
Model Loading
The previous chapter was all about lighting up our game world. There, we discussed all the
different types of light effects and learned how to include various types of light sources in
the game world. In this chapter, we'll look at loading a model into our game world. We'll
also learn how to set up Assimp, which is the model-loading library that we're going to use
to load models into our game world. Assimp is an industry-standard library. It supports a
wide array of models, from Wavefront OBJ to Collada. You'll also learn about how to create
the Model class for the Assimp model loader; we can use that class to load our models into
our game world.

In this chapter, we'll cover the following topics:

Setting up the Assimp library
Creating the Mesh class and Model class
How to load models in the game world using the Model class

 So, let's get started... We'll begin by learning about how to set up the Assimp library.

Setting up the Assimp library
Here we are going to cover how to set up Assimp, which is a model-loading library, on the
Windows and macOS platforms using Visual Studio and Xcode. In this section, we'll learn
how to download the Assimp library and link it to our project to load models into our
game. Let's get started by downloading the Assimp library.

Model Loading

[2]

Downloading the library
Let's take a look at the following steps:

Download the Assimp library at assimp.org.1.
 Go to the Downloads option. In here, you will get to see various versions of2.
libraries; unless you need a specific version, such as an older version, it's best you
download the latest version:

Sometimes the version will be available on GitHub or SourceForge, which
is fine. Whichever it is, just download the ZIP file that is available. It's
always recommended to download the .zip file.

http://www.assimp.org/

[3]

Download CMake. CMake allows us to actually generate a Visual Studio3.
solution that will generate the library and DLL files we need to link into our
Visual Studio OpenGL project.

Go to https://cmake.org/, then to Download options, and scroll down to the4.
latest release:

Download either the 64-bit or 32-bit, as per your system requirements.5.

If you are on a 64-bit machine, you can download 64 or 32. If you're on a
32-bit machine, you can only download the 32-bit version. Don't select the
installer; just select the .zip extension. For this book, we have used the
64-bit version.
You can download the 32-or 64-bit version; it doesn't matter as long as
you have the right version.

Once you've downloaded the files, extract both folders.6.

For Mac users, you can download the macOS version of the CMake
library.

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

Model Loading

[4]

Setting up Assimp for the Windows platform
In this section, we'll take a look at how to set up Assimp on the Windows platform.

Adding libraries to the project folder
Check out the following steps to link the libraries to our project:

After extracting the folders, open up the ASSIMP folder. In that folder, create a1.
folder and name it build.

Open up the Command Prompt and type in cd, which is the command to change2.
the directory. Press spacebar and then drag over the build folder that you created
in the ASSIMP folder. You will be able to notice the following:

As you can see, the build folder is empty, but this is where our project will get3.
generated for Assimp. Press Enter and you will get the following:

Go to the cmake folder and then to the bin folder. Then drag and4.
drop cmake.exe to the Command Prompt, press spacebar, and then go back to
the ASSIMP folder.
Within that folder, there is another assimp folder, which consists of various files5.
and folders. Drag and drop this particular assimp folder into the Command
Prompt and hit Enter. This will help build a Visual Studio project for us within
the build folder.
Once the project has been successfully built, go to the build folder and then the6.
Assimp.sln file.

Open up the Assimp.sln file in Visual Studio, right-click the ALL BUILD option7.
in the Solution Explorer window, and then just click on the Build option:

[5]

This will just take a moment or so. Wait for it to build your project successfully8.
and then you'll be given a .dll and .lib file; we'll be hooking those up to our
Visual Studio OpenGL project.
Once the project has been built successfully and the files have also been9.
generated, you can close Visual Studio.
Go to the build folder, then go to code, and then go to the Debug folder. Within10.
the Debug folder, you'll get the .dll and .lib files:

Copy all the files present in the Debug folder and then go to your Visual Studio11.
OpenGL project, which is present in Windows folder. Create an External
Libraries folder in it and go to the Windows folder. Within External
Libraries, create a folder called assimp. Within the assimp folder, create a
folder called lib and paste in all the files that we have copied.
Go to the assimp folder that we extracted. Within that folder, copy the include12.
folder and paste it within External Libraries|assimp.

