
Table of Contents
Chapter 1: Miscellaneous and Advanced Concepts 1

Internationalization 2
Producing translations 2
Applying translation 4
Time for action – Translating an application 4

What just happened? 6
Have-a-go hero – Selecting the appropriate language 6

Translating user-visible content in QML 7
Inter-process communication 7

The shared memory 7
Time for action – Game engine 8

What just happened? 11
Time for action – Client application 11

What just happened? 12
Passing complex data 12

Local sockets 13
Web sockets 14

Multithreading 15
Avoiding long operations in the main thread 16
Time for action – Creating a background worker thread 17
Thread synchronization 19
Threading in QML 19

Audio and video 20
Time for action – Recording audio 20

What just happened? 22
Have-a-go hero – Making the audio settings fail safe 24

Time for action – Playing sound 24
Have a go hero – Making a voice chat 25

Playing a sound in QML 26
What just happened? 26

Playlists and loops 27
Playing sound effects 28
Playing videos in widget-based applications 29
Playing videos in QML 30

Debugging output 31
Using qDebug() and friends 31
Time for action – Defining your own message format 34
Time for action – Using qDebug() with custom classes 34

What just happened? 35
Time for action – Redirecting the stream of QDebug 36

Table of Contents

[ii]

What just happened? 37
Have a go hero – Redirecting the messages to QTextEdit 37

Using a debugger 38
Time for action – Debugging a sample code block 38

What just happened? 40
Have a go hero – Familiarizing yourself with the debugger 41

Testing 42
Testing assertions 42
Unit testing with Qt Test 43
Time for action – Writing a first unit test 44

What just happened? 45
Time for action – Writing a real unit test 45
Time for action – Running a unit test that uses a data function 47

What just happened? 48
Useful command-line arguments 48

Pop quiz 49
Summary 50

Index 51

1
Miscellaneous and Advanced

Concepts
In this chapter, we will present you with some additional topics that didn't fit into the main
part of the book.

First, we'll take a look at teaching you programs to communicate with the user in different
languages. Then, we will see how to establish communication channels between processes.
Next, it will be explained how to make your applications multithreaded to leverage the
growing number of computing cores in modern machines.

Handling media data is also an important topic. Thus, we will try to show you the basics of
using multimedia with Qt in the following sections of the chapter. Finally, we will look into
debugging and testing. This will cover how to print simple debug messages as well as how
GDB or CDB are integrated into Qt Creator and made usable through this IDE. At the end,
Qt Test will be introduced to show you how you can realize unit tests with Qt.

By the end of this chapter, you will have a broader perspective of the technologies available
as a part of Qt. You will be able to use a wider range of tools and technologies in your
games, making them better and richer in terms of features.

The main topics covered in this chapter are the following:

Internationalization
Inter-process communication and multithreading
Audio and video
Debugging and testing

Miscellaneous and Advanced Concepts Chapter 1

[2]

Internationalization
Qt is an application programming framework used all over the world. Just as it can handle
many text encodings, it also supports many languages. With Qt, you can easily teach your
application to communicate with the user using their native language. The font engine used
by Qt can render fonts that use a variety of different writing systems and all standard text
widgets can accept input in any language, and Qt's text drawing routines try to take into
consideration text rendering rules present in particular languages. Still, you as the
application programmer have to perform some additional work to ensure that your
application is correctly internationalized and localized.

Since QString is based on Unicode, it can hold and express text in virtually any language
in the world. Thus, it is important that you use QString for every user-visible text in your
program. However, other text data that the user can't see (for example, object names, debug
messages, and text format definitions) can still be held using the traditional const char *
and char types.

Producing translations
Before you can translate your application, you need to mark texts that should be translated
in the source code. We described how to do that in Chapter 6, Qt Core Essentials. Basically,
any string literal visible in the user interface should be passed through the tr()
or QCoreApplication::translate() functions. It may be quite time-consuming to do
that if your application wasn't originally written with internationalization in mind, so
marking the text for translation as you write the code is strongly recommended.

Once the source code is complete, the next step is to extract all messages and produce
message catalogs. This is done by declaring translations in the project file. To declare
translations, you need to fill the TRANSLATIONS variable with paths to catalogs that need to
be maintained by the project:

TRANSLATIONS += translations/myapp_en.ts \
 translations/myapp_fr.ts \
 translations/myapp_pl.ts

The convention is to name the files with your application name, followed by an underscore,
the international symbol of the language (for example, en for English, fr for French, and pl
for Polish), and a .ts file extension. If a language is used in more than one country, you can
follow the language name with a country symbol forming the full language variant (for
example, en_us or en_au).

Miscellaneous and Advanced Concepts Chapter 1

[3]

When the list is ready, you should run the lupdate tool on the project file. You can either
do this manually or from Qt Creator by opening the Tools menu, going to External and
then Linguist, and finally choosing Update translations (lupdate). This will produce files
declared in the TRANSLATIONS variable that contain all the messages from your project.
Whenever you change your source code, you can run lupdate again to update message
catalogs without overwriting the already present translations.

The next step is to give those files to people who can act as translators for the application.
Qt contains a dedicated tool called Linguist that can help with the task. You can see it in the
following screenshot:

The Linguist tool is very easy to use, so we will not discuss it in detail here. Two important
things to note are to set the language details for the catalog as you start working with a file
by opening the Edit menu and choosing Translation File Settings. The other important
thing to remember is to mark your translations as "done" if you want them to be used. This
is done with the Ctrl + Enter keyboard shortcut (or by choosing Done and Next from
the Translation menu) so that a green tick appears next to the source text in the list of
strings.

Miscellaneous and Advanced Concepts Chapter 1

[4]

When translations are ready, you can call the lrelease tool (either from Qt Creator or
from Qt Linguist) to produce compressed message catalogs (with the .qm file extension).

Applying translation
The final step is to enable the translation process for your application. Create an instance of
QTranslator and load a message catalog (.qm) into it. You can specify a file path in the
real filesystem or even put the message catalog in the resource file and specify a resource
path. Each QTranslator object can only contain content of a single message catalog file.

To apply a translation to the application, pass the QTranslator object to the
QCoreApplication::installTranslator() method. From now on, all calls to
QObject::tr() will result in substituting original texts with their translated versions. If a
translation for any message cannot be found, the translator uses the original text as a
fallback.

Time for action – Translating an application
Create a new Qt Widgets Application in Creator. Choose to create a widget class called
Widget. Place two buttons on the form and name them left and right. Set their text to
Left and Right. Connect the clicked signal of each button to a slot in the Widget class:

ui->setupUi(this);
connect(ui->left, &QPushButton::clicked,
 this, &Widget::leftClicked);
connect(ui->right, &QPushButton::clicked,
 this, &Widget::rightClicked);

The slots will simply display message boxes:

void Widget::leftClicked() {
 QMessageBox::information(this, "", tr("You clicked left!"));
}
void Widget::rightClicked() {
 QMessageBox::information(this, "", tr("You clicked right!"));
}

Miscellaneous and Advanced Concepts Chapter 1

[5]

Now, let's say that we have to translate our application into German and Russian. Edit the
project file to add the TRANSLATIONS variable:

TRANSLATIONS += translations/myapp_ru.ts translations/myapp_de.ts

Save the project file. Next, open Creator's Tools menu, choose External, Linguist and
finally, Update Translations (lupdate). You will see lupdate crawl your source files and
report the number of message entries found. All specified files will be created and, on
subsequent runs, they will be updated with new text for translation.

Open each file in Qt Linguist application and input the translations. You will note that both
texts from the form and texts from the message boxes appear in the file. Linguist even
displays a translated version of the form, allowing you to check that the translated text fits
into the form correctly.

If the same message in one language can have more than one meaning
represented by different messages in another language, as we described
earlier, to make the translator's work easier, the programmer can set a
second argument to tr(), which is text visible for the translator in
Linguist as a Programmer comments field near the message to be
translated.

From the File menu of Linguist, choose Save and then Release. This will create message
catalogs (binary translation files with the .qm extension) in the same directory.

Add a new Qt resource file to the project and add all the .qm files to the resources. You
don't need to add the .ts files, since they are not needed for running the application.

The last part is to apply the translations. Add the following code to the main() function:

QApplication app(argc, argv);
QTranslator translator;
if (!translator.load(QLocale::Russian, ":/translations/myapp_")) {
 qWarning() << "failed to load translation";
}
app.installTranslator(&translator);

As you can see, we've specified a part of the resource path to the translation files. Instead of
specifying the language suffix (such as ru or de) explicitly, we specify the value of the
QLocale::Language enum. Qt will automatically use the correct suffix and find the
corresponding file. Note that we have to name our translation files using the same pattern
so that when they are converted to message catalogs, QTranslator::load will be able to
find them. Alternatively, if you used another naming scheme, you could pass the full path
to the file to QTranslator::load.

Miscellaneous and Advanced Concepts Chapter 1

[6]

The second installation step involves calling installTranslator on the application
object, passing it a pointer to the translator object that is to be added to a list of objects
responsible for showing our user interfaces in the proper language. Remember to ensure
that the translator object lives as long as you want it to perform translations. Do not create
the object on stack unless you are in the main() function.

When you run the application, you should see the translated user interface now. Try to
replace QLocale::Russian with QLocale::German and see the other translation.

What just happened?
Each user-visible string is wrapped in a tr() function call. If a translator is installed on the
application object, a call to tr() results in calling QTranslator::translate() for each
installed translator that performs a lookup in its message catalog. If a match is found, the
translation is returned and the search stops. Otherwise, an empty string is returned and the
next translator is tried. If no match is found in any of the catalogs, the original
(untranslated) message is used.

QTranslator::translate() is a virtual method; thus, by subclassing
QTranslator and reimplementing translate(), you can provide a
custom translation mechanism for your application.

