
Table of Contents
Chapter 1: Important Concepts in JavaScript 1

Clarifying data types 2
Primitives versus objects 3
Functions 4

Constructor functions 4
Wrapper objects and autoboxing 6

Creating objects 7
Factory pattern 7

Factory versus constructor 7
Prototypes 8

Class-based inheritance 9
Prototypical inheritance 9
Prototype 9

[[Prototype]], proto, and prototype 10
[[Prototype]] 11
__proto__ 11
Quick recap 12

Prototype inheritance chain 12
Object property or prototype 14

ECMAScript classes 15
Methods 16

Constructor 16
Prototype methods 17
Static methods 18

Extending a class 18
this and the context 20

Global context 20
Function context 20
Object method 21
Constructor functions 21
Prototype methods 22
Binding this 23

call and apply 24
Arrow functions 24

Context vs execution context 25
Summary 26

Index 27

1
Important Concepts in

JavaScript
Our application is going to be written in JavaScript, but there are many versions of
JavaScript. These versions are formalized by Ecma International (formerly
the European Computer Manufacturers Association (ECMA)), and are actually
called ECMAScript. So the term "JavaScript" is a collective term for all of these
different ECMAScript versions. Below, you'll find a table enumerating each version,
alongside its release date:

ECMAScript version Release year
1 1997
2 1998
3 1999
4 (never released)
5 2009
6 2015
7 2016
8 2017
9 2018
In other words, from 1999 to 2009, when developers were writing JavaScript they
were actually writing in ECMAScript 3.

JavaScript was originally developed by Brendan Eich in 10 days! He
wrote it for the Netscape Navigator browser. It was originally called
Mocha, and this was changed to LiveScript, before finally settling on
JavaScript. In 1996, Netscape submitted JavaScript to ECMA to be
standardized as ECMAScript.

Other companies created similar languages; Microsoft created
VBSCript and JScript, while Macromedia (now Adobe) created

Important Concepts in JavaScript Chapter 1

[2]

ActionScript.

In this book, we will be using features up to ECMAScript 2018 (a.k.a. ES9). These
newer standards introduced new concepts, such as classes, and provided a cleaner
syntax, such as arrow functions. Many developers use these features
without understanding what they are or how they work. This chapter will explain in
depth some of the most important concepts in JavaScript.

We will focus on three topics:

Clarifying different data types in JavaScript.
How inheritance works in JavaScript.
Determining the current context in any piece of code.

Clarifying data types
In JavaScript, there are six primitive data types and one object type. The six primitive
types are null, undefined, Boolean (true/false), number, string, and symbol.
The object type is simply a key-value store:

const object = {
 key: "value"
}

To look at this from another angle, everything that is not a primitive type is an object.
This means functions and arrays are both special types of object:

// Primitive types
true instanceof Object; // false
null instanceof Object; // false
undefined instanceof Object; // false
0 instanceof Object; // false
'bar' instanceof Object; // false
Symbol('foo') instanceof Object; // false

// Non-primitive types
(function () {}) instanceof Object; // true
[] instanceof Object; // true
({}) instanceof Object // true

If you are not familiar with JavaScript's data types, take a look at the
MDN Web Docs on JavaScript data types and data structures
(developer.mozilla.org/en-

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Important Concepts in JavaScript Chapter 1

[3]

US/docs/Web/JavaScript/Data_structures).

Primitives versus objects
So, what are the differences between primitives and objects? There are three main
differences:

Primitives are stored and compared by value; objects are stored and
compared by reference:

42 === 42; // true
"foo" === "foo"; // true

{} === {}; // false
[] === []; // false
(function () {}) === (function () {}); // false

Here, the value of the number 42 is simply 42. However, the value of {} is
actually a reference to the object, not the object itself. When we create two
empty object literals, they are considered as two different objects, both with
their own unique reference.

Primitives cannot not have methods or properties, whereas objects can:

const answer = 42
answer.foo = "bar";
answer.foo; // undefined

As an extension of these points, objects are mutable, so you can add,
change, or remove properties and methods from them.

const foo = {};
foo.bar = "baz";
foo; // { bar: "baz" }

On the contrary, primitives are immutable; you cannot change the number
42 to anything else without it being a different number. When you do
perform an operation on a primitive (multiplying a number or adding
characters to a string), a new primitive value is created; the original value
remains unchanged.

