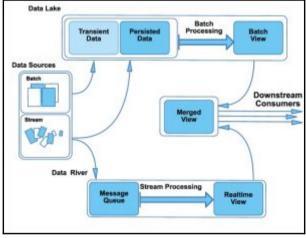
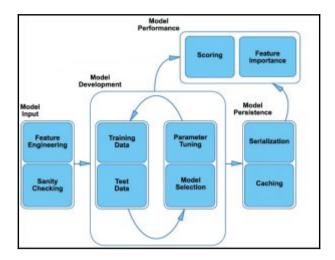
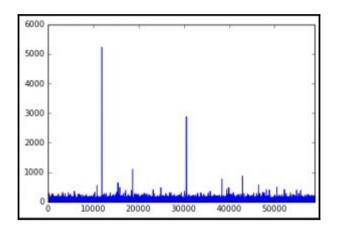

Chapter 1: From Data to Decisions – Getting Started with Analytic Applications





Chapter 2: Exploratory Data Analysis and Visualization in Python

	Unnamed: 0	year	longth	budget	rating	votes	rt
count	58788,00000	\$6798,000000	58788.000000	5.215000e+03	58788.000000	58788.000000	58788.000000
mean	29394.50000	1976.133582	82.337875	1.341251e+07	5.902850	632.130384	7.014382
std	16970.77815	23.735125	44.347717	2.335008e+07	1.553031	3629.621413	10.936759
min	1.00000	1883.000000	1.000000	0.000000e+00	1.000000	5.000000	0.000000
25%	14997.75000	1958.000000	74.000000	2.500000e+05	5.000000	11.000000	0.000000
50%	29394.50000	1983.000000	90,000000	3.000000e+06	6.100000	30.000000	4.500000
75%	44091.25000	1997.000000	100.000000	1.500000e+07	7.000000	112.000000	4.500000
max	58788.00000	2005.000000	5220.0000000	2.000000e+08	10.000000	157908.000000	100.000000


```
Unnamed: 0
                  int64
title
                 object
year
                  int64
length
                  int64
budget
                float64
rating
                float64
votes
                  int64
                float64
r1
r2
                float64
r3
                float64
r4
                float64
r5
                float64
r6
                float64
                float64
r7
r8
                float64
r9
                float64
r10
                float64
праа
                object
Action
                  int64
Animation
                  int64
Comedy
                  int64
Drama
                  int64
Documentary
                  int64
Romance
                  int64
Short
                  int64
dtype: object
```

```
0 1971
1 1939
2 1941
3 1996
4 1975
Name: year, dtype: int64
```

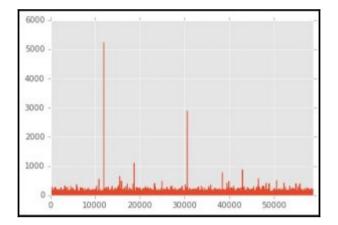
2002	2168
2003	2158
2001	2121
2000	2048
2004	1945
1999	1927
1998	1705
1997	1568
1996	1390
1995	1248
1994	1199
1993	1016
1987	957
1992	948
1989	944
1988	944
1990	899
1991	888
1985	792
1986	792
1984	749

	Year	Oil prices in constant 1997 dollars. 1870-1997
123	1993	17.15
124	1994	18.27
125	1995	19.40
126	1996	20.52
127	Oil prices in constant 1997 dollars, 1870-1997	NeN

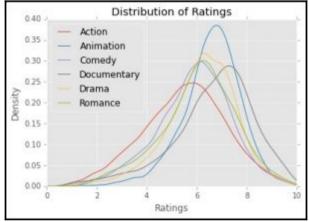
	Unramed: 0	95e	year	length	budget	rating	votes	rt	12	r3	-	19	rto	mpaa	Action	Animation
6	7.	Svende	5005	93	NeN	5.3	200	4.5	0.0	4.5	-	4.5	14.5	R:	1	0
42	43	'R Xmas	2001	83	NaN	4.9	268	14.5	4.5	4.5	-	4.5	4,5	R	0	0
122	123	100 Girts	2000	90	NaN	5.0	3349	4.5	4.5	4.5	-	4.5	4.5	R.	D	D
123	124	100 Mile Rule	2002	98	1100003	6.6	161	4.5	4.5	4.5	-	4.5	14.5	R	D	D
152	153	11:11	2004	95	NaN	6.3	222	14.5	14.5	4.5	_	4.5	14.5	B	0	0

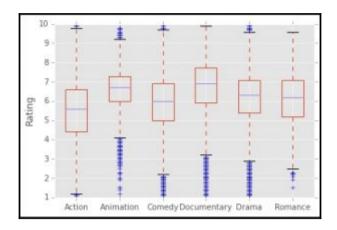
	Year	Oil_Price_1997_Dollars
0	1870-01-01	58.53
1	1871-01-01	49.09
2	1872-01-01	24.68
3	1873-01-01	16.71
4	1874-01-01	19.86

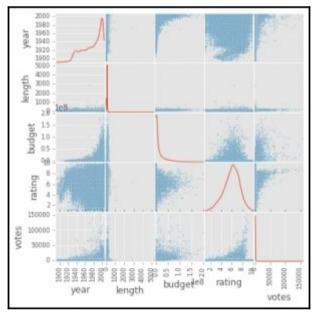
Jupyter	
Film Nursing Clusters	
Currently running Jupyter processes	
Senar-	
There are no terrolises running.	
Palagonia +	
There are no nobificate numbry.	

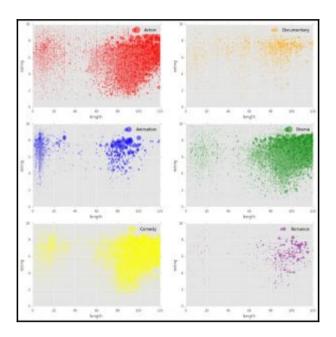

2005	349
2004	1945
2003	2158
2002	2168
2001	2121
2000	2048
1999	1927
1998	1705
1997	1568
1996	1390
1995	1248
1994	1199
1993	1016
1992	948
1991	888
1990	899
1989	944
1988	944
1987	957
1986	792
1985	792
1984	749
1983	698
1982	689

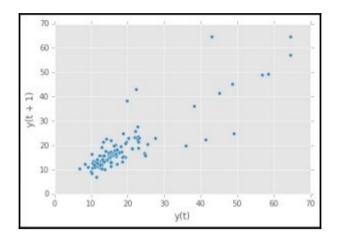
	mean	std
year		
1893	7.000000	NaN
1894	4.888889	0.727056
1895	5.500000	0.624500
1896	5.269231	1.325635
1897	4.677778	0.732765
1898	5.040000	0.950263
1899	4.277778	0.713754
1900	4.731250	1.358783
1901	4.682143	1.081513
1902	4.900000	1.615549
1903	4.808108	1.334662
1904	4.223810	1.291588
1905	5.047059	1.196410
1906	5.676471	1.274034

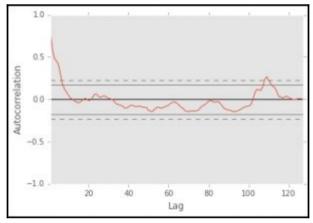

0	Comedy
1	Comedy
2	Animation
3	Comedy
4	Action

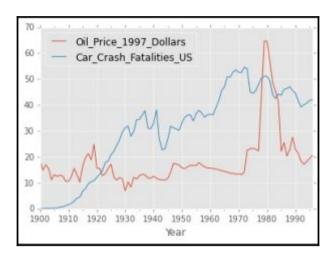

0	yellow
1	yellow
2	blue
3	yellow
4	red

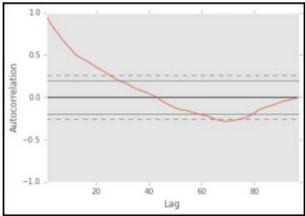

genre	Action	Animation	Comedy	Documentary	Drama	Romance
year						
1893	7.000000	NaN	NaN	NaN	NaN	NaN
1894	5.100000	NaN	NaN	4.720000	NaN	NaN
1895	5.700000	NaN	NaN	5.400000	NaN	NaN
1896	5.875000	NaN	3.900000	5.571429	2.100000	NaN
1897	5.900000	NaN	5.200000	4.300000	NaN	NaN
1898	6.000000	NaN	5.050000	5.500000	3.600000	NaN
1899	4.533333	NaN	3.600000	3.866667	4.850000	NaN