Have-a-go hero – Selecting the appropriate language
Of course, specifying the language in the application source code is not really acceptable.
The simplest solution is to use the QLocale::system() function that returns the system
locale. If a translation of your application is present for the system locale, Qt will load it.
Otherwise, the UI will not be translated.

Alternatively, you can allow the user to pass the desired language using command-line
arguments. Even better, you can create a dialog that allows the user to select one of the
available translations and save the selected language using the QSettings class.

Miscellaneous and Advanced Concepts Chapter 1

[7]

Translating user-visible content in QML
All internationalization functionality we described so far applies also to QML. All the
mentioned C++ functions have their equivalents in QML. The following table shows the
corresponding mappings:

C++ QML

tr() qsTr()

translate() qsTranslate()

QT_TR_NOOP() QT_TR_NOOP()

All other aspects remain the same—you use the lupdate and lrelease tools for
producing catalogs, and Qt Linguist for doing the translations. Also, you still need to install
a QTranslator object on the application.

Inter-process communication
More often than not, one program will need to cooperate with another program running on
the same machine. Sometimes, one of them is providing services to the other; another time,
they are exchanging data or maybe one process is providing a monitoring interface that
another process can attach to and read statistics. Qt handles many standard ways of
communication between processes, thereby facilitating communication with programs not
only based on Qt. In this chapter, we will take a look at some of the IPC mechanisms
commonly used, namely, shared memory and local sockets.

The shared memory
Usually, each process has its own memory space reserved for it by the operating system
kernel, and the process has exclusive access to each allocated block. The shared memory
IPC mechanism works by creating a memory block in the operating system kernel that can
be attached to more than one process so that one process can modify a memory area, while
another process can read the data stored within. It is very important to remember that only
this particular block of memory is shared between processes. An implication of this is that it
does not make sense to store pointers or any complex structures (such as class instances) in
a shared memory block. You should always treat shared memory as an opaque block of
bytes, similar to a file on the disk.

Miscellaneous and Advanced Concepts Chapter 1

[8]

To create a shared memory block, we need to ask the system to create it for us. Qt handles
shared memory via the QSharedMemory class that represents a single shared memory
block. Before we can create the block, we have to decide what key we will use to identify
this particular block (as there can be many shared memory blocks in the system) so that
other processes can attach to it using the same key. This is done either by passing the key to
the constructor of QSharedMemory, or by using the dedicated setKey() call and passing a
string containing the key.

Keys used by QSharedMemory differ from the representation used by the
platform Qt is running on. To be able to talk with a non-Qt application,
you have to use setNativeKey() instead.

Then, you can create() a new block (passing the size of the block that is to be created) or
attach() to an existing one. Optionally, you can tell QSharedMemory whether you want
ReadOnly access to the block or ReadWrite access. Both of these methods return a Boolean
value, telling us whether the operation was successful or not. To access the shared block,
you can call data(), which returns a pointer to the shared block (or null if the previous
operation had failed). Now you can start using the shared block by reading from it or
writing to it. Since more than one process can try to access the block at the same time, it is
important to protect it from concurrent access. Qt provides a way to do this using the
lock() and unlock() methods.

Once you are done with using the block, call detach() on it to release it from the current
process. Once all processes using the block call detach(), the block is destroyed and can no
longer be accessed. When a QSharedMemory object is destroyed, it's automatically detached
if it wasn't already.

As an exercise, we will create a stub of a game engine that reports game statistics through
shared memory. For that, we will create two programs—the engine itself that will create a
shared memory block and modify it according to what happens in the engine, and a client
program that will attach to the block and read it.

Time for action – Game engine
Our game engine will really be more of a mock-up rather than a real engine. Create a Qt
Widgets Application project and get rid of the widget Creator created for you as we will
not need it. Now add a new header file to the project and call it gamestats.h.

Miscellaneous and Advanced Concepts Chapter 1

[9]

It will contain the definition of the data structure that we will expose through shared
memory:

#include <QtGlobal>
struct GameStats {
 quint32 playerCount = 0;
 quint32 uptime = 0;
};

Next, add a new class called GameServer and derive it from QObject. We'll need a slot that
will write the game state to shared memory and a few private fields:

class GameServer : public QObject {
 Q_OBJECT
public:
 GameServer();
 ~GameServer();
private slots:
 void writeState();
private:
 QSharedMemory m_sharedMemory;
 QElapsedTimer m_elapsedTimer;
 QSlider *m_slider;
};

Initialize the m_sharedMemory object in the constructor:

m_sharedMemory.setKey("gameStats");
if(!m_sharedMemory.create(sizeof(GameStats))) {
 qFatal("failed to create shared memory");
 return;
}

Since we intend to write the content of the GameStats structure to the shared memory
chunk, we pass the size of the structure in bytes to the QSharedMemory::create()
function. If the operation fails for some reason, we abort the application.

We've encountered the QElapsedTimer class before. Basically, it's a helper class that
remembers its starting time and can calculate how much time has passed since then. We
start the timer in the constructor:

m_elapsedTimer.start();

Miscellaneous and Advanced Concepts Chapter 1

[10]

Next, since we want to write the game's uptime to the shared memory, we need our
writeState() slot to be called repeatedly each second. We can achieve this by setting up a
QTimer in the constructor:

QTimer *timer = new QTimer(this);
connect(timer, &QTimer::timeout,
 this, &GameServer::writeState);
timer->start(1000);

We don't have an actual game engine here, so let's use a slider as the data source for the
playerCount field. Create and show the slider in the constructor as well:

m_slider = new QSlider();
connect(m_slider, &QSlider::valueChanged,
 this, &GameServer::writeState);
m_slider->show();

Unlike as is the case with the timer, we can't set this as the parent of the
slider because widgets can only have other widgets as parents. This means
that you'll need to delete the slider in the destructor to avoid a memory
leak.

All the preparations are complete, and we can now implement the writeState() slot:

void GameServer::writeState() {
 GameStats stats;
 stats.playerCount = m_slider->value();
 stats.uptime = m_elapsedTimer.elapsed() / 1000;
 if(!m_sharedMemory.lock()) {
 qFatal("memory lock failed");
 return;
 }
 qDebug() << "writing to shared memory";
 std::memcpy(m_sharedMemory.data(), &stats, sizeof(GameStats));
 m_sharedMemory.unlock();
}

First, we initialize a GameStats object. Next, we try to lock the shared memory and abort
the application if there was an error. Finally, we use memcpy() to copy the binary content of
the structure to the shared memory chunk. After we unlock() the memory, other processes
will be able to read this content.

Miscellaneous and Advanced Concepts Chapter 1

[11]

The main() function simply creates a GameServer object:

int main(int argc, char *argv[]) {
 QApplication a(argc, argv);
 GameServer server;

 return a.exec();
}

What just happened?
We implemented a really simple mechanism for periodically pushing two values to the
outside world using shared memory. Now, we need the other end of the inter-process
communication system—an application that can read those values and do something
meaningful with them.

Time for action – Client application
Start by creating a new project and choosing Qt Console Application as its type. Add the
gamestats.h file to the project and include it in main.cpp.

This time, we won't need to create extra classes. Let's put all the code into the main()
function. First, we create a QSharedMemory object and use the attach() function to try to
attach it to an existing shared memory chunk:

QSharedMemory sharedMemory("gameStats");
if(!sharedMemory.attach(QSharedMemory::ReadOnly)) {
 qDebug() << sharedMemory.errorString() << endl;
 return -1;
}

Since we pass the same key (gameStats) in both the server and the client, we can be sure
that both applications will access the same chunk of memory. If the operation is successful,
we can lock the shared memory and read the content:

GameStats stats;
if (!sharedMemory.lock()) {
 qFatal("memory lock failed");
 return -1;
}
std::memcpy(&stats, sharedMemory.data(), sizeof(GameStats));
sharedMemory.unlock();

Miscellaneous and Advanced Concepts Chapter 1

[12]

Again, we use memcpy() to copy the bytes from the shared memory chunk to the content of
our stats variable. It's up to you how to use the obtained value. For example, you can
simply print it to the output:

qDebug() << "Players online:" << stats.playerCount;
qDebug() << "Engine up time:" << stats.uptime << "seconds";

To test our monitor, run the server application and then, after some time has lapsed execute
the newly created monitor tool. Modify the slider value and execute the tool again to see the
changed result.

What just happened?
The client application attaches to an existing shared memory block by passing a key shared
with the server. From that moment on, the block of memory is visible from both
applications. However, it is not safe when one process reads the shared segment and
another modifies it at the same time, as memory can be modified in the middle of the
reading process, giving the reader a mix of old and new data. To prevent such situations,
any access to the memory has to be synchronized. Every read and write operation to the
block is prepended with obtaining an exclusive lock on the segment. It is important to
release the lock as soon as you don't need it, as holding the lock for any extended period
may result in performance degradation of other processes trying to obtain access to the
shared segment.

Passing complex data
The approach we just used will only work for structures that are trivially copyable, that is,
structures that can be moved around by copying bytes. While basic integer types and fixed
sized arrays of those types are safe to use, there are plenty of classes that are not trivially
copyable. For example, QString, QVector, or any other class that allocates memory is not
safe to copy in that way. Even copying these values within one process will lead to a double
freeing of the same buffer, and passing it to another process will result in trying to access a
pointer that is not accessible in the other process.

This means that you can't use memcpy to put such a value into the shared memory object.
However, you still can serialize the value using one of the many techniques discussed in
Chapter 6, Qt Core Essentials. The resulting array of bytes can be safely written to the shared
memory and then deserialized back in the other process.

Miscellaneous and Advanced Concepts Chapter 1

[13]

However, note that serialization generally gives you byte arrays of variable size, so ensure
that you allocate enough shared memory for the allowed range of values. You will also
need to pass the actual size of the byte array along with the content to successfully decode it
on the other end.