Under the hood, when you instantiate a new primitive, a section of memory is
allocated to the primitive. For example, when we define the string "foo", a small
portion of the memory with the address A is allocated to store the string. When we

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Important Concepts in JavaScript Chapter 1

[4]

perform an operation on it, appending "bar" to it, for example, a new string,
"foobar", is created with a different address, B. The original "foo" is not altered.

Functions
A function is not a type of primitive; the rules outlined above make it an object—a
special type of object with special properties and methods such as name and call:

const foo = function bar(baz) { console.log(baz); };
foo.name; // "bar"
foo.call(this, "Hello World!"); // "Hello World!"

A method is an object property that also happens to be a function:

const car = {};

// honk is a method of car
car.honk = function () { console.log("HONK!"); };
car.honk(); // "HONK!"

Just like other objects, you can add new properties and methods to it:

foo.qux = "baz";
foo.qux; // "baz"

Because functions are objects, they are treated as first-class citizens. This means
functions can be assigned to variables, and both can be passed in as arguments to,
and returned from, another function:

// Function assigned to a variable
const requestHandler = function (request, response) {
 console.log(request);
 response.end("Hello World!");
}

// Passing in a function as argument to another function
const server = http.createServer(requestHandler);

Constructor functions
In your program, you'll often need to create multiple objects that have the same
properties and methods. You can do this by defining a constructor function and
invoking it with the new keyword:

Important Concepts in JavaScript Chapter 1

[5]

const Car = function (make) {
 this.make = make;
 this.honk = function () { console.log("HONK!") }
}

const myCar = new Car("BMW");
myCar.make; // "BMW"
myCar.honk(); // "HONK!"

The constructor function contains information on how to construct an object. Any
function (except arrow functions) can be a constructor function; a function is only
used as a constructor function when called with the new keyword:

const Car = function () {}
const myCar = new Car();
myCar; // {}

Here, an empty function is used as a constructor function by invoking it with the new
keyword. Since there's no logic inside the function body, it simply returns an empty
object.

Within the function block, this refers to the object that's to be created, so we can
assign properties to the object by adding them to this:

const Car = function (make) {
 this.make = make;
}
const myCar = new Car("BMW");
myCar; // { make: "BMW" }

const yourCar = new Car("Audi");
yourCar; // { make: "Audi" }

Just to demonstrate a point, when you run a function normally (without the new
keyword), it will act like any other function:

const Car = function (make) {
 this.make = make;
}
const myCar = Car("BMW");
myCar; // undefined
window.make; // "BMW"

Since our function did not return anything, JavaScript implicitly returns undefined.
Also, since our function is run on the top-level code, the current context, as
represented by this, is the global context, which, in browsers, is the window object.

Important Concepts in JavaScript Chapter 1

[6]

Wrapper objects and autoboxing
You may not directly use constructor functions a lot, but they are more prevalent than
you may at first realize. For instance, they are the reason that the following operation
works:

const answer = 42;
answer.toString(); // "42"

Since primitives cannot have properties and methods, how can we call the toString
method of answer? It turns out that some primitive types, namely Booleans, strings,
and numbers, have an object equivalent.

const stringPrimitive = "foo";
const stringObject = new String("foo");

stringPrimitive === "foo"; // true
stringObject === "foo"; // false

stringPrimitive instanceof Object; // false
stringObject instanceof Object; // true

That new object is often referred to as a wrapper object. For example, our
stringObject would have the following structure:

{
 0: "f",
 1: "o",
 2: "o",
 length: 3,
 __proto__: String,
 [[PrimitiveValue]]: "foo"
}

When we try to access the toString method of the primitive, JavaScript
automatically, and temporarily, wraps our primitive with its corresponding wrapper
function and accesses the method from there. Since every object inherits a toString
method, we are able to call toString on our wrapper object. This automatic
wrapping is known as autoboxing.

Autoboxing is a temporary process. After the toString method has returned, the
wrapper object is discarded and the primitive is unchanged.

This also explains why no errors are thrown when you try to assign a property to a
primitive. This is because the assignment is not actually done on the primitive, but on
the temporary wrapper object.

Important Concepts in JavaScript Chapter 1

[7]

const foo = 42;
foo.bar = "baz"; // Assignment done on temporary wrapper object
foo.bar; // undefined, since wrapper object is discarded after
assignment

Creating objects
As I mentioned already in Chapter 1, The Importance of Good Code, programming is a
creative endeavor; there are many ways to achieve the same results. This is also true
for basic operations, such as creating new objects.