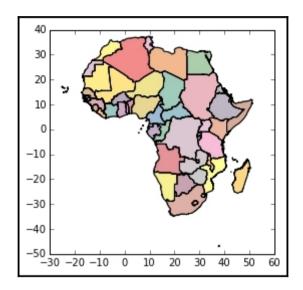


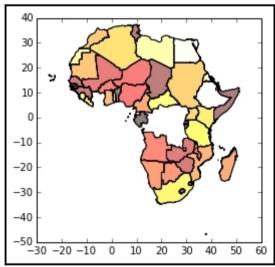











	Year	Car_Crash_Fatalities_US
0	1900-01-01	36
1	1901-01-01	54
2	1902-01-01	79
3	1903-01-01	117
4	1904-01-01	172

	CODE	COUNTRY	ID	geometry
0	ALG	Algeria	1	POLYGON ((-5.7636199999979 25.58624999999302,
1	ANG	Angola	2	POLYGON ((13.36632442474365 -8.32172966003418,
2	ANG	Angola	3	POLYGON ((12.80576000000292 -4.806490000002668
3	ANG	Angola	4	POLYGON ((11.76834011077881 -16.79932975769043
4	ANG	Angola	5	POLYGON ((12.89840030670166 - 5.988018989562988


```
skribri? Jitchtill 1990 SporkSantekt: Norming Spork version 1.5.4
6/85/17 39:58:36 DWD SecurityManager: Changing view only to: (bobook)
36/85/17 39:58:36 DMS Security/Amager: Changing modify acts to: (Nebcook
20/85/17 ZE:36:36 TMTS SecurityManager: SecurityManager: authentication disabled; of acls disabled; users with view permission
s: Set(Shabooch); users with modify permissions: Set(Shaboach)
56/85/17 28:58:36 DMS Sifejingger: Sifejingger started
96/85/17 28:58:56 EMP Resetting: Storting resetting
(6/85/17 da (5) (5) DATE Reporting: Reporting Storted; Tistering on addresses: (Dake txp://sportOrtverffocot/cost: 99257)
56/85/17 28:58:58:58:59 Units: Successfully started service "sportCriver" on part 58037
pireir17 lette:16 Det Sporkier, Registering WorksputTracker
56/85/17 28:58:36 DHS SporkSey: Registering BlockMonagerMaster
16/95/17 28:58:58:586 DMS StatillackHonoger: Created Taxof directory at /private/vor/fisiders/re/g/7_2mis3dd.8ihd56rt6bgrqjxrx6/T/6
lackegr-87783ed-4764-4247-6566-6-241350465
SURBLIT 28:58:56 DRS MesoryStone: MesoryStone started with capacity 544.3 MR.
ifrehriz litrische Info ettyfilleherver: HTTP File server directory is /private/var/folders/en/gf7_beddds.titq6/ritbborgjuns/f/
park-6000117-5700-4001-0050-03600404030110pd-6ec20003-7648-4008-404000011004
10/95/17 (9:59:56 18f9 HttpServer: Starting HTTP Server
30/95/17 (9:59:56 18f9 Server: Setty-6.p.a-SerVetT
30/95/17 (9:58:56 18f9 AbstroctComestor: Sourcet SoutetComestor#6.6.6.6:56038
6/98/17 20:50:36 DSG Stills: Successfully started service "MTP file server" on part SADM.
MARS/17 20:58:36 DWG SporkDay: Registering SutputComitCoordinator
35/85/17 28:58:56 18/9 Server: Setty-8,y.s-SWPSKOT
35/85/17 28:58:56 18/9 AbstractCornector: Storted SelectCharmelCornector99.8.8.8:4848
sirebri? Details in their drile: Successfully started service "Sports!" on port 4040.
55/85/17 28:58:36 D6/6 Secretal: Started Sourcell at http://localiteat.9848
96/85/17 28:58:56 MANN MetricoSystem: Using defailt name DAGScheduler for source because aport.app.id is net set.
5/95/17 28:58:58 58/9 Executiv: Starting executor 35 driver on boot localboot
5/95/17 28:58:58 58/9 Chils: Successfully started cervice 'ong.spacks.spack.setsork.setsoy.RectyEluckTransferService' on pur
```

```
Spark Jobs IT

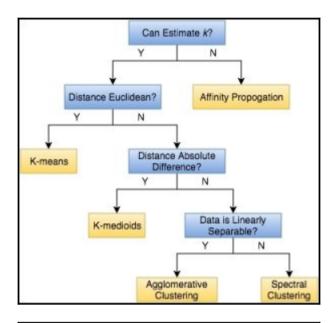
Spark Jobs IT

Taxing General States It Services It
```

$$K(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)}{2\sigma^2}}$$

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

Year object Oil prices in constant 1997 dollars. 1870-1997 float64 dtype: object [7 23:36:25.113 Nontocking) Serving randocks from local directory: Alsen/Subcodo/Orophos/Mastering.Fredoctive.Anal) [7 23:36:25.113 Nontocking] & active kernels [7 23:36:25.113 Nontocking] The Dython Nontock is running at: http://localhost:NBM/ [7 23:36:25.113 Nontocking) The Central-C is simp this server and that date of 1 kernels (mote to take cardination).


Jupyter	
Fine Rurong Clutters	
Select items to perform actions on frem.	Upload New + 2
10.4 *	
D Alexa, Self	
□ D mortes jaco	
□ # Striken , chapteritit, podet (gyrio	
T # 604001_chapact; posett/appt	
# seven coupons constayes	
# Street, proposite, codet ayets	
D whose prepulations tay	
T D movement	
□ D store	

	Unnamed: 0	title	year	length	budget	rating	votes	rt.	r2	r3	-	19	r10	mpaa	Action
0	1	s	1971	121	NeN	6.4	348	4.5	4.5	4.5		4.5	4.5	NaN	0
1	2	\$1000 a Touchdown	1939	71	NaN	6.0	20	0.0	14.5	4,5		4.5	14.5	NaN	0
2	3	821 a Day Once a Month	1941	7	NaN	8.2	5	0.0	0.0	0.0	-	24.5	24.5	NeN	0
а	4.	\$40,000	1996	70	NaN	8.2	6	14.5	0.0	0.0	-	34.5	45.5	NaN	0
4	6	\$50,000 Climax Show, The	1975	71	NaN	3.4	17	24.5	4.5	0.0		0.0	24.5	NaN	0

	Unnamed: 0	title	year	length	budget	rating	vates	ri	r2	13
58773	58774	deadend.com	2002	120	NaN	6.9	53	64.5	4.5	0.0
58774	58775	e-Dreams	2001	94	NaN	6.8	86	4.5	0.0	0.0
58775	58776	eMale	2001	17	NaN	7.3	15	0.0	0.0	0.0
58776	58777	eRATicate	2003	9	NeN	6,0	5	0.0	0.0	0.0
58777	58778	eXXXorcismos	2002	78	NaN	4.2	11	34.5	0.0	0.0
58778	58779	eXistenZ	1999	97	NeN	6.7	14742	4.5	4.5	4.5
58779	58780	t2point8	2002	20	NeN	5.0	13	4.5	0.0	4.5
58780	58781	18	2001	13	NeN	7.6	7	0.0	0.0	0.0
58781	58782	pURe klLLjay	1998	87	NaN	5.2	6	0.0	14.5	14.5
58782	58783	siDney	2002	15	NaN	7.0	8	14.5	0.0	0.0
58783	58784	tom thumb	1958	98	NaN	6.5	274	4.5	4.5	4.5
58784	58785	www.XXX.com	2003	105	NaN	1.1	12	45.5	0.0	0.0
58785	58786	www.hellssoapopera.com	1999	100	NaN	6.6	5	24.5	0.0	24.5

Chapter 3: Finding Patterns in the Noise – Clustering and Unsupervised Learning

$$r(i,k) = s(i,k) - \max_{k' \neq k} \left\{ a(i,k') + s(i,k') \right\}$$

$$a(i,k) = \min \left(0, r(k,k) + \sum_{i' \in \{i,k\}} \max(0, r(i',k))\right)$$