Local sockets
Shared memory is most useful when there is a group (usually more than two) of processes
that need to use the same data, and the data is either not very complex nor very large.
However, there are other situations where processes might want to exchange a lot of data
over a long period of time. An example of such a situation is an external game console
sending requests to a game engine and receiving some data it needs in response. For such
use cases, an ideal solution is to use a local socket (implemented in Qt with QLocalServer
and QLocalSocket), which is usually a special file in the filesystem that acts as a pipe
between two or more processes, where one process streams data into one end of the pipe
and another process reads data from the other end. From the developer's perspective, local
sockets are very similar to network sockets that use TCP protocol (they were described in
Chapter 7, Networking).

A system equivalent of a local socket is a named pipe or a Unix domain
socket, depending on the operating system. Thus, you can use your
operating system's calls to communicate with a Qt application that makes
use of QLocalSocket.

Local socket communication uses the client-server pattern. One process creates a server
socket and listens to incoming connections. Other processes (clients) connect to that server
socket and can perform streaming two-way communication.

To use local sockets, you have to enable the QtNetwork module for your
project by adding a QT += network line to the project file.

To set up a server, you need to use an instance of the QLocalServer class. To start the
server, you will call the listen() method and pass it a file path that is to be created as
your socket. At this point, if someone connects to the socket, a newConnection() signal
will be emitted. You can catch it and call nextPendingConnection() to obtain a socket
handler for communication with the client.

Miscellaneous and Advanced Concepts Chapter 1

[14]

Handling the client end is also easy—you create an instance of QLocalSocket and call
connectToServer(), passing it the file path to the server socket. When the connection is
successful, the socket will emit a connected() signal.

From now on, the two sides behave the same way as both use QLocalSocket for
communication. Since it's derived from QIODevice, you can use read() and write() to
perform operations on the socket. Connection is terminated upon calling close(), in which
case the socket will emit a disconnected() signal.

As local sockets are very similar to TCP sockets, you can refer to Chapter 7, Networking, for
a more complete description of socket communication.

Web sockets
QML does not support constructs such as local sockets or shared memory out of the box. If
you want to use them, you have to provide your own QML wrappers for them. However,
QML does have an IPC mechanism in the form of web sockets. This protocol is often used
in web applications for instantiating sockets from within a JavaScript environment and
using it to connect over TCP to external servers. While the QML engine doesn't act as a
complete web browser, you can still use web sockets in your QML application, thanks to the
QtWebSockets QML module.

To use web sockets, you need to import the right module in your document:

import QtWebSockets 1.0

Then, you can start declaring socket servers:

WebSocketServer {
 id: socketServer
 listen: true
 port: 8080
 onClientConnected: {
 webSocket.onTextMessageReceived.connect(function(message) {
 console.log("Server received message: ", message);
 webSocket.sendTextMessage("Server says 'Hello!'");
 });
 }
}

The server object has an API similar to QTcpServer. It exposes host and port properties
that define where the server socket is created. By default, the socket is bound to the
localhost and the port is chosen automatically.

Miscellaneous and Advanced Concepts Chapter 1

[15]

When a client connects to the server, the onClientConnected handler is invoked and
passed a socket through which the server communicates with the client. In the preceding
example, we connect a function to the textMessageReceived signal, which prints the
message to the console and sends a textual response back to the client.

A client socket can be created by declaring the WebSocket instance:

WebSocket {
 id: socket
 url: "ws://localhost:8080"
 active: true
 onStatusChanged: {
 console.log("Client status changed: ", status);
 if(status == WebSocket.Open) {
 sendTextMessage("Hello!");
 }
 }
 onTextMessageReceived: {
 console.log("Client received message: ", message);
 }
}

The socket is connected to a remote server defined by the url property (you can query the
earlier created socket server for its URL). When the connection is established, we use
sendTextMessage to transmit data to the server. The response is intercepted in the
onTextMessageReceived handler and printed to the console just like before.

You can use web sockets to fetch data from remote locations or to trigger actions in a web
service. You can also establish a communication channel to a process running on the same
machine, just like you would when using local sockets.

Equivalent API for C++ is also available through classes called
QWebSocket and QWebSocketServer.

Multithreading
Multithreading allows simultaneous execution flows within a single process. The key
difference between multithreading and multiprocessing is that all threads within a process
have access to the same memory space.

Miscellaneous and Advanced Concepts Chapter 1

[16]

Qt provides its own abstraction to threading, which covers all the implementation details
that are platform-dependent. While C++11 introduced threading support in the language,
Qt applications still greatly benefit from using the Qt threading API. The most significant
benefit is the ability to safely use signals and slots across threads.

Avoiding long operations in the main thread
When developing a game or any application with graphical user interface, you are often
limited by the rule that you must not perform long calculations in the main thread. If you
run a slow function in a click handler, your interface will simply freeze until the function
returns. Sometimes, you can avoid it by splitting a long operation into a sequence of short
operations and running them periodically, allowing Qt to update the user interface in
between. However, sometimes it's considerably easier to spawn a new thread and run a
slow function in that thread where it won't interfere with the user interface at all.

However, it's not that simple. There is another rule—you must never access the user
interface directly from other threads, because the implementation of the user interface is not
thread safe. For example, you can't add or remove widgets or change text on a label. Well,
since you did something useful in a background thread, you almost certainly want to pass
the result back to the UI thread, but how can we achieve this? In Qt, it's pretty easy.

Each QObject has thread affinity, that is, it belongs to a particular thread. Any event
handlers and slots of the object will be executed in that thread (the only exception is a
signal-slot connection made with the Qt::DirectConnection type). By default, an object
belongs to the thread where it was created.

You can learn about the object's thread affinity using the thread() function. It returns a
QThread object representing the thread this object belongs to. You can also change the
object's thread affinity by calling the moveToThread() function, passing a QThread object
representing the target thread. Note that you can't change the object's thread affinity if it has
a parent or if you try to do it from the thread the object doesn't belong to originally.

All UI objects naturally belong to the main thread because they were created in it. While
you can't call slots of UI objects directly from other threads, you can create a signal and
connect it to a UI object slot. When a signal is emitted, Qt will execute the slot in the thread
of its owner, so it will be safe. Signals themselves are thread safe, so you can call them from
any thread.

Miscellaneous and Advanced Concepts Chapter 1

[17]

Time for action – Creating a background worker
thread
Create a new Qt Widgets Application project with a widget-based form. Add a button
called start that will start the calculation and a label called result for displaying the
result. Next, create a class named Worker that inherits QObject. This class will perform a
long calculation in its calculate() public slot:

void Worker::calculate() {
 float x = 0;
 for(int i = 0; i < 100000000; i++) {
 x += sin(i);
 }
 emit finished(x);
}

After the calculation is done, the object emits the finished() signal that we also need to
create. That's all we need for the worker. Let's start setting up the thread communication.

First, add the following private fields to the widget class:

QThread* m_workerThread;
Worker* m_worker;

Initialize these fields in the widget's constructor:

m_workerThread = new QThread(this);
m_workerThread->start();
m_worker = new Worker();
m_worker->moveToThread(m_workerThread);
connect(m_worker, &Worker::finished,
 this, &Widget::workerFinished);

First, we create a new QThread object and call its start() function. This tells Qt to begin a
new native thread and start an event loop in it. The loop will keep running until we call
the exit() or quit() functions of the thread object, in which case the event loop will stop
once it has processed the current event. At the moment, the new thread's event loop has
nothing to do, but we'll make it run the Worker::calculate() function later. Next, we
create a Worker object and move it to the new thread. This operation ensures that whenever
a slot of this object needs to be called, it will be called by this thread's event loop. Finally,
we connect the thread's finished() signal to our workerFinished() slot. Since our
widget object belongs to the main thread, the workerFinished() slot will be called in the
main thread, even though the finished() signal is emitted from the worker thread.

Miscellaneous and Advanced Concepts Chapter 1

[18]

When the start button is pressed, we should run the following code to start the calculation:

void Widget::start()
{
 ui->result->setText(tr("Calculating..."));
 QTimer::singleShot(0, m_worker, &Worker::calculate);
}

The QTimer::singleShot() function is a shortcut for creating a QTimer, connecting its
timeout() signal to a slot and starting it with the specified delay. We already know that
the calculate() slot will be called in the worker thread, and passing 0 as the delay
ensures that the slot will be called as early as possible.

This approach won't work if you need to call the worker's slot with
arguments. In this case, create a signal with the same arguments in the
widget class and connect it to the worker's slot. When you need the slot to
start running, simply emit the widget's signal, and it will work just as in
this example.

In the workerFinished() slot, we can safely update the UI:

void Widget::workerFinished(float result) {
 ui->result->setText(tr("Result: %1").arg(result));
}

Finally, we need to perform some cleanup in the widget's destructor:

Widget::~Widget() {
 m_worker->deleteLater();
 m_workerThread->quit();
 m_workerThread->wait();
 delete ui;
}

The deleteLater() call will schedule the deletion of the worker, but it will happen in the
worker's thread. The quit() call instructs the thread to stop its event loop. Once the event
loop is stopped, the native thread will terminate. The wait() function will block the
current loop (in our case, the main loop) until the thread is terminated. If calculation is not
running at the moment, the termination should happen almost instantly. If the operation is
running, however, the current thread will be blocked until it finishes.

Miscellaneous and Advanced Concepts Chapter 1

[19]

It's also possible to execute operations in another thread by subclassing
QThread and overriding its run() virtual function. However, this is
usually not advised, as this approach is not really easier than the method
described earlier, and doing so will leave the thread without an event
loop, preventing you from using slots in the thread and forcing you to
implement your own logic for stopping the thread.

Thread synchronization
Threading in Qt is governed by the same rules as with every other technology, including
the fact that access to a resource shared by more than one thread needs to be synchronized
to avoid race conditions. Qt offers a number of mechanisms for thread synchronization, the
simplest one being QMutex, which implements a classic mutex primitive with lock() and
unlock() operations, ensuring that only one thread can execute in a critical section. This
class is usually used in conjunction with the QMutexLocker class that locks the mutex when
the locker is created and unlocks it when the locker goes out of scope. This ensures that the
mutex will be properly unlocked even if an exception is thrown in the protected section.