Factory pattern
Using a constructor function is not the only way to create new objects; the simplest
way is to define a new object literal each time.

const myCar = {
 make: "BMW",
 honk: function () { console.log("HONK!") }
}
const yourCar = {
 make: "Audi",
 honk: function () { console.log("HONK!") }
}

However, this does not follow the Don't Repeat Yourself (DRY) principle. Instead,
we can use the factory pattern and create a function that returns a new object each
time it is called.

For example, here's how you can use the factory pattern to create the same Car object.

const createCar = function (make) {
 return {
 make: make,
 honk: function () { console.log("HONK!") }
 }
}

const myCar = createCar("BMW");
const yourCar = createCar("Audi");

Important Concepts in JavaScript Chapter 1

[8]

Factory versus constructor
We can use either a factory or a constructor function to create new objects. So, when
should you pick one over the other?

The benefit of using the constructor function is that you can define common methods
to the function's prototype object (we'll cover more on prototypes later), which
means all objects created using the constructor function would have shared access to
that one function.

const Car = function (make) {
 this.make = make;
}

Car.prototype.honk = function () { console.log("HONK!") };

const myCar = new Car("BMW");
const yourCar = new Car("Audi");
myCar.honk === yourCar.honk; // true

With a factory, the object's method is duplicated each time a new object is created,
which means it uses more memory.

const Car = function (make) {
 this.make = make;
 this.honk = function () { console.log("HONK!") }
}

const myCar = new Car("BMW");
const yourCar = new Car("Audi");
myCar.honk === yourCar.honk; // false

This answers one question and raises many more:

What is the prototype object?
How does the new keyword work?

To answer these questions, we must take a step back and understand the inheritance
model of JavaScript.

Prototypes
JavaScript is a multi-paradigm language that can be used in an object-oriented (OO),
functional, or simply procedural way. The most common use case is OO. However,

Important Concepts in JavaScript Chapter 1

[9]

unlike most OO languages, its inheritance model is not class-based, but prototype-
based. Let's explore the differences.

Class-based inheritance
Class-based inheritance can be seen in the more 'traditional' OO languages, such as
Java. In class-based inheritance, every object must belong to a class, and objects of a
class must have all the methods and properties defined in the class, and nothing else.
If you need an extra method or property, you'll need to define a new subclass and
instantiate your object from that subclass.

Prototypical inheritance
To create an object using the prototype pattern, first define a prototype object that acts
as the template, and then copy/clone that prototype object every time you want to
create a new object of that type.

However, after you've created a new object from the prototype, you can add, remove,
or modify any of the methods and properties of the object; the restrictions that class-
based inheritance has do not apply here. The prototype acts only as an initial
template, not a set of rules that objects must conform to at all times.

"In a prototype-based system, there are no classes. All objects are created by adding
properties and methods to an empty object or by cloning an existing one."

 – from the article Javascript object prototype by Helen Emerson

 http://helephant.com/2009/01/18/javascript-object-prototype/

Confusion arises because ECMAScript 2015 introduced the class keyword to the
language, leading many to think JavaScript now supports classes in the classical
sense. This is inaccurate; there are no classes in JavaScript and the class keyword is
simply syntactic sugar for constructor functions. And, as you've seen before in our
Car example, it is the constructor function that defines the template. Let's delve a
little deeper to see how that works.

Prototype
Let's revisit our Car example:

const Car = function (make) {

http://helephant.com/2009/01/18/javascript-object-prototype/

Important Concepts in JavaScript Chapter 1

[10]

 this.make = make;
}

Car.prototype.honk = function () { console.log("HONK!") };

const myCar = new Car("BMW");
myCar.make; // "BMW"
myCar.honk(); // "HONK!"

In JavaScript, every function has a prototype property.

Remember, since everything except primitive types is an object type,
functions are objects and can have methods and properties.

When used as a constructor function, it is this prototype property, as well as the
function body, that together provide the blueprint for the new object.

As mentioned previously, when used as a constructor function, the this keyword
inside the function body refers to the object that is being constructed. So, when we
assign the make variable to the make property of this, we are giving the object itself a
make property:

const Car = function (make) {
 this.make = make;
}
const myCar = new Car("BMW");
myCar.make; // "BMW"
myCar.hasOwnProperty("make"); // true

Any objects constructed using the constructor function will have a reference to the
constructor function's prototype property. Methods and properties defined in the
constructor function's prototype can be accessed by the object, but are not properties
of the object itself.

const Car = function () {}
Car.prototype.honk = function () { console.log("HONK!") };
const myCar = new Car("BMW");
myCar.honk(); // "HONK!"
myCar.hasOwnProperty("honk"); // false

So, how is that reference stored in the object?