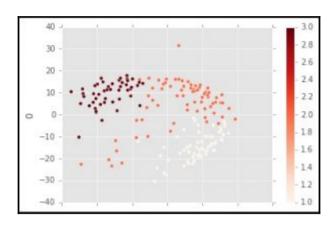
$$a(k,k) = \sum_{i' \notin \{i,k\}} \max(0,r(i',k))$$

$$e^{-\gamma D(x_i,x_j)^2}$$

$$L = I - D^{1/2} K D^{1/2}$$

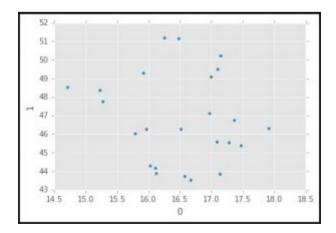
$$D_{ii} = \sum_{j=1}^{n} K_{ij}$$

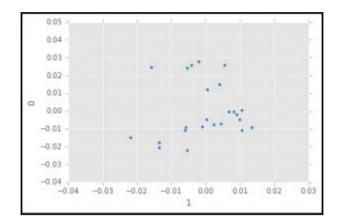
$$Av = \lambda v$$

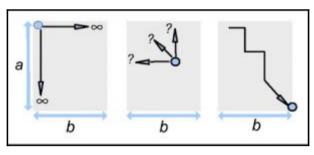

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

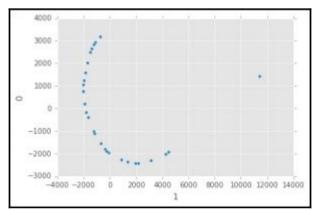
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

	Class	Alcohol	Malic	Ash	Alcelinity	Magnesium	Total	Flavanoids
count	178.000000	178.000000	178.000000	178,000000	178.000000	178.000000	178.000000	178.000000
mean	1.938202	13.000818	2.336348	2.366517	19,494944	99.741573	2.295112	2.029270
std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998899
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000
25%	1.0000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000
76%	3.0000000	13.677500	3.062500	2.567500	21,500000	107.000000	2.800000	2.875000
max	3.0000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000

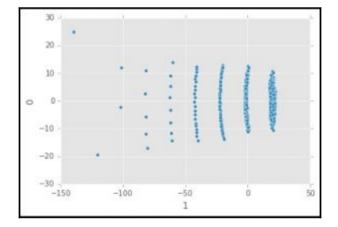

	Alcohol	Malic	Ash	Alcolinity	Magnesium	Total	Flevenoids
count	1.780000e+02	1.7800000+02	1.780000e+02	1.780000e+02	1.7800006+02	178.000000	1.780000e+02
mean	-0.382806e-16	-1.197544e-16	-8.370303e-16	-3.991813e-17	-3.991813e-17	0.000000	-1.991813e-16
etd	1.002821e+00	1.002821e+00	1.002821e+00	1,002821e+00	1.002821e+00	1,002821	1.002821e+00
min	-2.434235e+00	-1.432983e+00	-3.679162++00	-2.671018e+00	-2.088255++00	-2.107246	-1.695971e+00
25%	-7.882448e-01	-6.587486e-01	-5.721225e-01	-6.891372e-01	-8.244151e-01	-0.885468	-8.275393e-01
50%	6.099966e-02	-4.201120e-01	-2.362132e-02	1.518295e-03	-1.222017e-01	0.095960	1.061497e-01
75%	8.361286e-01	6.697929e-01	6.961065e-01	6.020983e-01	5.096384e-01	0.808997	8.490651e-01
mex.	2.258772e+00	3.109192e+00	3.156325e+00	3.154511e+00	4.3713726+00	2.539515	3.062632e+00

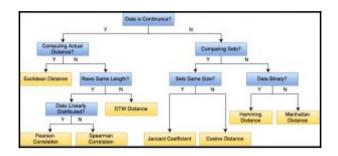

$$D(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

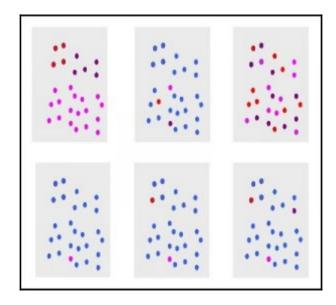


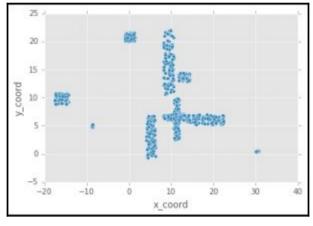

	quarter	stock	date	open	high	low	close	volume	percent_change_price
0	1	AA	1/7/2011	\$15.82	\$16.72	\$15.78	\$16.42	239655616	3.79267
1	1	AA	1/14/2011	\$16.71	\$16.71	\$15.64	\$15.97	242963398	-4.42849
2	1	AA	1/21/2011	\$16.19	\$16.38	\$15.60	\$15.79	138428496	-2.47066
3	1	AA	1/28/2011	\$15.87	\$16.63	\$15.82	\$16.13	151379173	1.63831
4	1	AA	2/4/2011	\$16.18	\$17.39	\$16.18	\$17.14	154387761	5.93325

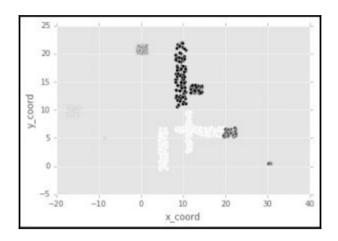
date	stock	2011-01-07 00:00:00	2011-01-14 00:00:00	2011-01-21 00:00:00	2011-01-26 00:00:00	2011-02-04 00:00:00	2011-02-11 00:00:00	2011-02-18 00:00:00	2011-02-25 00:00:00	2011-0
0	M	16.42	15.97	15.79	16.13	17.14	17.37	17.28	16.68	16.58
1	AXP.	44.36	46.25	46.00	43.86	43.82	46.75	45.53	43.53	43.72
2	BA	60,00	70.07	71.68	69.23	71.38	72.14	73.04	72.30	71.80
3	BAC	14.25	15.25	14.25	13.50	14.29	14.77	14.75	14.20	14.12
4	CAF	93.73	94.01	92.75	95.68	99.59	103.54	105.86	102.00	103.04

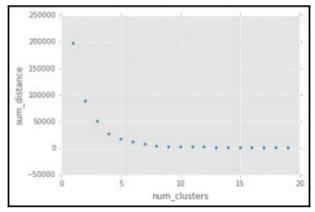


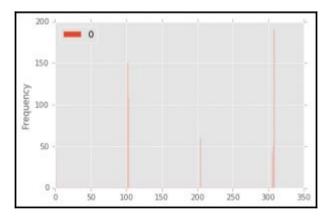

$$P(a,b) = \frac{Cov(a,b)}{\sigma(a)\sigma(b)} = \frac{\frac{1}{n}\sum_{i=1}^{n}(a_i - \mu(a))(b_i - \mu(b))}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(a_i - \mu(a))^2}\sqrt{\frac{1}{n}\sum_{i=1}^{n}(b_i - \mu(b))^2}}$$

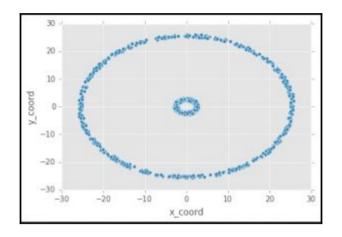

П	title	authors	groups	keywords	topics	abstract
0	Kemelized Beyesien Transfer Learning	Mehmet Gönen and Adam A. Margolin	Novel Machine Learning Algorithms (NWLA)	cross-domain learning/ndomain adaptation/inkers	APP: Blomedical / Bioinformatics/vNMLA: Bayesi	Transfer learning considers related but distin
1	"Source Free" Transfer Learning for Text Class	Zhongoi Lu. Yin Zhu, Sinno Pan, Exan Xiang, Yu	All and the Web (AlW) inhlovel Machine Learning A	Transfer Learning/nAunitary Data Retrieval/nT	Alle: Knowledge socialition from the web/nAIW:	Transfer learning uses relevant succlary data
2	A Generalization of Probabilistic Serial to Re	Haris Aziz and Paul Stursburg	Game Theory and Economic Paradigms (STEP)	social choice theory/nucling/infair division/ns	GTEP: Game Theory/nGTEP: Social Choice / Voting	The probabilistic serial (PS) rule is one of t