The mutex is usually stored in a private field of the shared object. In each public method
that accesses the object's data, the mutex must be locked:

void Object::setX(int x) {
 QMutexLocker(&m_mutex);
 m_x = x;
}

Threading in QML
In QML, you can execute scripts in a separate thread with the use of the WorkerScript
element. Its API is very simple—it accepts a URL of a script to execute via the source
property. Once the script is started, you can communicate with it using messages.
WorkerScript objects have a sendMessage() function that accepts a JavaScript object.
The object is transmitted to the worker thread where it can be intercepted by connecting a
function to WorkerScript.onMessage:

WorkerScript.onMessage = function(message) {
 ...
}

Miscellaneous and Advanced Concepts Chapter 1

[20]

The script can also use sendMessage to transmit data to the main thread where again, it
can be read by connecting to onMessage and querying the reply property of the received
object:

WorkerScript {
 source: "script.js"
 onMessage: {
 console.log(messageObject.reply)
 }
}

Since the script is executed in a thread different from the main QML
thread, it cannot access any Qt Quick items or their properties. It cannot
even access properties of the WorkerScript object itself or any object
exposed to QML from C++.

Audio and video
In this section, we will take a look at how to play sounds and videos. This is crucial for
successfully programming games, or can you think of a modern game without music or
videos? Normally, you have background music and, additionally, sound effects when a
player jumps, kicks, shoots a gun, or performs similar actions. In some games, there are also
short videos introducing a level or telling parts of the game's story.

Before we start to play with Qt's Multimedia module, keep in mind that you have to enable
it. In qmake-based projects, add QT += multimedia. If you are using QML, you'll also
need to add import QtMultimedia 5.0 to your QML file. Also be aware that Qt
Multimedia uses the media framework of the underlying operating system. This means that
depending on the machine your game is running on, specific audio or video codecs may or
may not be available.

Time for action – Recording audio
To demonstrate how to record and play audio, we'll create a little program called
RecordAndPlaySound:

Miscellaneous and Advanced Concepts Chapter 1

[21]

As always, you'll find the sources for this example attached to this book. The graphical user
interface is—as you can see—very minimalistic. The window is implemented as a designer
form class. At the top, there is a combobox named ui->input. Its purpose is to select the
audio input. Beneath, we find two checkable buttons: one for recording audio
(ui->record) and one for playing the last recorded audio (ui->play). Since you already
know how to build such a simple GUI, we skip this part and directly take a look at the
relevant code that is located in the main window's constructor:

RecordAndPlaySound::RecordAndPlaySound(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::RecordAndPlaySound),
 m_recorder(new QAudioRecorder(this)),
 m_player(new QMediaPlayer(this))
{
 ui->setupUi(this);
 m_file = QDir(QCoreApplication::applicationDirPath())
 .absoluteFilePath("test.ogg");
 m_recorder->setOutputLocation(m_file);
 const QStringList inputs = m_recorder->audioInputs();
 for(const QString &input: inputs) {
 ui->input->addItem(m_recorder->audioInputDescription(input),
 input);
 }
 m_recorder->setAudioInput(ui->input->currentData().toString());
 qDebug() << "supportedAudioCodecs: "
 << m_recorder->supportedAudioCodecs();
 qDebug() << "supportedContainers: "
 << m_recorder->supportedContainers();
 QAudioEncoderSettings settings;
 settings.setCodec("audio/x-vorbis");
 m_recorder->setEncodingSettings(settings, QVideoEncoderSettings(),
 "audio/ogg");
 connect(m_player, &QMediaPlayer::stateChanged,
 this, &RecordAndPlaySound::playbackStateChanged);
}

Miscellaneous and Advanced Concepts Chapter 1

[22]

Now start the program, select the Audio Input, and check the Record button. Once you say
your test phrase, uncheck the record button to stop the recording. Now hit the Play button.
In theory, you should then hear what you last recorded.

What just happened?
In the initializer list, we initialize some member variables: m_file of the QString
type holds the file path that will be used to store the recorded audio; m_recorder of
the QAudioRecorder type is responsible for recording and m_player of
the QMediaPlayer type is responsible for playing the audio. In this example, m_file is set
to a file named test.ogg, which will be placed right beside the program's executable. In a
real game, you will have to determine the filename in a more sophisticated way.

In the constructor's body, after setting up the UI, we define where m_recorder should save
the recorded audio. This is done by passing the previously defined m_file to
QMediaRecorder::setOutputLocation(). Actually, setOutputLocation() expects a
QUrl, but thanks to implicit type conversion, we can also pass a QString.

Since setOutputLocation() takes QUrl, it is not restricted to local files. You can also use
network files. Even if we did not check it in the example, setOutputLocation() returns
false if the passed location can't be used to store media recording.

Next, we want to provide the ability to choose the audio input. For devices that have
several audio inputs, this is a must. By using QAudioRecorder::audioInputs(), we get a
list containing all inputs that are available on the device. Unfortunately, the returned
identifiers are not really readable, especially not for most users of your game. Alternatively,
do you expect your customer to know what, alsa:front:CARD=Creative,DEV=0 means,
for example? People will probably run away screaming if they saw this kind of text, so we
need a better way of dealing with the audio inputs. Thanks to
the QAudioRecorder::audioInputDescription() function that takes the identifier as
an argument, we can convert the cryptic strings into a better readable format. This, way we
get a slightly nicer stringm such as HDA Creative, CA0110-IBG Analog Front speakers. So
we loop through the list of audio inputs, generate the readable description, and put them to
the combobox. Note that we also pass the original audio input identifier to the items as the
so-called user data. Thus, we are able to provide the following slot:

void RecordAndPlaySound::on_input_currentIndexChanged(int index)
{
 m_recorder->setAudioInput(ui->input->itemData(index).toString());
}

Miscellaneous and Advanced Concepts Chapter 1

[23]

Every time the current index of the checkbox changes, we fetch the user data, transform it to
QString, and pass it to QAudioRecorder::setAudioInput() so that m_recorder will
use this audio input for recording sounds. To start the program in a consistent state, we set
the recorder's audio input to the user value of the combobox's currently selected item right
after we have left the loop for setting up the box. If you do not define an audio input, Qt
will take the default one.

Next, we define the audio's encoding that is handled entirely by a class called
QAudioEncoderSettings. Remember, however, that QAudioEncoderSettings—or
better, it's base class, QMediaRecorder—can only handle encodings that are supported by
the current operating system, and the exact names of codecs and containers can vary. To
gather the available codecs and options, QMediaRecorder offers
supportedAudioCodecs(), supportedAudioSampleRates(), and
supportedContainers(). In our example, we canonically dictate to use the free audio
format Ogg Vorbis:

QAudioEncoderSettings settings;
settings.setCodec("audio/x-vorbis");
m_recorder->setEncodingSettings(settings, QVideoEncoderSettings(),
 "audio/ogg");

Here, after creating an object of QAudioEncoderSettings, we set the codec with
setCodec() to audio/vorbis. For all other available options
that QAudioEncoderSettings provides, we are fine with their default values.

If you like to change other options, these self-explanatory functions would be of interest:
setBitRate(), setChannelCount(), setEncodingMode(), setQuality(), and
setSampleRate(). If you like to add encoder-specific options, that are not covered by Qt
Multimedia's API, use setEncodingOption() and setEncodingOptions().

Lastly, we need to set the chosen codec setting to m_recorder using
QMediaRecorder::setEndocingSettings(). As the first argument, the audio setting is
passed, while the video setting is passed in the second argument—yes, with Qt Multimedia,
you also can record videos—and the container format is passed as the third. Here, we
choose Ogg.

At the end of the constructor, we establish a connection that informs us about a state change
of m_player. For now, do not worry about that; we will get to this in detail a little later.
Rather, let's take a look how the actual recording is started and stopped:

void RecordAndPlaySound::on_record_toggled(bool checked)
{
 if (checked) {

Miscellaneous and Advanced Concepts Chapter 1

[24]

 m_recorder->record();
 } else {
 m_recorder->stop();
 }
}

This implementation is pretty simple—if the ui->record button gets checked, we start the
recording by calling record(), and as soon as the button gets unchecked, we stop the
recording with stop(). There is nothing more to do since we already set up the recorder in
the constructor.

Have-a-go hero – Making the audio settings fail safe
Our example will fail terribly if Ogg Vorbis is not supported, or if its codec name or
container name is different on the current platform. So go ahead and make it fail safe! To do
so, you have to check the available codecs with supportedAudioCodecs() and then fall
back to another (supported) codec if Ogg Vorbis is not available.

Time for action – Playing sound
Now, let's complete our little sample program and take a look at how to play back the
recorded file:

void RecordAndPlaySound::on_play_toggled(bool checked)
{
 if (checked) {
 m_player->setMedia(QUrl::fromLocalFile(m_file));
 m_player->play();
 } else {
 m_player->stop();
 }
}

The overall logic for playing sound is the same as it is for recording: when the button
ui->play gets checked, we call play() to start the playback. If the button gets unchecked,
we stop the music with stop(). There is, of course, also a function named pause() to
pause the playback, but for the sake of simplicity, we haven't implemented it here. Right
before we call play(), we specify which file should be played; therefore, we call
setMedia() and pass the m_file local variable, holding the file path to the recorded file.
You do not have to call setMedia() each time before calling play(). Defining the media
once is enough.