Model Loading

[6]

Linking libraries to the Visual Studio project
Once you have added the libraries to the project folder, it's time to link these libraries to our
project in Visual Studio, perform the following steps to do that:

Open the Visual Studio project. Right-click on the name of your project in the1.
Solution Explorer window.
Go to Properties | C/C++ | General; then go to the Additional Include2.
Directories option, click on the dropdown, then click on <Edit>.
Click new icon and type in $(SolutionDir)/ExternalLibraries/3.
assimp/include:

In the preceding screenshot, SolutionDir refers to this .sln file.

[7]

In the preceding steps, we linked the libraries with the help of relative
linking. If you are comfortable with absolute linking, you can use that.

To save some time, copy the path mentioned in the previous step, go4.
to Properties | Linker | General, then click on Additional Library
Directories, click on the dropdown, and then click on <Edit>.
Click new icon, paste the path into it, and make the following change to it:5.

Model Loading

[8]

Go to Linker | Input and click Additional Dependencies. Click the dropdown6.
and then <Edit>. We need to specify our library file:

 Click Apply and Click OK.7.

Setting up Assimp for the Mac platform
Let's take a look at how to set up Assimp for an Xcode project on the Mac platform.
Perform the following steps:

Download the Assimp and CMake files. We saw how to download these files in1.
the preceding section. Download and extract both files onto your system.
Open up CMake. Once it's open, you will get a window similar to this: 2.

[9]

Click on the Browse Source... button. Go to the location where you have3.
downloaded and extracted the Assimp files and then press on the Open button.
Click on the Browse Build... button. Here you will have to provide the location4.
where you want to build your libraries.

Model Loading

[10]

Click the Configure button and a window will pop up, similar to the following5.
screenshot:

Here you will have to select your developing environment. For us it is Xcode, so
we will select that.

[11]

Linking up the libraries to the project
In this section, we'll take a look at how to link up the libraries to our project on the Mac
platform. To include the DYLIB in our exsisting project, we need to perform the following
steps:

Go to main project folder on the Xcode, then go to Build Phases, and then to1.
the Link Binary in the Libraries section by clicking on the + sign.
Click on the Add Other button.2.
Press Cmd + Shift + G, type in /usr/local/cellar, and click the Go button.3.
Go to the Assimp folder, choose the version folder that you've got.4.
Go to the lib folder and select libassimp.3.3.1.dylib, or whatever version5.
you have got, but remember to select the .dylib file only.
Click on the Open button.6.

And that's how we include the DYLIB file in our existing project.

With this last step, we are done with linking libraries to our project. Now we'll move on to
creating the Mesh class.

The Mesh class
Now we are ready to create the Mesh class. The Mesh class is essentially a simple container
that stores data, such as texture coordinates, vertices, and normals. We had studied this in
the preceding section. Here, we are going to create a model object that will essentially be a
container for several mesh objects.

So, let's begin with creating the Mesh class.

Model Loading

[12]

Creating the Mesh.h header file
Let's take a look at the following steps to create Mesh.h header file:

On Xcode, head over to your OpenGL project, right-click on it, and select New1.
File....
Select the header file and then click on the Next button.2.
Name the file Mesh.h and select OpenGL on Targets:3.

Click on the Create button and your empty header file will be created.4.

[13]

Coding the Mesh.h header file
In this section, we'll be coding our Mesh.h header files.

Adding necessary header files
Follow these steps to add header files to your code:

Add some header files to your code:1.

#pragma once

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <vector>

#include <GL/glew.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

Add using namespace std to the code.2.

Creating Vertex and Texture Struct
Take a look at the steps to create Struct:

We'll be creating the Struct datatype, called Vertex, and we'll add the1.
following lines of code to it:

struct Vertex
{

// Position
glm::vec3 Position;
// Normal
glm::vec3 Normal;
// TexCoords
glm::vec2 TexCoords;

};

Model Loading

[14]

Create another Struct, called Texture, and add the following lines of code to2.
it:

struct Texture
{

GLuint id;
string type;
aiString path;

};

Creating the Mesh class
Now let's create the Mesh class. Follow these steps:

In the class Mesh, create a bunch of public variables:1.

class Mesh
{
public:
 /* Mesh Data */
 vector<Vertex> vertices;
 vector<GLuint> indices;
 vector<Texture> textures;