Important Concepts in JavaScript Chapter 1

[11]

[[Prototype]], proto, and prototype
Before we move forward, we must first be aware that there are three prototype-
related constructs in JavaScript: [[Prototype]], __proto__, and prototype. In the
following section, we will elucidate each of their roles.

[[Prototype]]
In JavaScript, every object has an internal [[Prototype]] property, and it turns out
the reference to the constructor function's prototype object is stored as
this hidden [[Prototype]] property.

Conceptually, we can test this out as follows:

myCar.[[Prototype]] === Car.prototype; // technically `true`

However, this would throw a syntax error because [[Prototype]] is a hidden
property and cannot be accessed directly. ECMAScript 5 provides the
Object.getPrototypeOf method, which allows you access this hidden property:

Object.getPrototypeOf(myCar) === Car.prototype

__proto__
Prior to the standardization of getPrototypeOf, many browsers had already
implemented a way to let you access the [[Prototype]] object. They added
an accessor property (one which consists of a getter and setter), __proto__:

Object.getPrototypeOf(Car) === Car.__proto__; // true
Object.getPrototypeOf(myCar) === myCar.__proto__; // true

The __proto__ property was not originally in the ECMAScript specification, but
because many browsers have implemented it, the standardization body added it to
the ECMAScript 2015 specification for backward compatibility.

From here on, we will refer to the __proto__ property, since you
can run the examples in your browser console, but remember that
this is just one way to access the internal [[Prototype]] object.

The __proto__ property references the prototype of the constructor function that
constructed it; or, if the object was not created from a constructor function, it'll

Important Concepts in JavaScript Chapter 1

[12]

reference the constructor function of its wrapper object:

const Car = function () {};
const myCar = new Car();
myCar.__proto__ === Car.prototype; // true

const foo = {}; // equivalent to new Object()
foo.__proto__ === Object.prototype; // true

const bar = []; // equivalent to new Array()
bar.__proto__ === Array.prototype; // true

const baz = function () {}; // equivalent to new Function()
baz.__proto__ === Function.prototype; // true

Quick recap
Just to recap, here are the main points:

Objects can be created by invoking constructor functions with the new
keyword
Every function, including constructor functions, has a prototype property
When an object is created using a constructor function, its properties are set
inside the constructor function's body by modifying this
When an object is created using a constructor function, a reference to the
constructor function's prototype property is also stored in the object's
internal [[Prototype]] property
The object's [[Prototype]] property is hidden and cannot be accessed
directly, so some browsers have implemented an accessor property,
__proto__, which exposes the [[Prototype]] property

Prototype inheritance chain
Let's revisit our Car example one more time:

const Car = function (make) {
 this.make = make;
}

Car.prototype.honk = function () { console.log("HONK!") };

const myCar = new Car("BMW");

Important Concepts in JavaScript Chapter 1

[13]

myCar.make; // "BMW"
myCar.honk(); // "HONK!"

In the preceding example, honk is not a method of the myCar object itself.

myCar.hasOwnProperty("honk"); // false

As we've already discussed, honk is a property of Car.prototype, which is
referenced in the object's __proto__ property.

{
 make: "BMW",
 __proto__: {
 honk: function () { console.log("HONK!") },
 constructor: Car
 }
}

In JavaScript, when you try to access a method or property, the engine will look at
whether the object itself has that property/method; if it does, it'll use that one.
However, if the property/method is not found, it will look inside the __proto__
object and see whether it exists there; if it does, it'll use that one.

To demonstrate our point, let's add a make method to Car.prototype.

Car.prototype.make = function() { return "Audi"; }
myCar.make; // "BMW"
myCar.make === Car.prototype.make; // false

It still says BMW because the property in the object itself has priority over the one in the
myCar.__proto__ object. When we call myCar.honk, however, because honk is not
in the object itself, it will use the one provided in myCar.__proto__.

myCar.honk === myCar.__proto__.honk; // true
myCar.honk === Car.prototype.honk; // true

As the last piece of the puzzle, we'll explain how we are able to
call myCar.hasOwnProperty, since hasOwnProperty is neither a method on the
object itself, nor a method of the object constructor's prototype object.

In fact, it is the prototype object of the object's constructor's constructor, which
happens to be the Object constructor. After not finding
the hasOwnProperty method in myCar.__proto__ (that is, Car.prototype), it'll
follow the same logic as before and try to find it in the __proto__ of that object
(remember, every object has a __proto__ property).