Miscellaneous and Advanced Concepts Chapter 1

[25]

At this point, we owe you an explanation for the connection statement in the constructor. In
this statement, the music player's stateChanged() signal was connected to this slot:

void RecordAndPlaySound::playbackStateChanged(QMediaPlayer::State state)
{
 if (state == QMediaPlayer::StoppedState) {
 ui->play->setChecked(false);
 }
}

The whole purpose of this slot is to uncheck the ui->play button when the music stops
playing so that you have the chance to start the playback again. Hence, we uncheck the
button when the player enters StoppedState. This state signifies that currently, no music
is being played and that calling play() will play the media from the start. Apart from this
state, QMediaPlayer can be in two more states: QMediaPlayer::PlayingState and
QMediaPlayer::PausedState. The former indicates that the player is currently playing,
while the latter indicates that it was stopped, although playing can be resumed from where
it was paused.

To sum up music playing with Qt Multimedia, it's a three liner:

QMediaPlayer *player = new QMediaPlayer();
player->setMedia(QUrl::fromLocalFile(pathToFile));
player->play();

Have a go hero – Making a voice chat
In the chapter about networking, you saw how to make a simple text-based chat. With the
knowledge of recording and playing sounds, let's extend that example by sending small
audio messages. The steps you need to carry out are to record an audio message, read the
content of the recorded file, send it, receive it, save it to a temporary file, and play it back.

Of course, a real voice chat application doesn't write each message to a file
on disk and read it right back. That would be too slow. You would much
rather read the audio stream to a byte array and send it over the network.
The QAudioRecorder class cannot be used for that. You would need to
use the QAudioInput class that provides a QIODevice for reading the raw
audio data from the microphone.

Miscellaneous and Advanced Concepts Chapter 1

[26]

Playing a sound in QML
Unfortunately, there is currently no built-in support for recording sound with QML.
Playing sound, however, is straightforward and if you have studied the C++ part, there will
be no surprises:

import QtQuick 2.9
import QtQuick.Window 2.2
import QtMultimedia 5.0
Window {
 visible: true
 width: 640
 height: 480
 title: qsTr("Hello World")
 Text {
 id: button
 text: qsTr("Play");
 anchors.centerIn: parent
 }
 Audio {
 id: music
 source: "example.ogg"
 }
 MouseArea {
 anchors.fill: parent
 onPressed: {
 music.play();
 }
 }
}

What just happened?
Well, let's skip the basic QML code for creating a button labeled Play and concentrate on
the highlighted parts. First, we have the Audio type, and we give that object an ID that we
can refer to later, and with source, we define the file that should be played. Finally, we
start the playback by calling play() on the Audio object referenced by the music
identifier when the rectangle gets clicked on. It's like the three liner of C++: creating Audio,
defining the source, and playing it. The right codec will be chosen automatically if the
media framework supports it.

Miscellaneous and Advanced Concepts Chapter 1

[27]

If you like to implement a play/stop button, just alter onPressed to the following:

onPressed: {
 if (music.playbackState == Audio.StoppedState) {
 music.play();
 button.text = qsTr("Stop");
 } else {
 music.stop();
 button.text = qsTr("Play");
 }
}

We have simply inserted a check of audio's playbackState, which can be StoppedState,
PausedState, and PlayingState. The meaning is the same as QMediaPlayer::State. If
the player is currently in the stopped state, we start the music and change the text of the
button to "stop". Otherwise, we stop the music and set the button's text to "play".

By the way of an alternative to Audio, we could also have used the more
feature-rich MediaPlayer type.

Playlists and loops
If you have a background music theme for your game, it surely does not consist of only one
file. It's more likely that you have multiple tracks that you want to play in a loop.
Alternatively, maybe you really only have one file, but need it to be played in a loop. This
can easily be achieved with QMediaPlaylist. First, you have to create an instance of this
class:

QMediaPlaylist *playlist = new QMediaPlaylist();

Then, you need to add music or soundtracks to the list. This is done with addMedia(). As a
parameter, you can either pass a single QMediaContent or a QList of QMediaContent.
Since QMediaContent provides a default constructor taking QUrl, we can write this:

playlist->addMedia(QUrl::fromLocalFile("/path/to/firstFile.mp3"));
playlist->addMedia(QUrl::fromLocalFile("/path/to/secondFile.mp3"));

Miscellaneous and Advanced Concepts Chapter 1

[28]

With clear(), on the other hand, one can remove all items from the list, but we do not
want to do this right now. We would rather like to define how the sounds should be played.
This can be done with setPlaybackMode(). Looping endlessly through the list can be
done with the following:

playlist->setPlaybackMode(QMediaPlaylist::Loop);

Passing the playlist to the player and starting it can be done with this:

QMediaPlayer *player = new QMediaPlayer();
player->setPlaylist(playlist);
player->play();

Be aware that by calling setPlaylist(), the parentship of playlist is not passed to
player, so we do need to take care of freeing the memory ourselves. If we use the player as
the parent of the list—by passing it as an argument to the constructor, the playlist gets
automatically deleted as soon as the player is deleted.

With save() and load(), QMediaPlaylist provides the ability to save and load playlists.

You can also use playlists from QML. Create a Playlist object and put
multiple PlaylistItem objects into it to create a playlist. Then, pass the playlist to the
playlist property of a MediaPlayer, Audio, or Video object.

Playing sound effects
QMediaPlayer can surely be used to play sound effects. For sound effects, however, it is
better to use QSoundEffect, as this class is especially designed to play low latency sound
effects. Its usage is similar to QMediaPlayer. Let's take a look at the following example:

QSoundEffect *effect = new QSoundEffect();
effect->setSource(QUrl::fromLocalFile("soundeffect.wav"));
effect->play();

First, we create an instance of QSoundEffect, then we set the file that should be
played with setSource(), and finally, we start the effect with play(). If you want to play
the effect multiple times, use setLoopCount(). As a special
parameter, QSoundEffect::Infinite can be passed, resulting in a repeated playback of
the effect. Since QSoundEffect inherits QObject, it can be conveniently used within signal
and slot connections:

connect(someObject, SIGNAL(someSignal()), effect, SLOT(play()));

Miscellaneous and Advanced Concepts Chapter 1

[29]

With this statement, every time someObject emits someSignal(), our effect plays the
soundeffect.wav sound file. This approach is very light-weighted and should be
preferred over QMediaPlayer for simple sound effects.

Playing videos in widget-based applications
The good thing about playing videos is that it is almost the same as playing sounds, so you
do not have to make yourself familiar with a new syntax.

Let's take a look at the following three lines of code:

QMediaPlayer *player = new QMediaPlayer();
player->setMedia(QUrl::fromLocalFile("/path/to/movie.ogg"));
player->play();

Do you recognize these lines? They are the same as those we showed you for playing
sounds and in fact, if you run the code, you will hear the sound of the video but won't see
anything. First, you have to tell QMediaPlayer where to show the video. This is where a
new module comes into play: Qt Multimedia widgets. To enable Qt Multimedia widgets,
add QT += multimediawidgets to the project file. Then, we can use QVideoWidget as a
canvas for the video:

QVideoWidget *videoWidget = new QVideoWidget();
player->setVideoOutput(videoWidget);

After we create an instance of QVideoWidget, we pass it to the player by calling
its setVideoOutput() function. This instructs the media player to use videoWidget as a
canvas. Note that you can only set one video output to a player. Displaying a movie on
different widgets with only one player is not possible.

QVideoWidget also provides the setBrightness(), setContrast(),
setHue(), and setSaturation() functions to alter the visible properties
of the video.

Like any other QWidget, QVideoWidget can be part of a bigger widget-based form. If your
game is based on Graphics View, though, you can use QGraphicsVideoItem instead:

QGraphicsVideoItem *item = new QGraphicsVideoItem();
player->setVideoOutput(item);

Miscellaneous and Advanced Concepts Chapter 1

[30]

QGraphicsVideoItem inherits QGraphicsObject, which inherits QGraphicsItem, so you
can use QGraphicsVideoItem just like any other item in Graphics View. Also, as we did
with QVideoWidget, we set the instance of QGraphicsVideoItem as the player's video
output. You do not have to do anything else.

If you want to play a video in a loop or play multiple videos one after the
other, you can use QMediaPlaylist, just like you have used it for sounds.

Playing videos in QML
The only real type you have to know for playing videos in QML is Video:

Video {
 id: video
 source: "/path/to/video.ogg"
}

With source, you define the video file and, with the definition of an ID, you can start the
video by calling video.play(). Video inherits the Item type so that it behaves like any
other QML item. Video, however, is a convenience type that behaves like the combination
of MediaPlayer and VideoOutput:

MediaPlayer {
 id: mediaPlayer
 source: "/path/to/video.ogg"
}
VideoOutput {
 source: mediaPlayer
}

MediaPlayer defines the file to play, and VideoOutput is the canvas for displaying the
video, similar to QMediaPlayer and QVideoWidget in the C++ world. Using source of
VideoOutput, you define which player's video should be shown.

Miscellaneous and Advanced Concepts Chapter 1

[31]

Debugging output
A common and simple way of debugging the application is to print some values to the
application output and examine them. While this approach certainly has a lot of limitations,
it's still convenient in simple cases. You have surely noted that in the previous chapters, we
used qDebug() quite often. You already know that it prints out messages. However, this is
only a small part of the extensive message handling system Qt offers to us. In this section,
we'll discuss its usage possibilities in more depth.

Using qDebug() and friends
The easiest possibility to debug an application is to write messages to std::cout,
std::cerr, or std::clog, which may help you understand what your code is actually
doing. Instead of these streams, you can use the Qt message system that offers more
features. You can use the following functions to access Qt message streams:

Function Purpose

qDebug() Debug messages

qInfo() Informational messages

qWarning() Warnings

qCritical() Critical errors

qFatal() Fatal errors that will terminate your application

All these functions are defined in the QtGlobal header file, but to use their full capabilities,
you should include the QtDebug header.