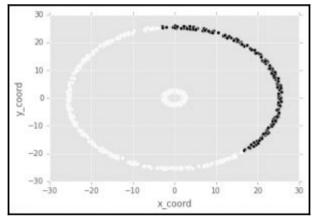

	keyword_422	keyword_1174	keyword_640	keyword_1287	keyword_312	keyword_378	keyword_826	keyword 9
0	0	D	D	D	D	D	D	D
1	0	D	D	D	D	D	D	D
2	0	D	D	D	D	D	D	D
3	0	0	0	0	0	D	0	D
4	0	0	0	0	0	0	0	0

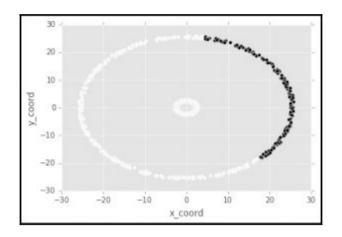

$$\rho(a,b) = \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$



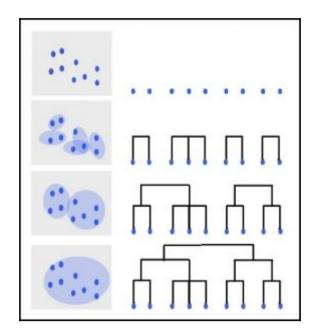


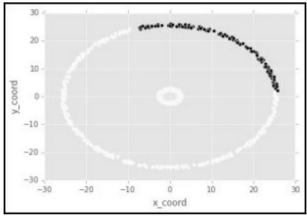


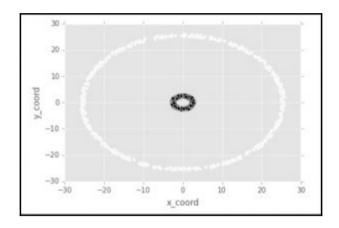




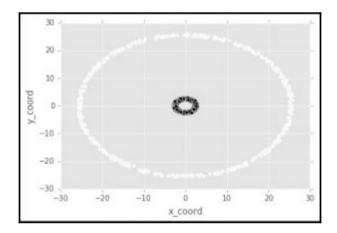
$$J(a,b) = \frac{\|a \cap b\|}{\|a \cap b\|}$$


$$Cos(a,b) = \frac{a\sum b}{\|a\| \|b\|}$$


$$||a|| = \sqrt{\sum_{i=1}^n a_i^2}$$

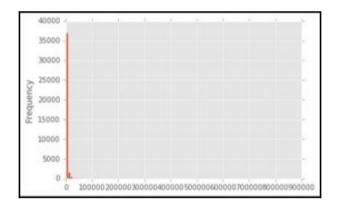

$$a\sum b = \sum_{i=1}^{n} a_i b_i$$

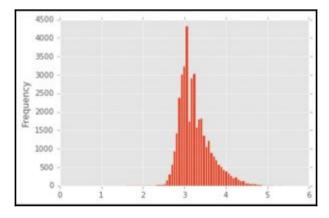
$$H(a,b) = \sum_{i=1}^{n} 1if \ a_i = b_i \ else \ 0$$


$$M(a,b) = \sum_{i=1}^{n} |a_i - b_i|$$

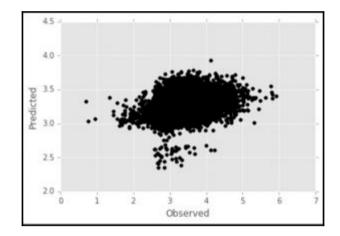
$$SSE = \sum_{i=1}^{n} D(x_i, c_i)^2$$

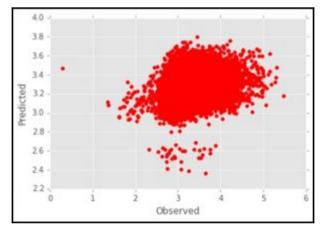
Chapter 4: Connecting the Dots with Models – Regression Methods


$$VR(L, R) = \frac{1}{|A^2|} \sum_{i \in L} \sum_{j \in L} \frac{1}{2} (y_i - y_j)^2 - \left(\frac{1}{|L^2|} \sum_{i \in L} \sum_{j \in L} \frac{1}{2} (y_i - y_j)^2 + \frac{1}{|R^2|} \sum_{i \in R} \sum_{j \in R} \frac{1}{2} (y_i - y_j)^2 \right)$$

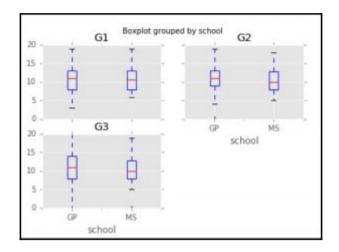

$$IG(L,R) = -\sum_{k=1}^{K} f_{A_k} \log_2 f_{A_k} - \left(-\alpha \sum_{k=1}^{K} f_{I_k} \log_2 f_{I_k} + (1-\alpha) \sum_{k=1}^{K} f_{R_k} \log_2 f_R\right)$$

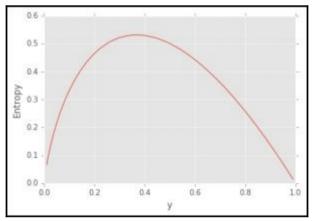
$$GI(L,R) = 1 - \left(\alpha \sum_{k=1}^{K} f_{I_k}^2 + (1-\alpha) \sum_{k=1}^{K} f_{R_k}^2\right)$$

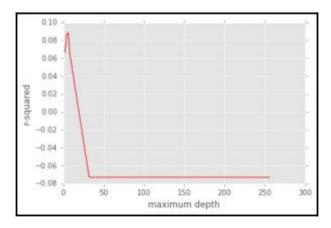

$$GI(L,R) = 1 - \left(\alpha \sum_{k=1}^{K} f_{L_k}^2 + (1-\alpha) \sum_{k=1}^{K} f_{R_k}^2\right)$$

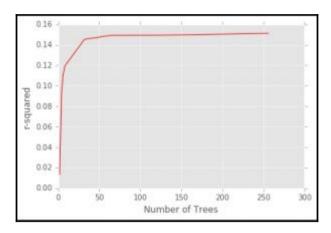

	timedelta	n_tokens_title	n_takens_content	n_unique_tokens	n_non_stop_words	n_non_stop_unique_tok
count	39644.000000	39644.000000	39544.000000	39644.000000	39644.000000	39644.000000
mean	364,630471	10.396749	545.514731	0.548216	0.996499	0.689175
etd	214.163767	2.114097	471.107909	3.520708	5.231231	3.264916
min	0.000000	2.000000	0.000000	0.990000	0.000000	0.000000
25%	164.000000	9.0000000	246.000000	0.470870	1.000000	0.625739
50%	339.000000	10.000000	409.000000	0.639026	1.000000	0.690476
75%	542.000000	12.000000	716.000000	0.909696	1.000000	0.754630
max	731.000000	23.000000	8474.000000	701.000000	1042.000000	650.00000D

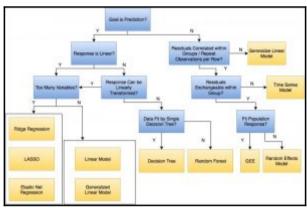
	timedelta	n, tokens, life	n_tokers_content	rs_umique_tokens	n_non_stop_words	n_mon_stop_unique_tokens	num, hrefs
count	39644.000000	39644.000000	29644.000000	29044.000000	29644.000000	39944.000000	38644.080808
Terr	0.631735	4.011212	1.942389	0.072968	E 110885	0.086468	0.279160
atd	8.050046	0.017701	6.109187	0.016811	6.019587	0.017908	0.085/95
min	0.290976	4.169416	0.000000	0.000000	1.000000	0.000000	0.000000
25%	9.507516	6.001000	8.538545	0.067265	B.114287	0.080108	0.200166
50%	0.547967	0.309027	1.567642	0.074961	0.114287	0.089202	0.290878
76%	0.572287	0.505005	0.586083	0.081518	B.114287	0.094868	0.337577
max.	0.587095	4.079616	5.4909083	0.585047	5 8040H	0.681300	0.542118