Create the constructor, called Mesh (), and to this add the following lines of2.
code:

// Constructor
 Mesh(vector<Vertex> vertices, vector<GLuint> indices,
vector<Texture> textures)
 {

this->vertices = vertices;
this->indices = indices;
this->textures = textures;

// Now that we have all the required data, set the vertex
buffers //and its attribute pointers.

this->setupMesh();
 }

In the preceding lines of code, with this->, we're just passing in the data for the
vertices, the indices, and the textures, and assigning it to the mesh's variables so it
knows what data it needs. Next, we added this->setupMesh(); to set the
vertex buffers and the attribute pointers.

[15]

Defining the Draw method
Now let's define the Draw method:

Create the Draw method, which will be public. We'll add the following lines of1.
code to it:

 // Render the mesh
 void Draw(Shader shader)
 {

// Bind appropriate textures
GLuint diffuseNr = 1;
GLuint specularNr = 1;

for(GLuint i = 0; i < this->textures.size(); i++)
{

glActiveTexture(GL_TEXTURE0 + i); // Active proper
texture unit before binding

// Retrieve texture number (the N in diffuse_textureN)
stringstream ss;
string number;
string name = this->textures[i].type;

if(name == "texture_diffuse")
{
ss << diffuseNr++; // Transfer GLuint to stream
}
else if(name == "texture_specular")
{
ss << specularNr++; // Transfer GLuint to stream
}

number = ss.str();
// Now set the sampler to the correct texture unit
glUniform1i(glGetUniformLocation(shader.Program, (name

+ number).c_str()), i);
// And finally bind the texture
glBindTexture(GL_TEXTURE_2D, this->textures[i].id);

}

We've done the for loop. We've still got some code left to add to the Draw class.2.
We need to set each mesh's shininess property to a default value. Default values
are always good to prevent variables from messing up. So, we'll add the
following lines of code:

 // Also set each mesh's shininess property to a default value (if
you //want you could extend this to another mesh property and

Model Loading

[16]

possibly //change this value)
glUniform1f(glGetUniformLocation(shader.Program,
"material.shininess"), 16.0f);

Add the code to draw the mesh:3.

// Draw mesh
 glBindVertexArray(this->VAO);
 glDrawElements(GL_TRIANGLES, this->indices.size(),
GL_UNSIGNED_INT, 0);
 glBindVertexArray(0);

Set everything back to its default values once you're finished the configuration,4.
(It's just a good practice):

for (GLuint i = 0; i < this->textures.size(); i++)
 {

glActiveTexture(GL_TEXTURE0 + i);
glBindTexture(GL_TEXTURE_2D, 0);

 }

Defining the private section of the Mesh class
We're now done with the Draw method, and that's everything in the public section of the
Mesh class. Next, we're going to define private section of the Mesh class:

Add a few variables:1.

/* Render data */
 GLuint VAO, VBO, EBO;

We've looked at what all of these variables do in the initial chapters. If you're not
too sure what these variables do, feel free to go back for a refresher.

To initialize all of the buffer objects and arrays, begin by typing void2.
setupMesh(). We called setupMesh in the constructor. This isn't something
that the developer really would be calling manually. Once whatever is using the
Mesh class as an object has constructed it, it will then call the SetupMesh method.

In setupMesh(), we need to create the buffers and arrays, so we'll add the3.
following lines of code:

void setupMesh()
{
 // Create buffers/arrays
 glGenVertexArrays(1, &this->VAO);

[17]

 glGenBuffers(1, &this->VBO);
 glGenBuffers(1, &this->EBO);
 glBindVertexArray(this->VAO);

Load the data into the vertex buffer, so we're going to add the following lines of4.
code:

glBindBuffer(GL_ARRAY_BUFFER, this->VBO);

// A great thing about structs is that their memory layout is
sequential for all its items.
 // The effect is that we can simply pass a pointer to the struct
and it translates perfectly to a glm::vec3/2 array which
 // again translates to 3/2 floats which translates to a byte
array.

glBufferData(GL_ARRAY_BUFFER, this->vertices.size() * sizeof(
Vertex), &this->vertices[0], GL_STATIC_DRAW);

Duplicate the preceding lines of code and make the following highlighted5.
changes:

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->EBO);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->indices.size() *
sizeof(GLuint), &this->indices[0], GL_STATIC_DRAW);

We can move on to setting the vertex attribute pointers. The first one we are6.
going to set up is the vertex positions:

// Vertex Positions
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex),
(GLvoid *)0);

Set up the vertex normals:7.

