B 1 "^Processor$" numeric.txt

Monitoring Windows Chapter 1

[14]

This command will search for a line containing the Processor string exactly and will
also output the line immediately before it, which contains the numeric ID of this
performance object:

238
Processor

Numeric values might differ between Windows versions, so make
sure to use the values found in your file.

If you are using grep on the Zabbix server, the saved file might contain Windows-
style newlines and you might get no output. In that case, convert the newlines by
executing the following:

$ sed -i 's/\r//' numeric.txt

Now that we have the numeric value for the first part, do the same for the second part
of the performance counter:

$ grep -B 1 "^% Idle Time$" numeric.txt
1482
% Idle Time

We now have numeric values for all parts of the performance counter, except _Total.
How can we translate that? We don't have to—this string is used as-is on all locales.
Our resulting performance counter would then look like this:

\238(_Total)\1482

As we already have an item gathering this information, we won't add another one.
Instead, let's test it with the zabbix_get utility. On the Zabbix server, execute the
following:

 $ zabbix_get -s <Windows host IP> -k
"perf_counter[\238(_Total)\1482]"

This should return the same data as the \Processor(_Total)\% Idle Time key:

 99.577165

Monitoring Windows Chapter 1

[15]

Additional software can add additional performance counters, and
numeric values for such counters can differ between systems. In
some cases, software modifies existing performance counters, such
as adding the firewall software vendor's name to a network
interface.

Using aliases for performance counters
Another method to unify item keys that are using Zabbix configurations (so that a
single template could be used for all hosts) is to specify performance-counter aliases.
To do that, add an Alias directive to the Zabbix agent configuration file. For
example, if we wanted to refer to the performance counter we used,
\Processor(_Total)\% Idle Time, as cpu.idle_time, we would add the
following:

Alias = cpu.idle_time:perf_counter[\Processor(_Total)\% Idle Time]

Don't forget to restart the agent after making the changes.

On systems with a different locale, the Alias entry would use a different
performance-counter, but from now on, we can use the same item key for all systems:
cpu.idle_time.

Averaging performance counters over time
The Zabbix agent has another Windows-specific feature: it can gather performance-
counter values and return the average. This way, we can smooth out counters that
return data for the last second and reduce the chance of missing abnormal data. For
example, we could add a line such as this in the agent demon configuration file:

PerfCounter = disk.writes,"\PhysicalDisk(_Total)\Disk Writes/sec",300

Based on this, the agent will collect the values from that performance counter every
second and compute the average over five minutes. We could then query the agent
once every five minutes and get an accurate idea of what the average writes per
second were. If we didn't use averaging, we would only get the data for the last
second once every five minutes.

Monitoring Windows Chapter 1

[16]

Querying Windows Management
Instrumentation (WMI)
Besides built-in support for performance counters, the Zabbix agent also supports
WMI queries.

Zabbix supports WMI through the Zabbix agent—remote WMI is
not supported at this time.

To extract some useful information, we need a WMI query, and we might want to test
the queries quickly—that can be done in Windows or by using the Zabbix agent. On
the Windows side, the wbemtest.exe utility can be used. When launching it, click on
Connect..., accept the default namespace of root\cimv2, and click on Connect...
again. Then, in a dialog such as this, click on Query..., as shown in the following
screenshot:

Monitoring Windows Chapter 1

[17]

You can enter complete queries here. For example, we could ask for the current time
zone with a query:

SELECT StandardName FROM Win32_TimeZone

The following screenshot shows the output of the preceding command:

An alternative way to test such queries through the Zabbix agent would be with the
zabbix_get utility, discussed in Chapter 3, Monitoring with Zabbix Agents and Basic
Protocols.

Monitoring Windows Chapter 1

[18]

With the query available, we can proceed with creating an item. Navigate to
Configuration | Hosts, click on Items next to Windows host, and click on Create
item. Fill in the following:

Name: Time zone
Key: wmi.get[root\cimv2,SELECT StandardName FROM
Win32_TimeZone]

Type of information: Character
Update interval: 300

The key here was wmi.get, the first parameter was namespace, and the second
parameter was the query itself. We don't expect the timezone to change that often, so
we increased the update interval a bit—normally, we would use an even larger
interval, but we will want the first value to come in soon enough. When done, click
on the Add button at the bottom. Check Monitoring | Latest data—in five minutes,
the value should be there:

This way, we can monitor any output from the WMI queries—but note that a single
value should be returned; multiple values are not supported. If multiple values are
returned, only the first value will be processed.

Monitoring Windows services
There's yet another item category that is Windows-specific: a dedicated key for
Windows service state monitoring. Let's try to monitor a service now. First, we have
to figure out how to refer to this service. For that, open the services list and then open
up the details of a service—let's choose DNS Client:

Monitoring Windows Chapter 1

[19]

Look at the top of this tab. Service name is the name we will have to use, and we can
see that it differs noticeably from the display name; instead of using DNS Client, the
name is Dnscache.

Let's create the item now. Navigate to Configuration | Hosts, click on Items next to
the Windows host, then click on Create item. Enter these values:

Name: DNS client service state
Key: service.info[Dnscache]

Monitoring Windows Chapter 1

[20]

Service names are case-insensitive.