Dep. Variable:	shares	R-squared:	0.123
Model:	OLS	Adj. R-squared:	0.121
Method:	Least Squares	F-statistic:	98.80
Date:	Mon, 21 Mar 2016	Prob (F-statistic):	0.00
Time:	00:03:53	Log-Likelihood:	-17704.
No. Observations:	39644	AIC:	3.552e+04
Df Residuals:	39587	BIC:	3.601e+04
Df Model:	56		
Covariance Type:	nonrobust	1	


	coef	std err	t	P> t	[95.0% Conf. Int.]
timedelta	0.0142	0.006	2.322	0.020	0.002 0.026
n_tokens_title	0.0640	0.024	2.626	0.009	0.016 0.112
n_tokens_content	-0.0897	0.020	-4.451	0.000	-0.129 -0.050
n_unique_tokens	-1.3315	0.320	-4.164	0.000	-1.958 -0.705
n_non_stop_words	0.8054	0.215	3.740	0.000	0.383 1.228
n_non_stop_unique_tokens	0.5612	0.233	2.411	0.016	0.105 1.017
num_hrefs	0.0973	0.008	11.474	0.000	0.081 0.114
num_self_hrefs	-0.1083	0.011	-9.649	0.000	-0.130 -0.086
num_imgs	0.0487	0.006	7.981	0.000	0.037 0.061
num_videos	0.0667	0.008	8.620	0.000	0.052 0.082
average_token_length	-0.2459	0.103	-2.390	0.017	-0.448 -0.044
num_keywords	0.1209	0.024	5.130	0.000	0.075 0.167
data_channel_is_lifestyle	-0.0592	0.013	-4.545	0.000	-0.085 -0.034
data_channel_is_entertainment	-0.1166	0.008	-14.059	0.000	-0.133 -0.100


Omnibus:	7432.190	Durbin-Watson:	1.940
Prob(Omnibus):	0.000	Jarque-Bera (JB):	19103.164
Skew:	1.030	Prob(JB):	0.00
Kurtosis:	5.705	Cond. No.	3.16e+03

$$I = (X^*X)A$$

$$L(\beta) = \sum_{i=1}^{n} (y - X\beta)^2$$

$$R^2 = \left(\frac{Corr(prodicted, observed)}{Var(prodicted)Var(observed)}\right)^2$$

$$R_{id}^2 = R^2 - \left(\frac{p}{n - p - 1}\right)(1 - R^2)$$

$$L(\beta) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \int_{0}^{0} \frac{(y_i - x_i\beta) - \mu^2}{2\sigma^2}$$

$$log(L(\beta)) = \frac{1}{\sigma\sqrt{2\pi}} \sum_{i=1}^{n} \frac{(y_i - x_i\beta) - \mu^2}{2\sigma^2}$$

$$2m - 2ln(L(\beta))$$

$$-2L(\beta) + w ln(\alpha)$$

$$y = x\beta$$

$$U(\beta) = \sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta_n} V_i^{-1}(y_i - \mu_i(\beta))$$

$$y = X\beta + \varepsilon$$

$$y = X\beta + 2u + \varepsilon$$

$$y = X\beta + 2u + \varepsilon$$

$$y = K\beta + 2u + \varepsilon$$

$$y = K\beta + 2u + \varepsilon$$

$$y = H_i x_i + y_i$$

$$U(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \alpha \sum_{i=1}^{n} \beta_i^2$$

$$L(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \alpha \sum_{i=1}^{n} \beta_i^2$$

$$L(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \alpha \sum_{i=1}^{n} \beta_i^2$$

$$L(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \alpha \sum_{i=1}^{n} \beta_i^2$$

$$y = X\beta$$

$$X^{T} y = X^{T} X\beta$$

$$\beta = \frac{X^{T} y}{\left(X^{T} X\right)^{-1}}$$

$$I = (X^T X)A$$

$$L(\beta) = \sum_{i=1}^{n} (y - \hat{y})^{2} = \sum_{i=1}^{n} (y - X\beta)^{2}$$

$$y = X\beta$$

$$\sum_{i=1}^{n} (y - X\beta)^2$$

$$R^{2} = \left(\frac{Cov(predicted, observed)}{Var(predicted)Var(observed)}\right)^{2}$$

$$R_{adj}^2 = R^2 - \left(\frac{p}{n-p-1}\right)(1-R^2)$$

$$L(\beta) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{\left((y_i - x_i \beta) - \mu\right)^2}{2\sigma^2}}$$

$$Log(L(\beta)) = \frac{1}{\sigma\sqrt{2\pi}} \sum_{i=1}^{n} \frac{\left(\left(y_{i} - x_{i}\beta\right) - \mu\right)^{2}}{2\sigma^{2}}$$

$$2m-2\ln(L(\beta))$$

$$-2L(\beta)+m\ln(n)$$

$$\frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

$$U(\beta) = \sum_{k=1}^{K} \frac{\partial \mu_{k}}{\partial \beta} V_{k}^{-1} (Y_{k} - \mu_{k} (\beta))$$

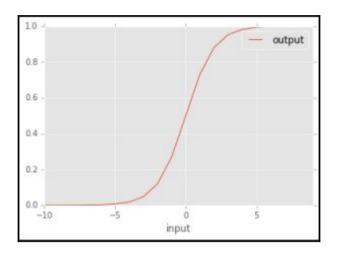
$$y = X\beta + \varepsilon$$

$$y = X\beta + Zu + \varepsilon$$

$$x_{t} = F_{t} x_{t-1} + \beta_{t} u_{t} + w_{t}$$

$$y_{t} = H_{t} x_{t} + v_{t}$$

$$y = X\beta + \varepsilon$$

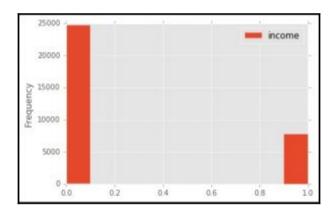

$$G(Y) = X\beta + \varepsilon$$

$$L(\beta) = \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \alpha \sum_{j=1}^{m} \beta_j^2$$

$$L(\beta) = \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \alpha \sum_{j=1}^{m} |\beta_j|$$

$$L(\beta) = \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \alpha_1 \sum_{j=1}^{m} \beta_j^2 + \alpha_2 \sum_{i=1}^{n} |\beta|$$

Chapter 5: Putting Data in its Place – Classification Methods and Analysis


$$Y = 1 - logistic(z) = 1 - \frac{1}{1 + e^{(-z)}} = \frac{1 + e^{(-z)}}{1 + e^{(-z)}} - \frac{1}{1 + e^{(-z)}} = \frac{e^{(-z)}}{1 + e^{(-z)}}$$

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \log\left(\frac{\frac{1}{1+e^{(-z)}}}{\frac{e^{(-z)}}{1+e^{(-z)}}}\right) = \log(1) - \log(e^{(-z)}) = X\beta^{T}$$

$$e^{logis(z)} = \frac{logisitic(z)}{1 - logisitic(z)} = \frac{\frac{1}{1 + e^{(-z)}}}{\frac{e^{(-z)}}{1 + e^{(-z)}}} = \frac{1}{e^{(-z)}} = e^{(z)} = e^{(x\beta^T)}$$

$$P(y_i = k) = \frac{e^{\left(x_i \beta_k^T\right)}}{\sum_{j=1}^K e^{\left(x_i \beta_j^T\right)}}$$

		m.head()													
	0	1	2	3	4	6	6	7	8	9	10	11	12	13	14
D	39	State-gov	77516	Bachelors	13	Nover- mored	Adm-clerical	Not-in- turnity	White	Male	2174	a	40	United- States	<
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- chr-spouse	Exec-managerial	Husband	White	Male	0	a	13	United- States	44
2	38	Private	215646	HS-grad	٠	Divorped	Horefors- cleaners	Not-in- turnity	White	Male	ø	a	40	United- States	4
3	53	Private	234721	1189	7	Married- cly-spouse	Hunclers- cleaners	Husband	Black	Male.	0	a	40	United- States	4-
4	26	Private	338409	Bachelors	13	Married- civ-spouse	Prof-specialty	Who	Black	Formale	0	a	40	Cuba	4