// Vertex Normals
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex),
(GLvoid *)offsetof(Vertex, Normal));

Set up texture co-ordinates:8.

// Vertex Texture Coords
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex),
(GLvoid *)offsetof(Vertex, TexCoords));

Model Loading

[18]

Unbind the vertex array:9.

glBindVertexArray(0);
}

};

So, this is it for creating the mesh class. In the next section, we look at creating a Model class
that will contain a number of these mesh classes.

Getting rid of some old code
As we will be working on the source code from Chapter 5, Types of Light Sources and
Combining of Lights, there are some lines in the code that we need to get rid of from our
main code. In this section, we won't be using our old lighting code or the cube code that we
had discussed in the initial chapters. So, go to your main.cpp file and get rid of the build
and compile-shader code, vertices-defining code, the code that defines cubePositions, all
the attributes-defining code, and the SOIL code. Also get rid of the lightingShader.Use
() code.

In the while loop, firstly, we need to get rid of the lightPos.x and lightPos.z code,
and then we will get rid of all the lighting-related code until we define the SwapBuffer
code. We'll also get rid of glDelete as we no longer will be deleting our arrays and
buffers.

Now that we have got rid of all the unwanted code, we'll get started with the our model-
loading code.

Modelloading
In the previous sections, we went through the setup process of Assimp, and we also created
the mesh class. Now, in this section, we are going to be looking at creating the Model class
for the Assimp model loader, to start loading in models. The Model class basically consists
of many meshes.

We will now get started with creating our Model class. But before that, some information
about the code files for this chapter would be useful; you can find the code files at the
following link: https://GitHub.com/PacktPublishing/Learn-OpenGL/tree/master/
Chapter07.

https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-OpenGL/tree/master/Chapter07

[19]

The folder placed on this link consists of the res folder, in which there is a folder called
models. This models folder consists of a lot of files related to the model that be we'll
loading in our code.

Creating the Model.h header file
So, let's begin with creating our Model.h header file:

Right-click on your project folder.1.
Click on New File and click on the Header file option, because we will put the2.
class within the header and we need to make sure that we add the header files to
our target folder. We're going to name the header file Model.h and then click on
the Create button:

Model Loading

[20]

Coding the Model.h header file
Now we'll begin coding our Model.h file, take a look at the following steps:

Add the basic things, such as strings and streams:1.

#pragma once

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>

Include OpenGL, SOIL (which is a local library), the Assimp library, Mesh files,2.
and other necessary files:

#include <GL/glew.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "SOIL2/SOIL2.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>

#include "Mesh.h"

OpenGL will assume we are using GLEW to load an extension, and not
something such as glLoadGen. But if we are using glLoadGen, we need
to replace it.

Add using namespace std;, and then we will also add the GLint3.
TextureFromFile function:

using namespace std;

GLint TextureFromFile(const char *path, string directory);

Create the Model class, wherein we will define our public section first with4.
the Model constructor and then use the Draw method to draw the model:

class Model
{
public:
 /* Functions */

[21]

 // Constructor, expects a filepath to a 3D model.
 Model(GLchar *path)
 {

this->loadModel(path);
 }

 // Draws the model, and thus all its meshes
 void Draw(Shader shader)
 {

for (GLuint i = 0; i < this->meshes.size(); i++)
{

this->meshes[i].Draw(shader);
}

 }

In the preceding code, we used the shader file. Then we iterated the for loop over the
meshes and drew the meshes.

Defining the private section of the Model class
Next, we'll implement the arguments in private. Perform the following steps:

Create some variables in which we can store the Model data:1.

private:
 /* Model Data */
 vector<Mesh> meshes;
 string directory;
 vector<Texture> textures_loaded;
 // Stores all the textures loaded so far, optimization to make
sure //textures aren't loaded more than once.