Important Concepts in JavaScript Chapter 1

[14]

{
 make: "BMW",
 __proto__: {
 honk: function () { console.log("HONK!") },
 constructor: Car,
 __proto__: {
 constructor: Object,
 hasOwnProperty: function () { ... }
 isPrototypeOf: function () { ... }
 ...
 }
 }
}

Because Car.prototype is an object, it can be thought of as being constructed using
the Object wrapper method, and thus its __proto__ property will be a reference to
Object.prototype.

Car.prototype.__proto__ === Object.prototype; // true
myCar.__proto__.__proto__ === Object.prototype; // true

Therefore, when accessing a property or calling a method on an object, the JavaScript
engine follows these rules:

Try to find the property/method on the object:
If it's found, use it
If it's not found, look inside the __proto__ object

Repeat the first step until it is found; if it's not found, return undefined

The way inheritance is structured here is called the prototype inheritance chain; the
JavaScript engine will follow the __proto__ chain until it finds the property/method
it is looking for.

Object property or prototype
So, we can give properties/methods to objects by adding them to the objects
themselves, or we can add them to an object constructor's prototype object. So,
which method should you choose?

This is a similar question to the one discussed in the Factory versus constructor section.
If you add the method to the constructor's prototype, then all objects constructed
from the constructor function will have access to the method. Because the object
references its constructor's prototype, the method would still be available to objects

Important Concepts in JavaScript Chapter 1

[15]

constructed before the method was added.

const Car = function () {};

const oldCar = new Car();
oldCar.turboDrive(); // TypeError: oldCar.turboDrive is not a function

Car.prototype.turboDrive = function () { console.log("TURBO Drive
activated!"); };

const newCar = new Car();
newCar.turboDrive(); // "TURBO Drive activated!"
oldCar.turboDrive(); // "TURBO Drive activated!"

Furthermore, only one method is stored in memory, instead of having to reserve
space for each duplicated method defined on each object.

Therefore, if you have methods or properties that are not specific to an object
instance, then you should define them in the prototype object of the constructor; on
the other hand, if you have properties/methods whose values are specific to the object
itself (taking the example of a car, this would be the speed and location), define them
in the object itself.

Be careful when extending or modifying the prototype of "native"
constructor functions such as Object, Function, Array, and so on.
It will be inherited by all objects that use it, including any libraries or
frameworks you're using. Furthermore, if you're overriding an
existing method, it might inadvertently break the functionality of
some libraries or frameworks that depend on it.

ECMAScript classes
The ECMAScript 2015 specification introduced the class keyword, which is syntactic
sugar for constructor functions, making the syntax clearer and less bloated.

ECMAScript 2015 did not change how inheritance works in
JavaScript; it only provided class as syntactic sugar.

Let's see how we can implement our Car constructor function as a class.

class Car {

Important Concepts in JavaScript Chapter 1

[16]

 constructor(make) {
 this.make = make;
 }
 honk() { console.log("HONK!") };
}

const myCar = new Car("BMW");
myCar.make; // "BMW"
myCar.honk(); // "HONK!"

The constructor method replaced the constructor function's body, and prototype
methods replaced the previous methods on the constructor function's prototype.

Methods
There are three types of method in a JavaScript class:

Constructor
Prototype
Static

Constructor
constructor is a special method that gets called each time a new object is
instantiated. The arguments passed in when creating a new object are passed on to
the constructor, as seen in the following example:

class Bar {
 constructor(x) {
 console.log(x);
 }
}
const foo = new Bar("baz"); // "baz"

There must be one, and only one, constructor in a class. If you do not explicitly
specify a constructor, the default one will be used, as seen here:

// Default constructor for non-derived classes
constructor() {}

// Default constructor for classes extended from a parent class
// (See 'extending a class' below)
constructor(...args) {
 super(...args);

Important Concepts in JavaScript Chapter 1

[17]

}

Like the function body of the function constructor, this inside the method body
refers to the new object that's being constructed, as seen in the following snippet:

class Car {
 constructor(make) {
 this.make = make;
 }
}

const myCar = new Car("BMW");
myCar.make; // "BMW"

The ES5 equivalent would be as follows:

const Car = function (make) {
 this.make = make;
}

const myCar = new Car("BMW");
myCar.make; // "BMW"

Prototype methods
Prototype methods are defined inside the class and are available to be called by their
instances, as follows:

class Car {
 constructor(make) {
 this.make = make;
 }
 printMake() { console.log("I am a " + this.make + " car!") };
}

const myCar = new Car("BMW");
myCar.make; // "BMW"
myCar.printMake(); // "I am a BMW car!"