$$P(y_i = 1) = \frac{1}{1 + e^{(-z)}} = F(z_i)$$

$$P(y_i = 0) = \frac{e^{(-z)}}{1 + e^{(-z)}} = 1 - F(z_i)$$

$$L(y_i) = (F(z_i))^{y_i} (1 - F(z_i))^{1-y_i}$$

$$L(Y) = \sum_{i=1}^{n} (y_i \log(F(z_i)) + (1 - y_i) \log(1 - F(z_i)))$$

$$\begin{split} &\frac{\partial}{\partial \beta} \log \left(L(y_i) \right) = \frac{\partial}{\partial \beta} \left(y_i \log \left(F(z_i) \right) + \left(1 - y_i \right) \log \left(1 - F(z_i) \right) \right) = 0 \\ &= \frac{y_i}{F(z_i)} F'(z_i) + \frac{\left(1 - y_i \right)}{\left(1 - F(z_i) \right)} F'(z_i) \\ &= \left(\frac{y_i}{F(z_i)} - \frac{\left(1 - y_i \right)}{\left(1 - F(z_i) \right)} \right) F'(z_i) \\ &= \left(\frac{y_i}{F(z_i)} - \frac{\left(1 - y_i \right)}{\left(1 - F(z_i) \right)} \right) \left(\frac{1}{1 + e^{\left[- y_i \beta^i \right]}} \right) \left(\frac{e^{\left[- y_i \beta^i \right]}}{1 + e^{\left[- y_i \beta^i \right]}} \right) \left(- x_i \right) \\ &= \left(\frac{y_i}{1 + e^{\left[- y_i \beta^i \right]}} - \frac{\left(1 - y_i \right)}{1 + e^{\left[- y_i \beta^i \right]}} \right) \left(\frac{1}{1 + e^{\left[- y_i \beta^i \right]}} \right) \left(- x_i \right) \\ &= \left(y_i \left(\frac{e^{\left[- y_i \beta^i \right]}}{1 + e^{\left[- y_i \beta^i \right]}} \right) - \left(1 - y_i \right) \left(\frac{1}{1 + e^{\left[- y_i \beta^i \right]}} \right) \right) \left(- x_i \right) \\ &= \left(\frac{y_i}{1 + e^{\left[- y_i \beta^i \right]}} - \left(\frac{1}{1 + e^{\left[- y_i \beta^i \right]}} \right) \right) \left(- x_i \right) \\ &= - \left(y_i - F(z_i) \right) x_i \end{split}$$

$$\beta_{t} = \beta_{t-1} + \alpha (y_{i} - F(z_{i})) x_{i}$$

$$\frac{1}{2}\lambda\beta\beta^T$$

$$\beta_{t} = \beta_{t-1} + \alpha \left(y_{i} - F\left(z_{i} \right) \right) x_{i} - \lambda \beta_{t-1}$$

$$f\left(x^{*}\right) = f\left(x_{t} + \Delta x\right)$$

$$f(x^*) = f(x_t) + f'(x_t) \Delta x + \frac{1}{2} f''(x_t) (\Delta x)^2$$

$$\frac{df(x^*)}{d\Delta x} = f'(x) + 2\left(\frac{1}{2}\right)f''(x)(\Delta x) = 0$$
$$-f'(x) = f''(x)(\Delta x)$$
$$\Delta x = -\frac{f'(x)}{f''(x)}$$

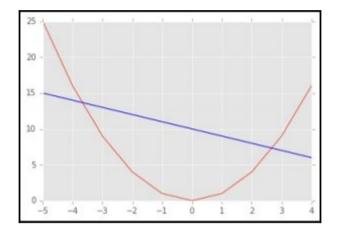
$$(y_i - F(z_i))x_i - \lambda \beta_t$$

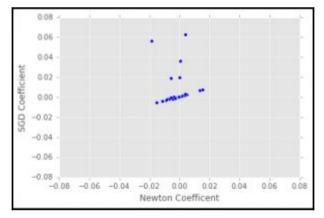
$$\frac{\partial L(y_i)}{\partial \beta \partial \beta^T} = \frac{\partial}{\partial \beta} \left(\frac{\partial L(y_i)}{\beta^T} \right)$$

$$= \frac{\partial}{\partial \beta} \left(-(y_i - F(z_i)) x_i - \lambda \beta \right)$$

$$= \frac{\partial F(z_i) x_i}{\partial \beta} - \lambda = -\frac{\partial}{\partial \beta} \left(\frac{1}{1 + e^{(-x_i \beta^T)}} \right) x_i - \lambda$$

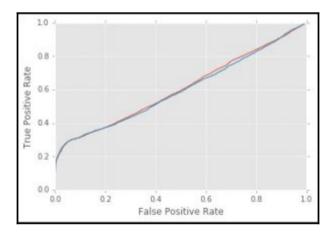
$$= \left(\frac{1}{1 + e^{(-x_i \beta^T)}} \right) \left(\frac{e^{(-x_i \beta^T)}}{1 + e^{(-x_i \beta^T)}} \right) (x_i) (x_i)^T - \lambda$$


$$= (x_i) F(z_i) (1 - F(z_i)) (x_i)^T - \lambda$$


$$-\sum_{i=1}^{n} x_{i} \left(y_{i} - F\left(z_{i} \right) \right) - \lambda \beta$$

$$= (X)^{T} F(Z)(1-F(Z))(X)-I\lambda$$
$$= X^{T}AX-I\lambda$$

$$\beta_{t} = \beta_{t-1} + \left(X^{T}AX - I\lambda\right)^{-1} \left(\sum_{i=1}^{n} x_{i} \left(y_{i} - F\left(z_{i}\right)\right) - \lambda \beta_{t}\right)$$


$$F(\alpha x_1 + (1-\alpha)x_2) \le \alpha F(x_1) + (1-\alpha)F(x_2)$$

$$F_{1} = 2 \frac{(precision)(recall)}{(precision + recall)}$$

$$MCC = \frac{TPxTN - FPxFN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

$$F(X) = X\beta^T + b$$

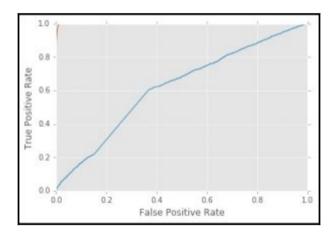
$$L(\beta, w, \alpha) = \frac{1}{2} \|B\|^2 - \sum_{i=1}^{n} \alpha_i \left(y_i \left(x_i \beta^T + b \right) - 1 \right)$$

$$\|\beta\| = \sqrt{\beta_1^2 + \beta_2^2 + \ldots + \beta_m^2}$$

$$\frac{\partial L}{\partial \beta} = \beta - \sum_{i=1}^{n} \alpha_i y_i x_i = 0$$
$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i$$

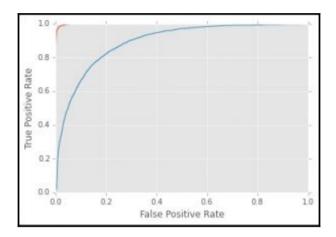
$$\frac{\partial L}{\partial b} = \sum_{i=1}^{n} \alpha_i y_i = 0$$

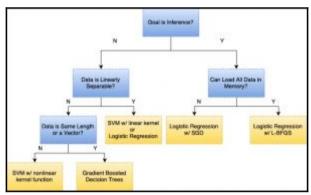
$$L(\beta, w, \alpha) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i x_j - \sum_{i=1}^{n} \alpha_i \left(y_i x_i \left(\sum_{i=1}^{n} \alpha_i y_i x \right) - 1 \right)$$


$$= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i x_j$$

$$\max(0,1-y_i(x_i\beta+b_i))$$

$$<\varphi(x_i),\varphi(x_j)>$$


$$K\left(x_{i}, x_{j}\right) = e^{\frac{-\left\|x_{i} - x_{j}\right\|^{2}}{2\gamma^{2}}}$$


$$e^{\frac{-|x_i-x_j|^2}{2\gamma^2}} = e^{\frac{1}{2\gamma^2}(-x_i)^2(-x_j)^2} e^{2(x_ix_j)} = e^{\frac{1}{2\gamma^2}(-x_j)^2(-x_j)^2} \sum_{k=0}^{\infty} \frac{2^k x_i^k x_j^k}{k!}$$

$$\gamma_{t} = \frac{\arg\min}{\gamma} \sum_{i=1}^{n} L(y_{i}, F_{t-1}(x_{i}) + h_{t}(x_{i}))$$

$$F_{t} = F_{t-1}(X) + \alpha \gamma_{t} h_{t}(X)$$

$$r_i = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

$$Y = X\beta^T$$

$$Y = logistic(X\beta^{T})$$

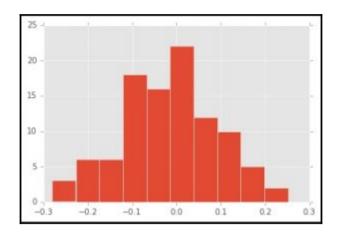
$$logistic(X\beta^T) = logistic(z) = \frac{1}{1 + e^{(-z)}}$$