2. Create the loadModel method that we called in the constructor. In this method,
we need to read the file using Assimp, so we'll add the following lines of code:

// Loads a model with supported ASSIMP extensions from file and
stores the resulting meshes in the meshes vector.
void loadModel(string path)
{

// Read file via ASSIMP
Assimp::Importer importer;
const aiScene *scene = importer.ReadFile(path,

aiProcess_Triangulate | aiProcess_FlipUVs);

In the preceding code, we used Assimp, with the namespace as Importer. Then
we had a constant aiScene, which is basically the assimp scene.

Model Loading

[22]

Check whether there any errors while reading the file via assimp by adding the3.
following lines of code:

// Check for errors
if(!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene-
>mRootNode) // if is Not Zero
{

cout << "ERROR::ASSIMP:: " << importer.GetErrorString() <<
endl;

return;
}

If there are no errors, we assume that the model has successfully loaded, and4.
now we have to retrieve the directory path of the file path:

// Retrieve the directory path of the filepath
 this->directory = path.substr(0, path.find_last_of('/'));

Process all of Assimp's root nodes recursively:5.

// Process ASSIMP's root node recursively
this->processNode(scene->mRootNode, scene);

 }

So, that is it for the load model method.

Implement the processNode method and add the following lines of code to it:6.

void processNode(aiNode* node, const aiScene* scene)
 {

Process each mesh located at the node:7.

// Process each mesh located at the current node
for (GLuint i = 0; i < node->mNumMeshes; i++)
{

// The node object only contains indices to index the actual
objects in the scene.

// The scene contains all the data, node is just to keep stuff
organized (like relations between nodes).

aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];

this->meshes.push_back(this->processMesh(mesh, scene));
}

In the preceding code, the node object contains indices to index the actual objects
in the scene. The scene contains all the data, and the node is just to keep relations
between the nodes organized.

[23]

Recursively process each of the children of the meshes – if there are actually any:8.

// After we've processed all of the meshes (if any) we then
recursively process each of the children nodes
 for (GLuint i = 0; i < node->mNumChildren; i++)
 {

this->processNode(node->mChildren[i], scene);
 }

And that’s all for processNode. We will now create the processMesh method,9.
which actually returns a mesh. The first thing to do in this method is to create
some variables, which will include the vertices, the indices, and the textures: all
the basic stuff that we have pretty much done before:

 Mesh processMesh(aiMesh *mesh, const aiScene *scene)
 {

// Data to fill
vector<Vertex> vertices;
vector<GLuint> indices;
vector<Texture> textures;

We'll walk through each of the mesh's vertices now, and then we'll want to loop10.
over it:

 // Walk through each of the mesh's vertices
 for (GLuint i = 0; i < mesh->mNumVertices; i++)
 {

Vertex vertex;

In the loop, declare a placeholder vector, since Assimp uses its own vector class11.
and doesn't directly convert to it:

 glm::vec3 vector;

And for the positions, in the for loop, we are going to set the position as follows12.
:

 // Positions
 vector.x = mesh->mVertices[i].x;
 vector.y = mesh->mVertices[i].y;
 vector.z = mesh->mVertices[i].z;
 vertex.Position = vector;

Model Loading

[24]

And,similarly, we need to mention the normals as follows :13.

// Normals
 vector.x = mesh->mNormals[i].x;
 vector.y = mesh->mNormals[i].y;
 vector.z = mesh->mNormals[i].z;
 vertex.Normal = vector;

Check the texture coordinates. To do that, add the following code. Check, with14.
the help of the if statement, whether the mesh consists of texture coordinates or
not. If not, we'll implement the else condition:

// Texture Coordinates
if(mesh->mTextureCoords[0]) // Does the mesh contain texture
coordinates?
{

glm::vec2 vec;
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;

 }
 else
 {

vertex.TexCoords = glm::vec2(0.0f, 0.0f);
 }

A vertex can contain up to eight different texture coordinates. We thus make the
assumption that we won't use models where a vertex can have multiple texture
coordinates; we always take the first set as zero, so we
added mTextureCoords[0]. In the else statement, we just assign the default
values of 0.0f and 0.0f if the mesh doesn't have any texture coordinates.