The simplest way of printing a message is to pass a string literal as the argument of one of
the functions listed earlier:

int someInt = 5;
if (someInt % 2 == 0) {
 qDebug("Entering scope for even integers.");
} else {
 qDebug("Entering scope for odd integers.");
}

Miscellaneous and Advanced Concepts Chapter 1

[32]

If you run this code in Qt Creator, you will see Entering scope for odd integers in the
Application Output panel. In this specific case, we already know that someInt is 5, but
what if someInt was an argument of a function? We may then want to know for which
value the debug message was printed, so we can extend the example code with the
following line:

qDebug("Entering scope for odd integers: someInt = %d", someInt);

In this case, the function works similar to the printf() C function. Now we will see the
actual value of someInt in the output. Even if this is a practical solution for such a short
message with only one argument, this will quickly become hard to read for complex
messages with multiple arguments. A much more preferred syntax is available once you
include the QtDebug header:

#include <QtDebug>
//...
qDebug() << "Entering scope for odd integers: someInt ="
 << someInt;

This will produce the output of Entering scope for odd integers: someInt = 5. If
you take a close look, you will note that a space was inserted after the equal sign. This is
because every << expands to a space. After a complete instruction, a new line is added
automatically, so the following code will result in two lines on the output panel:

qDebug() << "Line 1";
qDebug() << "Line 2";

The QLoggingCategory class allows you to define categories for your messages. To use a
category object, you need to pass it to qCDebug(), qCInfo(), qCWarning(),
or qCCritical() functions as the first argument instead of using regular functions such
as qDebug().

You may ask yourself, however, if that is all there is to it. It is nice, but what's the real
advantage? The advantage comes with Qt's container classes and types. Imagine that you
want to debug the content of a list or a hash. To do that, you would have to loop through
their elements and print each single element. If you use the << operator instead, Qt will do
the work for you:

QList<qreal> list;
list << 1.0 << 1.2 << 1.4;
qDebug() << list;
QHash<QString, int> hash;
hash.insert("Apples", 1);

Miscellaneous and Advanced Concepts Chapter 1

[33]

hash.insert("Bananas", 3);
qDebug() << hash;

The output will then look well formatted, like this: (1, 1.2, 1.4) and
QHash(("Bananas", 3)("Apples", 1)).

It is likely that you also want to know what location the messages are coming from. This
can be done in two ways. The easiest is to use the Q_FUNC_INFO macro. A call such
as qDebug() << Q_FUNC_INFO; inside a someFunction() function of the SomeClass
class will result in SomeClass::someFunction(). Even if that should be precise enough to
locate the corresponding source code in your game, you also can use the
QT_MESSAGE_PATTERN environment variable to customize the output. For this variable,
different placeholders are defined:

Placeholder Description

%{appname}
Name of the application. The same value as
QCoreApplication::applicationName() returns it.

%{category} The message category specified via QLoggingCategory.

%{file}
The name of the source file, including the path relative to the path of the
executable.

%{function} Name of the function.

%{line} Line in the source file.

%{message} The actual message.

%{pid}
Current process identifier of the application. The same value as
QCoreApplication::applicationPid() returns it.

%{threadid} Current thread identifier.

%{type} The type of handler, for example, debug, warning, critical, or fatal.

If you define QT_MESSAGE_PATTERN as %{message} (%{pid}), the process identifier,
enclosed in braces, will be appended after the actual message. Since the process identifier
may be important for debug messages, but not for warning messages, we can specify the
output even closer. Everything between %{if-debug} and %{endif} will only appear if
you use qDebug(), so we change QT_MESSAGE_PATTERN to %{message}%{if-debug}
(%{pid})%{endif}, and the process identifier will only occur at the end of debug
messages. Of course, there are also the conditionals %{if-warning}, %{if-critical},
and %{if-fatal}.

Miscellaneous and Advanced Concepts Chapter 1

[34]

If you want to alter the message pattern during runtime, you can use the
qSetMessagePattern() function instead of the environment variable:

qDebug() << "foo";
qSetMessagePattern("%{message} (%{pid}; %{threadid})");
qDebug() << "bar";

This will result in the following output:

foo
bar (18357; 0x207a9b0)

Time for action – Defining your own message
format
The information where exactly a message came from can be very useful, especially for large
projects, so try to define QT_MESSAGE_PATTERN that fits your needs. You can add this
variable locally to each project using Qt Creator's great opportunity to define variables for
the run environment or set it globally on your development machine. If you want to use Qt
Creator, switch to the Projects pane, go to the current kit's Run section, and under Run
Environment, you'll find a nice editor for altering, removing, and adding environment
variables that are set before Qt Creator launches the application.

Time for action – Using qDebug() with custom
classes
You can already use qDebug() with lists, hashes, and almost every other important Qt
class. However, you can also support debugging output for your own custom classes.
Suppose we have this simple class:

class SimpleClass
{
public:
 SimpleClass(int loc) : local(loc) {}
 int local;
};

Miscellaneous and Advanced Concepts Chapter 1

[35]

If we would now use qDebug() to debug this class, it would result in an error such as no
match for 'operator<<' (operand types are 'QDebug' and 'SimpleClass').
In order to get it to work, all we have to do is overload the operator<< of QDebug:

QDebug operator<<(QDebug dbg, const SimpleClass &sc)
{
 dbg.nospace() << "(SimpleClass: local = " << sc.local << ")";
 return dbg.space();
}

Now, if we write qDebug() << SimpleClass(5);, we would get the (SimpleClass:
local = 5) debug message.

What just happened?
How is that possible? Well, since we overloaded the stream operator of QDebug, Qt can now
use it and write information about SimpleClass. In the operator, we get the debug stream
and a constant reference to the object that should be printed out. So we can use dbg like we
would work with qDebug() , for example. The QDebug::nospace() function prevents a
space from being inserted by the operator<<, whereas QDebug::space() does the exact
opposite.

This solution, however, will fail if you like to print private members, since only class
members can access private members, and you can't define this conversion operator as a
member of your class. An easy solution would be to declare the operator as a friend by
adding friend QDebug operator<< (QDebug dbg, const SimpleClass &sc); to
SimpleClass. A cleaner way is to create a dedicated public method for the output
operation and use it in the implementation of the operator:

class SimpleClass {
public:
 SimpleClass(int loc) : local(loc) {}
 QDebug toDebug(QDebug dbg) const {
 dbg.nospace() << "(SimpleClass: local = " << local << ")";
 return dbg.space();
 }
private:
 int local;
};
QDebug operator<<(QDebug dbg, const SimpleClass &sc) {
 return sc.toDebug(dbg);
}

Miscellaneous and Advanced Concepts Chapter 1

[36]

If you have overloaded the stream operator for a custom class, you can use
it for qDebug(), qInfo(), qWarning(), and qCritical(). This is
because each function returns a QDebug object that contains information
about the requested logging channel. Only qFatal() can't make use of
the stream operator.

Depending on how excessive you are using qDebug() and qWarning(), it can become
quite noisy. To turn all debug and warning messages off, you can define
QT_NO_DEBUG_OUTPUT and/or QT_NO_WARNING_OUTPUT in the project file. Thus, all
messages will be suppressed.

Time for action – Redirecting the stream of
QDebug
By default, messages are printed to stderr or sent to the debugger, depending on what
platform you are on. With qInstallMessageHandler(), however, you can
yourself intervene and define what should be done with the messages. Therefore, you first
have to define your own message handler of the QtMessageHandler type, which is defined
as
void myMessageHandler(QtMsgType, const QMessageLogContext &, const

QString &);. For an example, let's put all the messages in a file:

void myMessageHandler(QtMsgType type, const QMessageLogContext
 &context, const QString &message)
{
 Q_UNUSED(context)
 QString text;
 text += "[" + QDateTime::currentDateTime().toString() + "] ";
 switch (type)
 {
 case QtDebugMsg:
 text += "Debug: ";
 break;
 // ...
 }
 text += message;
 QFile log("myApp.log");
 log.open(QIODevice::WriteOnly | QIODevice::Append);
 QTextStream stream(&log);
 stream << text << "\n";
}

Miscellaneous and Advanced Concepts Chapter 1

[37]

What just happened?
First, we define myMessageHandler of the QtMessageHandler type. Then, inside that
function, we create a QString called text. You can construct this string however you want.
In the example, we wrote the time, the type of the error, and the actual message to the
output string. Then, we open a file where we specified QIODevice::Append so that the text
is appended to the content of the file rather than replacing it. Finally, we write the text to
the file.

To open and close a file each time, qWarning(), qDebug(), and so on is
called, which is not an ideal solution. In real code, open the file only once
and close it when leaving the application. If you want to avoid the
temporarily created string, you can stream the information directly to the
file.

Lastly, we only have to tell Qt to use our message handler. Ideally, this is done before
QApplication is constructed so that possible warnings of QApplication are also written
to the file. So, at the first line of the main() function, we write the following:

qInstallMessageHandler(myMessageHandler);

If we call qDebug() << SimpleClass(5); again, [Di. Nov. 19 21:10:30 2013]
Warning: (SimpleClass: local = 4) will be appended to the file called myApp.log.

In the example, we did not have to use QMessageLogContext, but you might want to use it
since it holds information about the path of the file, the function's name, and the line
number.

Have a go hero – Redirecting the messages to
QTextEdit
You have seen how to redirect the messages to a file; now it might be handy to see the
messages beside your game in a widget. So have a try and alter the previous example to
show the messages in a text edit.

Miscellaneous and Advanced Concepts Chapter 1

[38]

Using a debugger
The qDebug() is nice for a first approach, but it cannot replace a real debugger such as GDB
or CDB. If you can't figure out the problem in a short period of time, better switch to a real
debugger. Qt Creator offers you plenty of options for efficiently using a debugger. It
supports GDB, LLDB, and CDB, so you can use at least one of them under Windows, Linux,
and macOS. Help on how to install the debugger on your platform can be found in Qt
Creator's documentation under the Setting Up Debugger section.

Time for action – Debugging a sample code block
To get an impression of the integration in Qt Creator, let's try to debug the
MyScene::movePlayer() function of our elephant game from Chapter 5, Animations in
Graphics View. This function does the logic for the parallel scrolling via a calculation of
medium complexity.