Within the body of a prototype method, this refers to the object instance, and so
prototype methods can access the object's properties, like we did with this.make.

Prototypes are used for logic that is common to multiple instances and which requires
access to the object instance.

The ES5 equivalent would be as follows:

Important Concepts in JavaScript Chapter 1

[18]

const Car = function (make) {
 this.make = make;
}

Car.prototype.printMake = function () {
 console.log("I am a " + this.make + " car!");
};

Static methods
Static methods are methods that exist regardless of whether an instance exists or not.
Therefore, they do not have access to instances' properties. Within the body of a static
method, this refers to the class itself.

Static methods are callable on the class itself, but not on any of the instances, as seen
in the following example:

class Foo {
 static bar() { console.log(this) } // Static method
 baz() { console.log(this) } // Prototype method
}

Foo.bar(); // class Foo { ... }, the class Foo itself
Foo.baz(); // Uncaught TypeError: Foo.baz is not a function

const qux = new Foo();
qux.bar() // Uncaught TypeError: baz.bar is not a function
qux.baz() // Foo {}, an instance of Foo

Static methods are used for sharing common functionalities relating to the class, such
as utility functions, as follows:

class Car {
 static printVehicleType() { console.log("car") };
}

Car.printVehicleType(); // "car"

The ES5 equivalent would be as follows:

const Car = function () {};
Car.printVehicleType = function () { console.log("car") };
Car.printVehicleType(); // "car"

Important Concepts in JavaScript Chapter 1

[19]

Extending a class
Along with the class keyword, ECMAScript 2015 also introduced the extend
keyword, which allows you to create child classes that inherit from a parent class. The
child class inherits both the prototype and static methods.

If the child class does not define a constructor method, the parent's constructor
will be used. If the child class does define its own constructor, it must call super() at
the start of the method so the parent's constructor is called first, as seen here:

class Vehicle {
 constructor() {
 this.type = "Vehicle";
 }
 printType() { console.log("type: " + this.type); }
 static kmToMile(km) { return km * 0.62137; }
}

class Car extends Vehicle {
 constructor() {
 super();
 this.type = "Car";
 }
}

Car.kmToMile(1); // 0.62137

const myCar = new Car();
myCar.printType(); // "Car"

super here refers to the superclass, another word for the parent
class. Likewise, a child class may also be referred to as a subclass.

You can also extend constructor functions in ES5, but the syntax is more bloated and
less elegant. To re-implement the previous two classes, it would look like this:

const Vehicle = function () {
 this.type = "Vehicle";
}
Vehicle.prototype.printType = function () {
 console.log("type: " + this.type);
}
Vehicle.kmToMile = function (km) {
 return km * 0.62137;

Important Concepts in JavaScript Chapter 1

[20]

}

const Car = function () {
 Vehicle.call(this); // Same as Vehicle(), but passing through the
current context
 this.type = "Car";
}

// Creates an empty object who inherits from Vehicle
// So Car.prototype.__proto__ === Vehicle.prototype
Car.prototype = Object.create(Vehicle.prototype);

Car.prototype.constructor = Vehicle;

this and the context
In JavaScript, the this keyword refers to the current context, which is a reference to
the object that owns the code being executed.

Global context
When used on top-level code, this refers to the global context, which is the window
object when in a web browser, and the exports object inside a Node.js module.

this; // window
this.foo = "bar";
window.foo; // "bar"

Function context
When used inside a function, the value of this depends on how the function is called.

If it's a function called on top-level code, then the value of this remains the global
context, as seen here:

const foo = function () { console.log(this) };
foo(); // window

A function block does not affect the context of its body.

const bar = function () { foo() };
bar(); // window

Important Concepts in JavaScript Chapter 1

[21]

Note, however, if strict mode is on, then this becomes undefined inside the function block, as
can be seen here:

const foo = function () { console.log(this) };
const bar = function () { 'use strict'; console.log(this); };

foo(); // window
bar(); // undefined

Object method
If the function is a method of an object, then this becomes the object that the method
belongs to, as can be seen in the following example:

const func = function () { console.log(this) };
const obj = {};
obj.method = func;

obj.method(); // obj

Since a static method of a class is also just a normal object method, this refers to the
class object inside the static method, as seen here:

class Foo {
 static staticMethod() {
 console.log(this);
 }
}
Foo.staticMethod(); // Foo