Push back the vertex that we have calculated:15.

vertices.push_back(vertex);

Walk through each of the faces in the mesh and retrieve the corresponding vertex16.
indices. Add a for loop to our code and initialize it, and then inside the for
loop, create an Assimp face variable:

// Now wak through each of the mesh's faces (a face is a mesh its
triangle) and retrieve the corresponding vertex indices.

 for (GLuint i = 0; i < mesh->mNumFaces; i++)
 {

aiFace face = mesh->mFaces[i];

[25]

Inside this loop, we'll add another for loop to retrieve all indices of the face17.
variable and store them in the indices vector:

for (GLuint j = 0; j < face.mNumIndices; j++)
 {

indices.push_back(face.mIndices[j]);
 }

Process the material, because so far we've just been processing the meshes and18.
the vertices. Add an if statement to the code to check whether
the mMaterialIndex mesh is greater than 0:

 // Process materials
 if(mesh->mMaterialIndex >= 0)
 {
 aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];

Assume a convention for the sampler name in the shaders. Each diffuse texture19.
should be named as texture_diffuseN, where N is basically the sequential
number ranging from 1 to the max sampler number, with the same applying to
the other texture. So, basically, diffuse is texture_diffuseN, specular is
texture_specularN, and normal is texture_normalN. In order to handle the
diffuse map, perform the following:

// Diffuse maps
vector<Texture> diffuseMaps = this->loadMaterialTextures(material,
aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(),
diffuseMaps.end());

To handle the specular maps, perform:20.

// Specular maps
vector<Texture> specularMaps = this->loadMaterialTextures(
material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(),
specularMaps.end());

So, outside of this if statement, we're going to return a mesh object that is21.
extracted from the mesh data:

 // Return a mesh object created from the extracted mesh data
 return Mesh(vertices, indices, textures);

Model Loading

[26]

Load the material textures, which is going to be returning a vector of textures.22.
This will check all material textures of a given type and load the textures if
they're not loaded already. The required info is returned as a texture struct:

vector<Texture> loadMaterialTextures(aiMaterial *mat,
aiTextureType type, string typeName)
 {
 vector<Texture> textures;

Loop over the material that we created here:23.

 for (GLuint i = 0; i < mat->GetTextureCount(type); i++)
 {
 aiString str;
 mat->GetTexture(type, i, &str);

Create a variable named GLboolean and set it to false to check whether the24.
texture was loaded before. If so, continue to the next iteration – skip loading a
new texture, create a for loop, and push in the texture that has been loaded:

GLboolean skip = false;

for (GLuint j = 0; j < textures_loaded.size(); j++)
 {

Check the if condition to see whether the texture has been loaded and returns25.
the textures:

if(textures_loaded[j].path == str)
 {
 textures.push_back(textures_loaded[j]);
 skip = true; // A texture with the same fil epath has already
been loaded, continue to next one. (optimization)

 break;

After the for loop, we are going to check whether the texture has been loaded,26.
and load it if it hasn't been already:

if(!skip)
 { // If texture hasn't been loaded already, load it

Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);

[27]

 this->textures_loaded.push_back(texture); // Store it as
texture loaded for entire model, to ensure we won't unnecesery
load duplicate textures.
 }

 }
return textures;

 }
};

If you remember, right at the top, we created a function declaration but we didn't27.
implement it anywhere in the code. So, we're going to implement that now.
Generate a texture ID, and load the texture data appropriately:

GLint TextureFromFile(const char *path, string directory)
{

//Generate texture ID and load texture data
string filename = string(path);
filename = directory + '/' + filename;
GLuint textureID;
glGenTextures(1, &textureID);

int width, height;

We need an unsigned character that will store the image data:28.

unsigned char *image = SOIL_load_image(filename.c_str(), &width,
&height, 0, SOIL_LOAD_RGB);

Assign a texture to the particular ID. To do that, we need to bind textureID to29.
texture2D:

 // Assign texture to ID
 glBindTexture(GL_TEXTURE_2D, textureID);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB,
GL_UNSIGNED_BYTE, image);

Generate the Mipmap for the preceding texture ID:30.

glGenerateMipmap(GL_TEXTURE_2D);

Model Loading

[28]

Specify the parameters:31.

// Parameters
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glBindTexture(GL_TEXTURE_2D, 0);
 SOIL_free_image_data(image);

 return textureID;

And now we are done coding our Model.h file.