The key used here, service.info, is new in Zabbix 3.0. Older versions of Zabbix
used the service_state key. This key is deprecated but still supported, and you are
likely to see it in older Zabbix installations and templates. The service.info key
has more parameters—for the complete documentation, consult the Zabbix manual.

When done, click on the Add button at the bottom, open Monitoring | Latest data,
and look for our newly-added item:

So data is gathered, and the state is 0. That's probably normal, but how can we know
what the state number means?

Back in Configuration | Hosts, click on Items next to Windows host and click on
DNS client service state in the Name column. Look at our old friend, the Show value
property. Click on the Show value mappings link and examine the mapping near the
bottom of the list:

It turns out there's already a predefined mapping for Windows service states
available.

Monitoring Windows Chapter 1

[21]

Close this window and choose Windows service state in the Show value drop-down,
then click on Update. Back in Monitoring | Latest data, verify that the service state is
now displayed in a much more user-friendly way:

Now we will be able to easily identify different service states in the frontend. With the
item in place, let's also create a trigger that will alert us when this service has stopped.

Go to Configuration | Hosts, click on Triggers next to Windows host, and click on
Create trigger. Enter DNS client service down on {HOST.NAME} in the Name
field, then click on Add next to the Expression field. Click on Select next to the Item
field, choose DNS client service state, and click on Insert. But wait, the value of 0
was for when the service was running; we should actually test for the value not being
0. We just avoided using the drop-down function that changes the insert expression,
as follows:

{Windows host:service.info[Dnscache].last()}<>0

Change the severity to Warning and click on the Add button at the bottom. Unless
this is a production system, it should be pretty safe to stop this service—do so, and
observe Monitoring | Triggers; select Windows servers in the Group drop-down.
Zabbix should now warn you that this service is down:

Checking automatic services
Sometimes we are not interested in the exact details of every service, and we might
have to configure an item and trigger for each of them manually. Instead, we might
want to see a high-level overview; for example, whether any of the services that are
started automatically have stopped. Zabbix provides an item that allows you to make
such a comparison very easily: services. It allows us to retrieve lists of services based
on different parameters, including ones that should be started automatically and are
stopped. How can we use this?

Monitoring Windows Chapter 1

[22]

An item should be added with the following key:

services[automatic,stopped]

For a list of all supported services, key parameters, consult the Zabbix manual.

This will take care of getting the required data. Whenever a service that is set to start
automatically is stopped, it will be listed in the data from this item.

It is also possible that on some Windows versions there will be services that are
supposed to start up automatically and shut down later. In this case, they would
appear in the listing and break our monitoring. Luckily, Zabbix has a solution for
such a problem, too—we can add a third parameter to this key and list services to be
excluded from this check. For example, to exclude the RemoteRegistry and sppsvc
services, the key would be the following:

services[automatic,stopped,"RemoteRegistry,sppsvc"]

Notice how the services to be excluded are comma-delimited, and the whole list is
included in double quotes.

If the list of such services is different between hosts, consider using a user macro to
hold the service list. We discussed user macros in Chapter 8, Simplifying Complex
Configurations with Templates.

But how do we check that everything is good in a trigger? If the list is empty, the Zabbix
agent returns 0. As a result, by simply checking whether the last value was zero, we
can trigger when an automatically-started service is stopped. A trigger expression for
such a check would be the following:

{Windows host:services[automatic,stopped].last()}<>0

Of course, you can apply a method—such as using the count() function—to only
fire the trigger after it has been non-zero for more than a single check:

{Windows host:services[automatic,stopped].count(#3,0)}=0

Such a trigger expression will only fire if there has been at least one such stopped
service in all of the last three checks.

Monitoring Windows Chapter 1

[23]

Service discovery
The preceding method just tells you that some service that was supposed to be
running has stopped. To see which service that is, we'd have to look at the item
values. We can actually monitor all services individually, as Zabbix has
supported Windows service discovery since version 3.0. Let's discover all Windows
services and monitor some parameter on all of them—we can choose the service
description here.

Navigate to Configuration | Hosts, click on Discovery next to Windows host, and
click on Create discovery rule. Fill in the following:

Name: Windows service discovery
Key: service.discovery
Update interval: 300

We used a built-in agent key and increased the update interval. In production, it is
probably a good idea to increase the interval even more; an average default interval
for discovery rules of one hour is likely a good idea. When done, click on the Add
button at the bottom. We have the rule itself; now we need some prototypes—click on
Item prototypes, then click on Create item prototype. Before we fill in the data, it
would be useful to know what this discovery item returns—an example for one
service is as follows:

{
 "{#SERVICE.STARTUP}" : 0,
 "{#SERVICE.DISPLAYNAME}" : "Zabbix Agent",
 "{#SERVICE.DESCRIPTION}" : "Provides system monitoring",
 "{#SERVICE.STATENAME}" : "running",
 "{#SERVICE.STARTUPNAME}" : "automatic",
 "{#SERVICE.USER}" : "LocalSystem",
 "{#SERVICE.PATH}" : "\"C:\\zabbix\\zabbix_agentd.exe\" --config
\"c:\\zabbix\\zabbix_agentd.win.conf\"",
 "{#SERVICE.STATE}" : 0,
 "{#SERVICE.NAME}" : "Zabbix Agent"
}

The Zabbix agent can be queried for the raw LLD data using zabbix_get. We
discussed low-level discovery (LLD) in more detail in Chapter 11, Automating
Configuration.