This also explains why when you call something like window.setTimeout inside
another method, this becomes the window object inside the setTimeout method
body, as seen here:

const foo = {};
foo.bar = function () {
 console.log(this); // foo
 window.setTimeout(function () {
 console.log(this); // window
 }, 0);
};
foo.bar();

Important Concepts in JavaScript Chapter 1

[22]

Constructor functions
As we demonstrated in the previous section, when a function is used as a constructor
function by calling it with the new keyword, this becomes the object that's
constructed inside the function body:

function Car() {
 console.log(this);
}

const myCar = new Car(); // myCar

Since the constructor method inside a class is simply syntactic sugar for the body
of the constructor function, this also represents the object being constructed inside
the constructor method, as seen here:

class Car {
 constructor() {
 console.log(this);
 }
}

const myCar = new Car(); // myCar

Prototype methods
Inside a prototype method of a class, this refers to the instance of that class, as seen
in the following example:

const Foo = function () {};
Foo.prototype.prototypeMethod = function () {
 console.log(this);
}

class Bar {
 prototypeMethod() {
 console.log(this);
 }
}

const foo = new Foo();
foo.prototypeMethod(); // foo
const bar = new Bar();
bar.prototypeMethod(); // bar

Important Concepts in JavaScript Chapter 1

[23]

Binding this
As demonstrated, the value of this inside a function depends on how the function is
called. However, there are times when you want to ensure that this refers to a
particular value, regardless of how it is called. In these situations, you'd need to bind
the value of this.

JavaScript provides the bind method, which is available for all functions. It returns a
new function, with the this value bound to whatever you pass into the bind method,
as shown here:

const foo = function () { console.log(this) };
const boundFoo = foo.bind(42);

foo(); // window
boundFoo(); // 42

bind is available because it inherits from Function.prototype:

const foo = function () {}; // Sames as new Function();
foo.bind === Function.prototype.bind

You can assign the bound function to be a (static) method in an object or as a
prototype method; the value of this would remain the value passed in when the
bind method was called, as seen in the following example:

// As a (static) object method
const bar = {
 foo: foo,
 boundFoo: boundFoo
};

bar.foo(); // bar
bar.boundFoo(); // 42

// As a prototype method
const Baz = function () {};
Baz.prototype.foo = foo;
Baz.prototype.boundFoo = boundFoo;

Important Concepts in JavaScript Chapter 1

[24]

const myBaz = new Baz();
myBaz.foo(); // myBaz
myBaz.boundFoo(); // 42

Once you create a bound function, you cannot bind it again, as seen here:

const func = function () { console.log(this) };
const funcBoundTo42 = func.bind(42);
const funcBoundToBar = funcBoundTo42.bind("bar");

funcBoundTo42(); // 42
funcBoundToBar(); // 42 <- binding the bound function again has no
effect

call and apply
While the bind method returns a new function bound to a given context, the call
and apply methods immediately invoke the function while passing in a context, as
well as any arguments the function accepts. The only difference between the two
methods is that call expects the arguments to be listed out directly, whereas apply
expects the arguments as one array, as shown in the following snippet:

const foo = function (x, y) {
 console.log(this);
 console.log(x);
 console.log(y);
}

foo(); // window; undefined; undefined;
foo(1, 2); // window; 1; 2;
foo.call(0); // 0; undefined; undefined;
foo.call(0, 1); // 0; 1; undefined;
foo.call(0, 1, 2); // 0; 1; 2;
foo.apply(0, [1, 2]); // 0; 1; 2;

Arrow functions
Often, developers need to write func.bind(this) when calling a function.
ECMAScript 2015 introduced a new syntax for passing in the current context to the
function you're calling, which looks cleaner and less bloated than using the bind
method every time, as follows:

function Foo () {
 window.setTimeout(function () {

Important Concepts in JavaScript Chapter 1

[25]

 console.log(this); // window
 }, 0);

 window.setTimeout(function() {
 console.log(this); // Foo
 }.bind(this), 0);
 // Notice the () => {} arrow function here
 window.setTimeout(() => {
 console.log(this); // Foo
 }, 2000)
}

new Foo();

Context vs execution context
Note that context is different from execution context. The latter should be thought of
in relation to the execution stack, which is how the JavaScript engine knows which
part of the code it should execute next, and how it determines which variables are
in scope.

When you first execute a script or program, it will initially be in the global execution
context. When a function is invoked, it will cause a new execution context to be
created and added to the top of the execution stack. If you execute another function
within that function, then the inner function will also have an execution context,
which sits on top of the outer function's execution context. The JavaScript engine will
always execute the current execution context, which sits at the top of the execution
stack. When a function completes, that function's execution context is popped off the
top of the execution stack and the code in the execution stack below continues to
execute until it is complete, and so on.