The code of interest is listed as follows, and we want to check if, and when, the highlighted
code is executed:

const int visiblePlayerPos = m_currentX - m_worldShift;
const int newWorldShiftRight = visiblePlayerPos - rightShiftBorder;
if (newWorldShiftRight > 0) {
 m_worldShift += newWorldShiftRight;
}
const int newWorldShiftLeft = shiftBorder - visiblePlayerPos;
if (newWorldShiftLeft > 0) {
 m_worldShift -= newWorldShiftLeft;
}

So we need to set a break point to cause a halt of execution at this point. The break point can
be set by either clicking to the left of the line number or by pressing F9 while the cursor is
on that line.

Instead of F9, you can, of course, define a custom shortcut. If you want to
do this, take a look at Tools - Options - Environment - Keyboard.

Miscellaneous and Advanced Concepts Chapter 1

[39]

After you have toggled the break point, a red dot with an hourglass will show up:

If you change the creator's edit mode to the debug mode (Ctrl + 4), you can find a view
called Breakpoints, which lists all break points you have set so far. If you wish to alter a
break point, for example, to change the line number or its type, right-click on either the icon
next to the line number or the list item on the view and choose Edit breakpoint. The
following dialog will pop up and allow you to easily edit this break point:

Miscellaneous and Advanced Concepts Chapter 1

[40]

Now start debugging the game by pressing F5. The game will be started, and the debugger
will attach to the game's process. As soon as the player approaches the right-hand border of
the window, Qt Creator will be activated and show that the application was stopped on a
break point:

What just happened?
As you triggered the camera movement, line 120 of the MyScene::movePlayer() function
was reached. Thus, the break point causes the execution to halt. In debug mode, you then
have different views holding various pieces of information. We will focus on the most
important two views: the Stack and Locals and Expressions views. Under Windows -
 Views, you can display other views as you wish.

Miscellaneous and Advanced Concepts Chapter 1

[41]

In the bottom left-hand corner of the picture, you see the so called Stack view. There, as
soon as the game is interrupted, you will find all nested function calls that lead to the
current state. This is called a call stack trace. The first element of the list contains a
MyScene::movePlayer function. This was expected, since we set the break point there.
The next line indicates the function that was executed before and the function that called
MyScene::movePlayer(). If you double-click on that line, Qt Creator opens the
corresponding file at the given line number. This way, you can easily and quickly go
through the sources that lead to the function call that you were interested in.

Second, take a look at the top-right. Here, you'll see the Locals and Expressions view. It
outlines information about local and member variables. There, you can see that, for
example, the rightShiftBorder local variable has a value of 350. The value of
direction is 1, as you can see from the first entry. You can also see that this variable is an
integer type. On the first line of the function, we have defined this variable as int
direction = m_player->direction();. So if you want to double-check—assuming
that you know that Player::direction() returns the value of the private member called
m_direction—you can do that too. Just expand the section of the tree labeled this and
then expand m_player. As you see, you can get a pretty clear picture of the value of almost
every variable of your game.

If this information already satisfies you, hit F5 to continue the execution. If you want to
know what happens next, you can step over, step into, or step out of the function. This
way, you can keep going step by step and investigate how your game evolves. You can use
the buttons right above the Stack view for navigation inside the code.

Have a go hero – Familiarizing yourself with the
debugger
Go ahead and make yourself familiar with the debugger and also take a look at the other
views and their information. The better you know the debugger environment, the faster you
can hunt down any causes of erroneous behavior.

Wait, however, you may ask yourself how to debug a Qt Quick application. The answer is
pretty easy—just as you would debug a C++ application. You only have to ensure that in Qt
Creator's run settings, the checkbox for QML debugging in the Debugger Settings page is
enabled. If so, simply set your break points and start debugging with F5. That's all. A great
feature when debugging QML applications is that you can change properties on the fly. To
do that, either open the QML/JS Console and type in JavaScript commands to alter
variables, or start editing variables in the Locals and Expressions tab by simply double-
clicking on them.

Miscellaneous and Advanced Concepts Chapter 1

[42]

If you use C++ as well as QML in your application, ensure that C++ debugging is also
enabled in the Debugger Settings page so that you can debug both components without
any limitation.

The Qt Creator Manual in general is very good and self-explanatory. In its
documentation, you will also find a chapter about debugging C++ and
QML applications. Take a look at the Qt Creator Manual documentation
page.

Testing
A very important and crucial point during software development is testing the application.
You have to ensure and check that your game is working as you—and your users—expect it
to. Software testing is, of course, a wide area with different topics and different view points.
In our case, we want to focus on two aspects: assertions and unit testing.

Testing assertions
During development, it is useful to also test pre- and post-conditions or—in a more general
sense—to test the assumptions you have made. Therefore, Qt offers three macros to help
you with that.

If you have to check simple conditions, use Q_ASSERT. To check at a certain point whether
the count variable equals 5, you would write the following:

int count = 4;
Q_ASSERT(count == 5);

Since count isn't 5 in this example, Q_ASSERT will use qFatal() to print an error message
such as ASSERT: "count == 5" in file ../Debugging/main.cpp, line 12 and
will then abort.

Miscellaneous and Advanced Concepts Chapter 1

[43]

To customize and pass additional information to the error message generated
by Q_ASSERT, you can use Q_ASSERT_X instead:

Q_ASSERT_X(count == 5, "Core Computation", "List size is not 5");

If the condition is false, the last two arguments are used to form the error message, which,
in the example, would look like ASSERT failure in Core Computation: "List size
is not 5", file ../Debugging/main.cpp, line 12. If the test condition is not
met, Q_ASSERT_X will also abort the execution of the program.

The Q_CHECK_PTR convenience macro is designed for testing whether a pointer is null:

char *c = 0;
Q_CHECK_PTR(c);

This code will throw the std::bad_alloc exception because the passed pointer is null.

All three macros are useful to spot errors during the development, but they have no effect
on the release mode. This is because, during compilation in release mode, the
QT_NO_DEBUG variable is set, preventing all the checks from being performed. Thus, the
program will continue to run even if the checked conditions fail. Note that any
computations done directly in a macro invocation will not be executed in the release mode,
so you don't need to worry about the performance impact of your assertions.

Unit testing with Qt Test
Qt Test is a simple unit testing framework designed for easy use in Qt applications. Here's
how it works. First, you have to create a class that inherits QObject. Next, you have to
define at least one private slot; each slot is later treated as a unit test. If you add more than
one slot, they get invoked in the order in which you have declared them. Finally, create an
object of your class and pass it to the QTest::qExec() function. Qt Test then executes all
the tests and prints the result to stderr by default.

Even though you can use the Qt Test framework to test the GUI of your application or your
game, that is not its strength as it only offers rudimentary tools to do so. So you might want
to use another tool for GUI testing. For unit testing, however, Qt Test is just perfect.

Miscellaneous and Advanced Concepts Chapter 1

[44]

Time for action – Writing a first unit test
So let's make our first, minimalistic unit test. Create a new project using the Qt Unit Test
template from the Other Project section. After selecting project name, location, and kits,
you'll see a few specialized pages of the wizard. First, you can select the Qt modules that
you'll need. Next, you'll be able to configure the generated test class. Input FirstTest as
the class name and leave the rest with the default values.

The generated project will contain a single file called tst_firsttest.cpp with the
following content:

#include <QString>
#include <QtTest>
class FirstTest : public QObject {
 Q_OBJECT
public:
 FirstTest();
private Q_SLOTS:
 void testCase1();
};
FirstTest::FirstTest()
{
}
void FirstTest::testCase1() {
 QVERIFY2(true, "Failure");
}
QTEST_APPLESS_MAIN(FirstTest)
#include "tst_firsttest.moc"

There is not even a main.cpp file! The QTEST_APPLESS_MAIN macro generates a main()
function for you.

If you run this example, you'll get the given output:

********* Start testing of FirstTest *********
Config: Using QtTest library 5.10.1, Qt 5.10.1 (x86_64-little_endian-lp64
shared (dynamic) release build; by GCC 5.3.1 20160406 (Red Hat 5.3.1-6))
PASS : FirstTest::initTestCase()
PASS : FirstTest::testCase1()
PASS : FirstTest::cleanupTestCase()
Totals: 3 passed, 0 failed, 0 skipped, 0 blacklisted, 0ms
********* Finished testing of FirstTest *********

Miscellaneous and Advanced Concepts Chapter 1

[45]

What just happened?
Qt Creator created a QObject-derived class called FirstTest and added a private slot
named testCase1() to it. The class is passed to the QTEST_APPLESS_MAIN macro, so Qt
will use it as the source of test cases. Each slot of the class (with a few exceptions that we'll
discuss as we move on) is considered to be a test case and will be executed. You'll find the
information about failed and succeeded tests in the output, along with the information
about the current Qt version. However, what about initTestCase() and
cleanupTestCase()? We have not declared these slots.

Well, before Qt starts the test on a class, it tries to invoke a slot called initTestCase() if it
exists. When all tests on a class are finished, the test framework will call
cleanupTestCase(). You can use these two functions to initialize and clean up the entire
test. They are comparable with a constructor and a destructor. To initialize or to clean up
before and after a single test, Qt will automatically call the init() and
cleanup() functions. So if you want to use them, just define—and implement—these four
functions as slots. Qt will do the rest.

There are three variations of the macro that generates the main() function:

QTEST_MAIN will create a QApplication, QGuiApplication, or
QCoreApplication object (depending on the modules enabled in the project
file) before running tests
QTEST_GUILESS_MAIN will create a QCoreApplication object before running
tests
QTEST_APPLESS_MAIN won't create an application object and will only run tests

Since we used the Q_OBJECT macro in a .cpp file
(tst_simpletest.cpp), we have to include the .moc file by hand. This
way, qmake will generate the instructions required for the meta-object
compiler.