Monitoring Windows Chapter 1

[24]

This snippet also shows what other things we could monitor for each service. For
now, we want to extract descriptions for all services, but to add the items we need the
actual service names. Although the description is available here, we will query it in
the item, so for item prototypes it will actually be the {#SERVICE.NAME} macro. With
this knowledge, we are ready to fill in the item prototype form:

Name: Service $1 description
Key: service.info[{#SERVICE.NAME},description]
Type of information: Character
Update interval: 300

When done, click on the Add button at the bottom. With our discovery running every
five minutes, it might take up to five minutes for this prototype to generate actual
items, and then it would take up to six minutes for these items to get their first
value—the added time of configuration cache update and item interval. First, go to
item configuration for the Windows host. After a while, our discovery rule should
add the items:

There will likely be a fairly large number of such items. By visiting Monitoring |
Latest data, after a few more minutes, we should see descriptions for all services:

Monitoring Windows Chapter 1

[25]

A more common approach would be to monitor the current service state or its startup
configuration—anything the service.info key supports should be possible.

We can also use any of the LLD macros to filter the discovered services. For example,
via filtering for {#SERVICE.STARTUP}, we could discover only the services that
are configured to start up automatically (value 0), or start automatically with a delay
(value 1).

Windows event-log monitoring
Zabbix supports log-file monitoring on Windows as well—the topics we discussed in
Chapter 10, Advanced Item Monitoring, still apply. But on Windows, there is also a
specialized logging subsystem, and Zabbix does offer built-in event log system
support. Windows has various event-log categories, and we could monitor the
security event log. Other common logs are system and application, and there will be
more logs in recent versions of Windows.

For now, let's head to Configuration | Hosts, click on Items next to Windows host,
and click on Create item. Fill in the following:

Name: Windows $1 log
Type: Zabbix agent (active)
Key: eventlog[Security,,,,,,skip]
Type of information: Log
Update interval: 1

Event-log monitoring on Windows works as an active item, just like normal log-file
monitoring.

Monitoring Windows Chapter 1

[26]

That's six commas in the item key. When done, click on the Add button at the bottom.
The last parameter we specified here, skip, will prevent the agent from reading all of
the security log—a pretty good idea for systems that have been around for some time.
Visit Monitoring | Latest data and click on History for the Windows Security log
item:

If no values appear, sign into the Windows system—that should generate some
entries in this log.

A few notable differences, compared to normal log-file monitoring, include automatic
data-population in the LOCAL TIME column, as well as source, severity, and the
event ID being stored. Actually, we can filter by some of these already at the agent
level; we don't have to send all entries to the server. Let's discuss some of the item's
key parameters in a bit more detail. The general key syntax is this:

eventlog[name,<regexp>,<severity>,<source>,<eventid>,<maxlines>,<mode>
]

Monitoring Windows Chapter 1

[27]

The second parameter, regexp, operates the same as in normal log-file
monitoring—it matches a regular expression against the log entry. The maxlines and
mode parameters work the same as they do for the log and logrt item keys. The
severity, source, and eventid parameters are specific to the eventlog key, and
they are all regular expressions to be matched against the corresponding field. This
way, we can filter eventlog quite extensively on the agent side, but people make a
somewhat common mistake sometimes—they forget that these are regular
expressions, not exact match strings. What does that mean? Well, the following item
key would not only match events with the ID of 13, as follows:

eventlog[Security,,,,13]

It would also match events with IDs of 133, 1333, and 913. To match 13, and 13
only, we'd have to anchor the regular expression:

eventlog[Security,,,,^13$]

Remember that it is true for the severity and source parameters as well—while
they are less likely to match an unintended value, you should always make sure the
expression is anchored if an exact match is desired.

Summary
In this chapter, we explored various things that were either different on Windows, or
things that Zabbix explicitly supports on Windows.

We installed the Zabbix agent as a Windows service and verified that, in many ways,
it works exactly the same as the Linux agent. Then we moved to Windows-specific
feature support for the following:

Performance counters
WMI using the Zabbix agent
Windows services, including the ability to automatically discover them
The event log system

Monitoring Windows Chapter 1

[28]

Not only did we discuss details and potential issues for all of these, we also
monitored some data using each of these features. Coupled with the generic
monitoring and reporting knowledge that we have now, this should allow us to
efficiently monitor Windows installations as well.

Having explored quite a lot of lower-level configurations, in the next chapter, we will
look at a more business-oriented aspect—SLA monitoring. Zabbix allows us to create
an IT service tree, assign triggers that depict service availability, and calculate how
much of an adherence to the SLA that is.