A function's execution context is associated with its corresponding activation
object (AO) / variable object (VO), which is an object that contains the function's
arguments as well as any variables and function declarations made inside the
function body. When the function body is executed, identifiers are resolved by
checking the AO associated with the function's execution context, as well as each
execution context below the current one. This explains why the body of an inner
function can access variables declared in the outer function.

Finally, although context and execution context are two different concepts, they are
related. When a function is invoked, the value of this (and thus the context) is
determined when the execution context is created, but before the function body is
executed.

Important Concepts in JavaScript Chapter 1

[26]

Summary
We have covered a lot of complicated subjects in this chapter, so let's do a quick recap
to solidify your understanding.

First, we looked at data types in JavaScript. There are six primitive types and one
object type. However, some primitive types have wrapper objects, which can
make them behave like an object through a process called autoboxing. Functions are a
special type of object and any function can act as a constructor function if called with
the new keyword. Constructor functions encapsulate the logic required to create
multiple objects with similar properties/methods.

Next, we looked at how inheritance works. In JavaScript, inheritance is prototype-
based, not class-based. Every object (including functions) has a hidden
[[Prototype]] property, which is exposed by browsers through the __proto__
property; furthermore, every function also has a prototype property. When a new
object is constructed using a constructor function, a reference to the function's
prototype property is saved in the object's __proto__ property. When looking for a
method or property, the JavaScript engine will look through the prototype inheritance
chain. In ES6, classes were added which desugar into constructor functions.

Lastly, we discussed how context works in JavaScript. We discussed how the this
keyword represents the current context. When inside a function, the context changes
depending on how the function is called, but you can bind the context within a
function using bind, call, or apply.

This chapter gave you a comprehensive primer on the most fundamental (and most
overlooked) principles of JavaScript. In the next chapter, we will get familiar with
some new syntax introduced in the ECMAScript 2015 standard.

Index

A
accessor property 11
activation object (AO) 25
apply method 24
arrow function 2
arrow functions 24
autoboxing 6

C
call method 24
class-based inheritance 9
classes 2
constructor function 4
constructor functions 22
context
 about 20
 constructor functions 22
 function context 20
 global context 20
 object method 21
 prototype methods 22
 versus execution context 25

D
data types
 about 2
 autoboxing 6
 clarifying 2
 functions 4
 primitives, versus objects 3
 wrapper objects 6
Don't Repeat Yourself (DRY) principle 7

E
ECMAScript 1
ECMAScript 2018 (ES9) 2

ECMAScript classes
 about 15
 class, extending 19
 methods 16
European Computer Manufacturers Association

(ECMA) 1

F
factory pattern
 about 7
 factory, versus constructor 8
first-class citizens 4
function context 20
functional way 9
functions
 about 4
 constructor functions 4

G
global context 20
global execution context 25

I
inheritance 2

M
methods, ECMAScript classes
 constructor 16
 prototype methods 17
 static methods 18
mutable 3

O
object method 21
object-oriented (OO) 9
objects

 creating 7
 factory pattern 7
 property 14
 prototype 14
 prototype inheritance chain 12, 14
 prototypes 8

P
primitive data types 2
procedural way 8
prototype inheritance chain 13, 14
prototype methods 16, 22
prototypes
 [[Prototype]] 11
 __proto__ 11
 about 8, 9, 10
 class-based inheritance 9
 inheritance 9

S

scope 25
static methods 18
strict mode 20
syntactic sugar 9

T
this keyword
 about 20
 apply method 24
 arrow functions 24
 binding 23
 call method 24

V
variable object (VO) 25

W
wrapper object 6

	Table of Contents
	Important Concepts in JavaScript
	Clarifying data types
	Primitives versus objects
	Functions
	Constructor functions

	Wrapper objects and autoboxing

	Creating objects
	Factory pattern
	Factory versus constructor

	Prototypes
	Class-based inheritance
	Prototypical inheritance
	Prototype

	[[Prototype]], proto, and prototype
	[[Prototype]]
	__proto__
	Quick recap

	Prototype inheritance chain
	Object property or prototype

	ECMAScript classes
	Methods
	Constructor
	Prototype methods
	Static methods

	Extending a class

	this and the context
	Global context
	Function context
	Object method
	Constructor functions
	Prototype methods
	Binding this
	call and apply
	Arrow functions

	Context vs execution context

	Summary

	Index