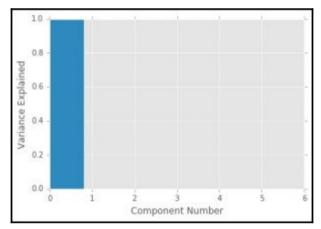
Chapter 6: Words and Pixels – Working with Unstructured Data

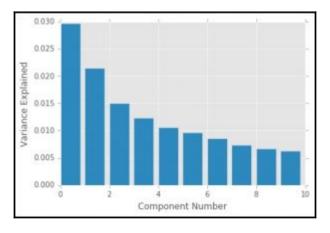
$$W \leftarrow W \frac{X^T H}{W H^T H}$$

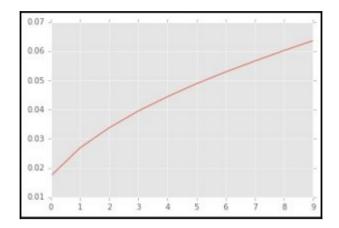
$$H \leftarrow H \frac{HX^T}{HH^T W^T}$$

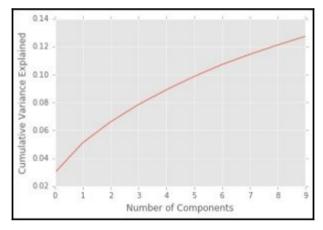
$$\frac{1}{B(\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}$$

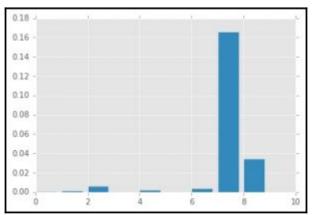

$$p = ui$$

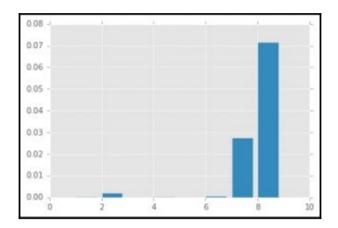

	label	text	
0	ham	Go until jurong point, crazy Available only	
1	ham	Ok lar Joking wif u oni	
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	
3	ham	am U dun say so early hor U c already then say.	
4	ham	Nah I don't think he goes to usf, he lives aro	

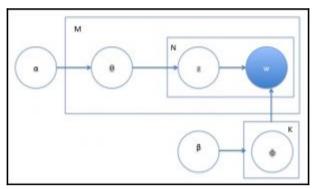

	label	text
0	ham	go until jurong point, crazy available only
1	ham	ok lar joking wif u oni
2	spam	free entry in 2 a wkly comp to win fa cup fina
3	ham	u dun say so early hor u c already then say
4	ham	nah i don't think he goes to usf, he lives aro

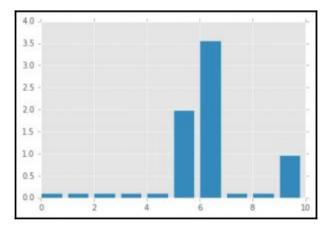

	label	text	
0	ham	go jurong point , crazy avail bugi n grea	
1	ham	ok lar joke wif u oni	
2	spam	free entri 2 wkli comp win fa cup final tkt.	
3	ham	u dun say earli hor u c alreadi say	
4	ham	n nah n't think goe usf , live around though	

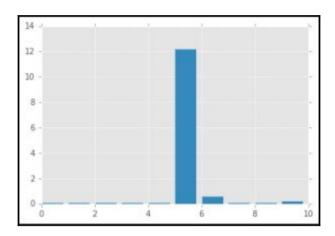

	label	text	
0	ham	go jurong point , crazy avail bugi n grea	
1	ham	ok lar joke wif u oni	
2	spam	free entri 2 wkli comp win fa cup final tkt	
3	ham	u dun say earli hor u c alreadi say	
4	ham	nah n't think goe usf , live around though	

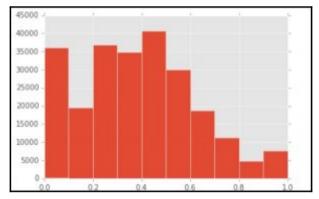


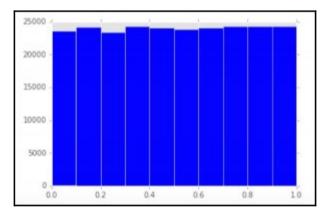


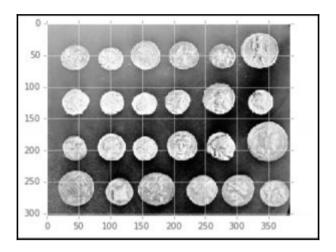


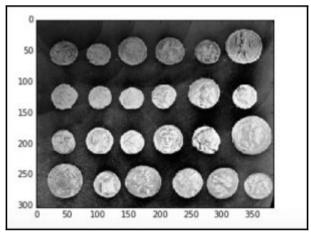


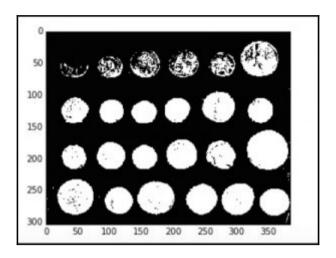


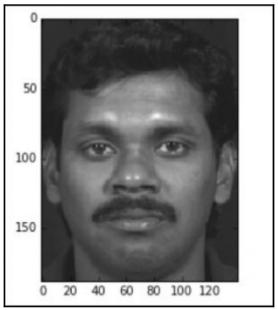


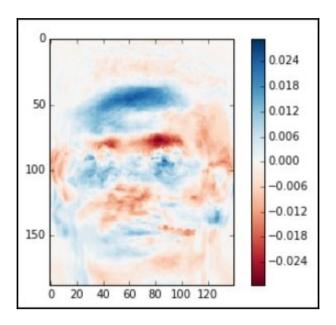


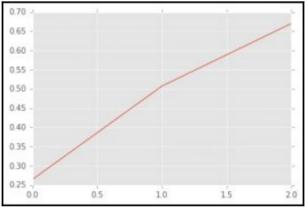


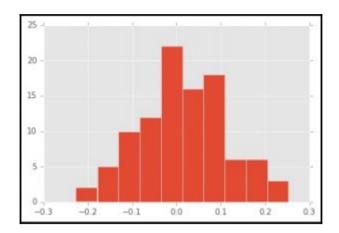


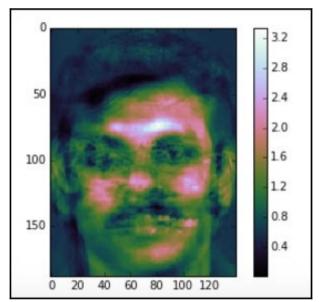










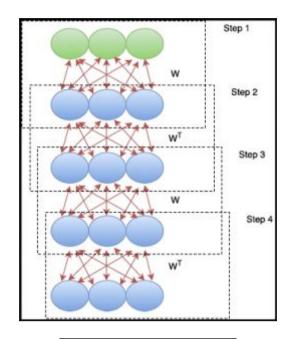


$$tf - idf\left(t_{i}, d_{j}\right) = \frac{\sum_{k=1}^{V_{j}} 1_{t_{i} = v_{k}}}{\sum_{j=1}^{D} 1_{t_{i} \in V_{j}}}$$

$$Cov(x_i, x_j) = \frac{1}{n} \sum_{i,j=1}^{n} (x_i - \mu_i)(x_j - \mu_j)$$

$$X^T X = W^T \sigma W$$

$$X = CUR$$


$$lv_j = \frac{1}{k} \sum_{i=1}^{k} (v_j^i)^2$$

$$X = WH$$

$$\|X - WH\|_F^2 = (X - WH)(X - WH)^T$$

$$\frac{\partial}{\partial W} (X - WH)(X - WH)^T \approx -X^T H + WH^T H = \frac{X^T H}{WH^T H}$$