Creating new shaders
Let's create new shaders for model loading by following below-mentioned steps:

Go to the shaders folder and create a couple of new shaders. We will duplicate1.
the shaders from what we've already got. We then rename them to
modelLoading.vs and modelLoading.frag.
Go to the vertex shader, modelLoading.vs, and type the following highlighted2.
terms:

#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 texCoords;

out vec2 TexCoords;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
 gl_Position = projection * view * model * vec4(position, 1.0f);
 TexCoords = texCoords;
}

[29]

For the fragment shader, take a look at the following highlighted code and carry3.
out the necessary changes:

#version 330 core

in vec2 TexCoords;

out vec4 color;

uniform sampler2D texture_diffuse;

void main()
{
 color = vec4(texture(texture_diffuse, TexCoords));
}

We're done with creating new shaders for model loading.

So, now we are ready to actually load our model. So, we will go to main.cpp and carry out
certain modifications to it.

Loading the model in the main code
Let's take a look at following steps to understand how to load the model in the main code:

Include the new Model.h header file in our existing code:1.

#include "Model.h"

Before our projection matrix code, we need to add code to set up and compile our2.
shaders:

// Setup and compile our shaders
 Shader shader("res/shaders/modelLoading.vs",
"res/shaders/modelLoading.frag");

Load the model:3.

 // Load models
 Model ourModel("res/models/nanosuit.obj");

This nanosuit.obj file consists of information about our model that we'll be
loading in our game world.

Model Loading

[30]

In the while loop, after we've defined glClear, we want to add code to use the4.
shader:

 shader.Use();

Create a ViewMatrix:5.

glm::mat4 view = camera.GetViewMatrix();

glUniformMatrix4fv(glGetUniformLocation(shader.Program,
"projection"), 1, GL_FALSE, glm::value_ptr(projection));

glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"),
1, GL_FALSE, glm::value_ptr(view));

Draw the loaded model:6.

 // Draw the loaded model
glm::mat4 model;

model = glm::translate(model, glm::vec3(0.0f, -1.75f, 0.0f));
// Translate it down a bit so it's at the center of the scene

model = glm::scale(model, glm::vec3(0.2f, 0.2f, 0.2f)); // It's
a bit too big for our scene, so scale it down

glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"
), 1,
GL_FALSE, glm::value_ptr(model));

ourModel.Draw(shader);

And now we are ready to run the code and load the model in our game world. If your code
complies without any errors, you will get to see the following output on your screen:

[31]

We can move this model around using our camera class:

Model Loading

[32]

So, that is it for model loading. Now that you've got this code all sorted, you can start
loading a bunch of other models. It is recommended going to the Assimp website to see
what models they support. There's just a whole heap of model types they support, and it's
fantastic.

There's one more thing that we can do with the model: we can try to implement the
wireframe for our model. So, after we define the model-loading code, add the following
line to set the polygon mode for our model:

Model ourModel("res/models/nanosuit.obj");

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

Save this code and you'll get the wireframe version of our model:

You can observe that the wireframe is basically just the lines – the polygons – that make up
our shape. You can see all the different intricacies of our shape.

[33]

Summary
In this chapter, we learned how to set up Assimp (Open Asset Import Library) on Windows
using CMake for all our model-loading needs. We also covered setting up the Assimp
library on macOS X. Then we created a cross-platform Mesh class and the Mesh.h header
file. We also explored how to load a 3D model into our game and generated the wireframe
of our model.

	Table of Contents
	Model Loading
	Setting up the Assimp library
	Downloading the library
	Setting up Assimp for the Windows platform
	Adding libraries to the project folder
	Linking libraries to the Visual Studio project

	Setting up Assimp for the Mac platform
	Linking up the libraries to the project

	The Mesh class
	Creating the Mesh.h header file
	Coding the Mesh.h header file
	Adding necessary header files
	Creating Vertex and Texture Struct
	Creating the Mesh class
	Defining the Draw method
	Defining the private section of the Mesh class

	Getting rid of some old code

	Modelloading
	Creating the Model.h header file
	Coding the Model.h header file
	Defining the private section of the Model class

	Creating new shaders
	Loading the model in the main code

	Summary

	Other Books You May Enjoy
	Index