Time for action – Writing a real unit test
So far, our test case was empty; let's change that and add a real test. In general, you can do
whatever you want inside a test slot. There are no special limitations. At one point,
however, you have to check whether a condition is met. For this task, the following macros
come in handy.

Miscellaneous and Advanced Concepts Chapter 1

[46]

The most brutal way to force a test to fail is to use QFAIL, as it stops the execution of the test
immediately and prints the error message you can define as a parameter. Consider that you
ran a test case such as the following:

class FirstTest : public QObject {
//...
private Q_SLOTS:
 void firstTest() {
 QFAIL("No way!");
 }
};

You would get as a report (shortened, as the following reports will also be) the following:

FAIL! : FirstTest::firstTest() No way!
 Loc: [../unit_test/tst_firsttest.cpp(14)]
Totals: 3 passed, 1 failed, 0 skipped, 0 blacklisted, 0ms

The report states that one test failed. Due to the FAIL! prefix, you can spot the
troublemaker easily. Additionally, the file and the line number are mentioned.

If a test requires special preconditions—for example, the existence of certain modules—but
they are not met, you can skip a test with QSKIP. Here's an example:

void areMathematiciansCrazy() {
 if (1 != 2) {
 QSKIP("Thank goodness! 1 still isn't 2.");
 }
 //...
}

The following code results in:

SKIP : FirstTest::areMathematiciansCrazy() Thank goodness! 1 still isn't 2.
 Loc: [../unit_test/tst_firsttest.cpp(18)]
Totals: 2 passed, 0 failed, 1 skipped

The QCOMPARE macro is used to compare two values; the actual to an expected one.
Consider this example:

QCOMPARE(1 + 1, 11);

Miscellaneous and Advanced Concepts Chapter 1

[47]

This code will compare whether 1+1 equals 11. Note that QCOMPARE is very strict on the data
types, so both values have to be of the same type. If this test fails, the output informs you
about the actual value 2 and what you would have expected 11. For example, you can see
an output such as the following:

FAIL! : FirstTest::firstTest() Compared values are not the same
 Actual (1 + 1): 2
 Expected (11) : 11

With QVERIFY, you can check a condition. If it is false, the test will fail and print an error.
QVERIFY(1 == 2); will cause a log such as FAIL! : SimpleTest::simpleTest() '1
== 2' returned FALSE. If you like to add a customized, more descriptive message text,
use the QVERIFY2 macro. The message that can be defined as a second parameter will be
printed after the error message, as seen in the preceding code:

QVERIFY2(1 == 1, "Well, now mathematicians are crazy.");

Lastly, we would like to mention QTRY_COMPARE_WITH_TIMEOUT and
QTRY_VERIFY_WITH_TIMEOUT. Both behave like QCOMPARE and QVERIFY, except that as a
second or third parameter, a timeout can be specified. The macros then compare the values
or check the conditions until they become true or the timeout is reached. In the latter case,
the test will fail. For convenience, there are also QTRY_COMPARE and QTRY_VERIFY, which
have a timeout of 5 seconds defined.

Time for action – Running a unit test that uses a
data function
If you have a unit test that needs to test a function with different values, you can separate
the testing logic from the data. For this, create a private slot named in a similar manner to
the slot of the actual test and add _data to it:

void test_data() {
 QTest::addColumn<QString>("string");
 QTest::addColumn<int>("count");
 QTest::newRow("simple string") << "Hello" << 5;
 QTest::newRow("with interpunctation") << "world!" << 6;
}
void test() {
 QFETCH(QString, string);
 QFETCH(int, count);
 QCOMPARE(string.count(), count);
}

Miscellaneous and Advanced Concepts Chapter 1

[48]

If you run this code, it will result in the following:

PASS : FirstTest::test(simple string)
PASS : FirstTest::test(with interpunctation)

What just happened?
In the test_data() function, we declared that we need two values for each test run of
test() by calling Qtest::addColumn() twice. Of course, the number of variables is not
limited. Each call of addColumn() first defines the type of the new variable, QString and
int, and then the name of this variable, string and count. With QTest::newRow(), we
define the values of these variables. The parameter of newRow() should be a short
descriptive text of what will be tested. Then, the values are defined with the stream
operator. As the names of the addColumn() and newRow() functions suggest, think of
these variable definitions as a simple table of test values.

The test() function then loops through the rows of this imaginary table. Each time, we
fetch the values out of the cells using QFETCH. Here, the arguments of QFETCH have to
match the previous declaration made by QTest::addColumn(). After the fetch is done, we
can use string and count as a normal QString and integer.

If you take a look at the output, you will spot the use case of the QTest::newRow()
argument. It is printed after the test name so that you can see which data pair was
processed and passed, skipped, or failed.

Useful command-line arguments
To complete this part about the Qt Test framework, let's emphasize on two useful
capabilities of the test's command-line options.

Suppose you have defined multiple time-consuming tests and the last one fails. Now, after
you have tried to fix the cause of the failure, you have to perform all tests again to notice
that the fix does not work. This is quite an unsatisfying workflow. You have to check
functions that run over and over again only to test a specific one. Of course, you could
move the declaration of that test to the top to force it to be executed at the beginning, but
that is not an ideal solution. Fortunately, this issue can be solved with a command-line
option.

Miscellaneous and Advanced Concepts Chapter 1

[49]

When you invoke the test program, simply pass the name of the slot you want to execute. It
will then be the only test that is performed. For example, if your unit test creates the
executable named unittest.exe and you would like to test firstTest(), you can call
unittest.exe firstTest. If you like to execute more than one specific test, just add the
names of the other tests separated by a space. If you do not pass any specific test at all, all
the tests will be performed.

If a test uses the data functionality as described earlier, you can specify the row by adding
the row's name right after the slot's name, separated by a colon. Enclose the entire name in
quotes whenever the row's name contains spaces, for example, unittest.exe
test:"simple string".

If you're using Qt Creator to run your tests, you can edit the command-
line arguments of your executable on the Projects pane.

The second useful capability comes into play when you work with multiple test classes,
each holding a lot of unit tests. Then, you most likely need to process the results in a more
efficient way than going through the output in the Qt Creator's application output panel.
With the -o command-line option, you can define a file in which the results should be
stored. This file can then be further processed, for example, by a report tool or something
similar. The default format of the file is a simple text file holding the messages as you have
seen them in the output panel. Since this format may not be the best for further automatic
processing, you can pass -xml as an additional command-line argument causing the output
to be formatted as XML. Besides -txt, the default format, and -xml, you can also pass -
lightxml to get a stream of XML tags, or -xunitxml to get an Xunit XML document, to
the command line to choose the format of the output.

Pop quiz
Q1. What are the files that must be passed to a QTranslator object?

UI files (*.ui)1.
Translation source files (*.ts)2.
Message catalog files (*.qm)3.

Miscellaneous and Advanced Concepts Chapter 1

[50]

Q2. How can you ensure that two QSharedMemory objects refer to the same memory
buffer?

Use the copy constructor to create a new QSharedMemory object for the same1.
buffer
Pass the same key to both QSharedMemory objects2.
All QSharedMemory objects created by the same executable share the same buffer3.

Q3. What stream operator do you have to overload to comfortably use your own class with
qDebug()?

QDebug& operator<<()1.
QDebug& operator+()2.
QDebug operator||()3.

Q4. What does the Q_ASSERT(condition) macro do?

It always aborts the execution of the program if the condition is false1.
It always aborts the execution of the program if the condition is true2.
It aborts the execution of the program if the condition is false, but only if the3.
program was built in debug mode

Summary
In the first part of this chapter, you familiarized yourself with a number of frameworks to
make your games take advantage or multiprocess and multithreaded architectures and also
to reach out to a larger number of end users by making your games talk to them in their
own language. The Qt Multimedia framework we presented to you allows you to record
and output multimedia content in both the widgets and Qt Quick worlds.

Since testing and debugging are essential parts of software development and should take as
much time as inventing and coding a game, we took a look at these too. First, you saw how
to use qDebug() and how you could redirect its output. In situations where this technique
does not help you spot the error, you saw how elegantly Qt Creator integrates a native
debugger. With Qt Creator, you can easily set and manage break points as well as inspect
the call stack.

At the end, you finally learned how to create unit tests using Qt Test. This way, you can
automatically guarantee that your game will function well. With the knowledge about
debugging and testing, you will be able to create code of exceptional quality.

Index

	Table of Contents
	Miscellaneous and Advanced Concepts
	Internationalization
	Producing translations
	Applying translation
	Time for action – Translating an application
	What just happened?
	Have-a-go hero – Selecting the appropriate language

	Translating user-visible content in QML

	Inter-process communication
	The shared memory
	Time for action – Game engine
	What just happened?

	Time for action – Client application
	What just happened?
	Passing complex data

	Local sockets
	Web sockets

	Multithreading
	Avoiding long operations in the main thread
	Time for action – Creating a background worker thread
	Thread synchronization
	Threading in QML

	Audio and video
	Time for action – Recording audio
	What just happened?
	Have-a-go hero – Making the audio settings fail safe

	Time for action – Playing sound
	Have a go hero – Making a voice chat

	Playing a sound in QML
	What just happened?

	Playlists and loops
	Playing sound effects
	Playing videos in widget-based applications
	Playing videos in QML

	Debugging output
	Using qDebug() and friends
	Time for action – Defining your own message format
	Time for action – Using qDebug() with custom classes
	What just happened?

	Time for action – Redirecting the stream of QDebug
	What just happened?
	Have a go hero – Redirecting the messages to QTextEdit

	Using a debugger
	Time for action – Debugging a sample code block
	What just happened?
	Have a go hero – Familiarizing yourself with the debugger

	Testing
	Testing assertions
	Unit testing with Qt Test
	Time for action – Writing a first unit test
	What just happened?

	Time for action – Writing a real unit test
	Time for action – Running a unit test that uses a data function
	What just happened?

	Useful command-line arguments

	Pop quiz
	Summary

	Index