Chapter 7: Learning from the Bottom Up – Deep Networks and Unsupervised Features

$$F(x) = \begin{cases} \frac{1if \ wx > b}{0 \ otherwise} \end{cases}$$

$$\Delta w = \alpha \left(y_i - F\left(x_i \right) \right) x_i$$

$$\frac{1}{n}\sum_{i=1}^{n}\left|y_{i}-F\left(x_{i}\right)\right|$$

$$F(z) = \frac{1}{1 + e^{(-wx+b)}} = \frac{1}{1 + e^{(-z)}}$$

$$E(x_i) = \frac{1}{2} (F(z_i) - y_i)^2$$

$$F(x) = e^{x^2}$$

$$\frac{\partial F}{\partial x} = \frac{\partial F \partial z}{\partial z \partial x}$$

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial F(z)_{i}} \frac{\partial F(z)_{i}}{z} \frac{\partial z}{\partial w_{ij}}$$

$$\frac{\partial E}{\partial F(z)_i} = 2\frac{1}{2} (F(z)_i - y)(1) = F(z)_i - y$$

$$\frac{\partial F(z)_{i}}{z} = \frac{(0)(1+e^{-z})-(1)(-e^{-z})}{(1+e^{-z})^{2}} = \frac{1}{(1+e^{-z})} \frac{1-1+e^{-z}}{(1+e^{-z})} = F(z)_{i}(1-F(z)_{i})$$

$$\frac{\partial z}{\partial w_{ij}} = F(z)_{j}$$

$$w_{ij-new} = w_{ij-old} - \alpha \frac{\partial E}{\partial w_{ij}}$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial F(z)_{j}} \frac{\partial F(z)_{j}}{z} \frac{\partial z}{\partial w_{jk}}$$

$$\frac{\partial E}{\partial F(z)_{j}} = \sum_{i=1}^{n} \left(\frac{\partial E}{\partial z} \frac{\partial z}{\partial F(z)_{i}} \right) = \sum_{i=1}^{n} \left(\frac{\partial E}{\partial F(z)_{i}} \frac{\partial F(z)_{i}}{\partial z} w_{ij} \right)$$

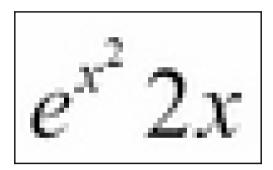
$$\frac{\partial z}{\partial w_{jk}} = x_k$$

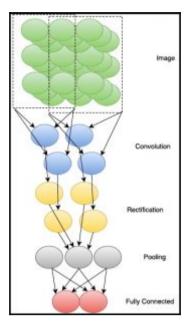
$$\frac{\partial z}{\partial w_{jk}} = \frac{\partial E}{\partial F(z)_{j}} \frac{\partial F(z)_{j}}{z} \frac{\partial z}{\partial w_{jk}}$$

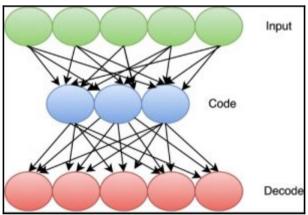
$$= \left(\sum_{i=1}^{n} \frac{\partial E}{\partial F(z)_{i}} \frac{\partial F(z)_{i}}{\partial z} w_{ij}\right) F(z)_{j} (1 - F(z)_{j}) x_{k}$$

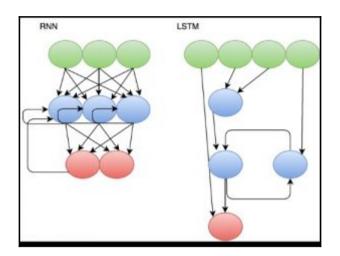
$$F(z) = max(z,0)$$

$$\frac{\partial F(z)}{\partial z} = \left\{ \frac{1if \ z > 0}{else \ 0} \right\}$$

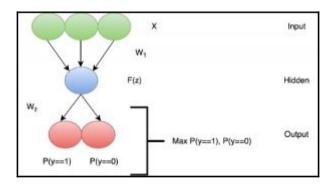

$$F(z) = max(z, \alpha z)$$
$$\frac{\partial F(z)}{\partial z} = \begin{cases} \frac{1 \text{ if } z > 0}{\text{else } \alpha} \end{cases}$$

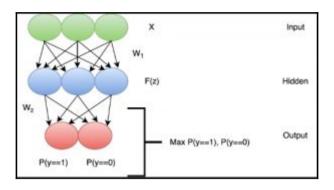

$$\tanh\left(x\right) = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

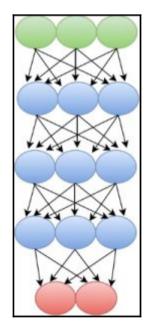

$$w_{t} = w_{t-1} - \frac{\alpha}{\sqrt{G_{t} + \varepsilon}} \frac{\partial E}{\partial w}$$

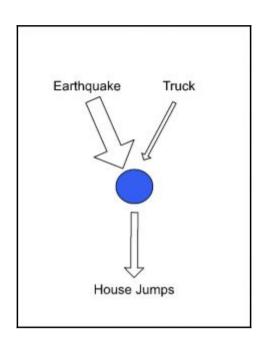

$$\frac{1}{T} \left(\frac{\partial E}{\partial w} \right)_{t}^{2} = \gamma \frac{1}{T} \left(\frac{\partial E}{\partial w} \right)_{t-1}^{2} + \left(1 - \gamma \right) \left(\frac{\partial E}{\partial w} \right)_{t}^{2}$$

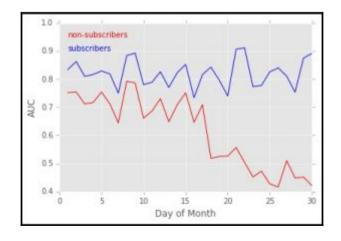
$$w_{t} = w_{t-1} - \frac{\alpha}{\sqrt{\frac{1}{T} \left(\frac{\partial E}{\partial w}\right)_{t}^{2} \left(\frac{1}{1 - \beta_{1}}\right) + \varepsilon}} \frac{\partial E}{\partial w} \left(\frac{1}{1 - \beta_{2}}\right)$$

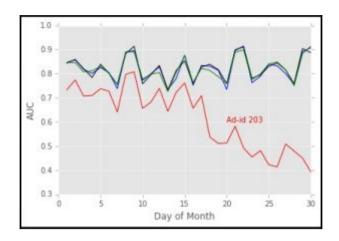


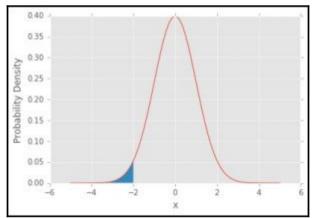


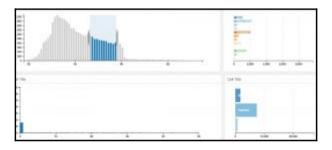







Chapter 8: Sharing Models with Prediction Services




```
[19/Jul/2016:00:52:46] ENGINE Bus STARTING
[19/Jul/2016:00:52:46] ENGINE Started monitor thread 'Autoreloader'.
[19/Jul/2016:00:52:46] ENGINE Started monitor thread '_TimeoutMonitor'.
[19/Jul/2016:00:52:47] ENGINE Serving on http://0.0.0.0:5000
[19/Jul/2016:00:52:47] ENGINE Bus STARTED
```

Chapter 9: Reporting and Testing – Iterating on Analytic Systems

$$T = \frac{Y_1 - Y_2}{S_{Y_1 - Y_2}}$$

$$S_{Y_1 - Y_2} = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

$$1.64 \le \frac{10}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$\frac{100}{2.69} \ge \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$$

$$S_{Y_1 - Y_2} = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

$$1.64 \le \frac{10}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$
$$37.17 \ge \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$$

$$\frac{(predicted - observed)^2}{n}$$

$$s(i) = \frac{d'(i) - d(i)}{\max(d(i), d'(i))}$$

Table of Contents

Index	,
IIIUUK	

Index