Chapter 1: An Introduction to SMACK

Data Producers ingestion, aggregation and analysisi

Sensors | ///\
' i akka

Devices : .
| | =
Data Feeds | | » | .’ .
Web Apps » Spac : l ‘
: Spark Spark . .
Mobile Apps | Streaming | | Cassandra i \./
il Kafka Connector »
Business Apps | |
. = i Yiss”

; il Kafka Spof’:z éCassandra

: : : cluster
| Social Media | cluster s

Figure 1.1 The SMACK pipeline architecture

Chapter 2: The Model - Scala and Akka

Traversable

BitSet

Figure 2-1. The Scala collections top hierarchy.

Seq
IndexedSeq Buffer
StringBuilder | ArrayBuffer ListBuffer Stack ArrayStack [PriorityQueue MutableList J LinkedList DoubleLinkedList
ObservableBuffer SynchronizedBuffer Jll SynchronizedStack SynchronizedPriorityQueue | Queue

Figure 2-2- The Seq hierarchy

HashMap LinkedHashMap ListMap MultiMap

ImmutableMapAdaptor

WeakHashMap OpenHashMap ObervableMap SynchronizedMap

Figure 2-3- The Map hierarchy

HashSet BiltSet LinkedHashSet

ObservableSet SynchronizedSet ImmutableSetAdaptor

Figure 2-4- The Set hierarchy

Chapter 3: The Engine - Apache Spark

e Bl - | = =
' 4% Downloads | Apache Spar % |
€« c spark.apache.crg =
Latest News
™
Download Apache Spark o S e £ 2016
Spark Summit (June 6, 2016, S
Qur latest version is Spark 1.6.1, released on March 9, 20 Francisco) agenda posted
1. ¢ Spark release’ | 1.6.1 (Mar 09 2016) ¥
Spark 1.6.1 released
2 e a package type: | Pre-built for Hadoop 2.6 and later M e N
Submission is ark Summi
3. Choose a download type: | Select Apache Mirror ¥ San Francis
4 Download Spark) 16, 2016
ed
5 his release using the
Note: Scala 2.11 users should downioad the Spark source package and build
Link with Spark
Spark artifacts are You can add a Maven dependency with the f rdinates
groupId: org.apache.spark
artifactid: spark-core_2.10
version: 1.6.1
Figure 3-1 Apache Spark download page
E® Command Prompt - spark-shell.cmd - =]

Figure 3-2 Terminal window with Spark running

Figure 3-3 One driver program with three worker nodes

Petver

ConTEXT

Figure 3-4. Distributed Spark application

ark shell - rk Jobs
Spark shell - Spark Job

L WA

€ - C | [localhost:4040/obs/

e =

Jobs

.s,g.-;c;f-ﬁr

Spark Jobs (?)

Total Uptime: 100.4 h
Scheduling Mode: FIFO
Completed Jobs: 13

» Event Timeling

Completed Jobs (13)

Job Id Description

12 foreach at <console=:24
foreach at <console=:24
foreach at <console=:24
foreach at <console=:24
take at <console>:24
take at <console>:24
reduce at <console=:24
collect at <console= 24
count at <console>:24
collect at <console=:26
collect at <console>:26
collect at <console=:26

collect at <console>:26

Stages Storage Environment Executors SQL

Submitted Duration Stages: Succeeded/Total

2016/05/20 03:26:05 15 ms 1M

2016/05/20 03:25:35 9ms
2016/05/20 02:25119 15 ms
2016/05/20 03:24:57 15 ms
2016/05/20 02:24:20 11 ms
2016/05/20 03:24:20 6ms
2016/05/20 02:23:27 10ms
2016/05/20 03:22:40 7T ms
2016/05/20 03:22:22 16 ms
2016/05/20 03:08:30 0.1s
2016/05/20 03:04:27 01s
2016/05/20 02:00:06 02s

2016/05/17 16:26:32 075

Figure 3-5. Spark shell application web Ul

Spark shell application Ul

Tasks (for all stages): Succeeded/Total

Figure 3-6. Spark Streaming Operation

DATH: FRAM
Mg S
wY

TIME

o ! 2 -) <

Figure 3-7. A DStream as an RDD series

WorkEr Mobe

Exgevrse
DRIVER PROGRAM
@Mﬁmm.w

E 1.
i —

Figure 3-8. Spark Streaming execution with Spark components

0 2 4 6 8 10
Time } } { } | —
\ M A A A)
\J \l | \ A |
DStream .-~
Transformations

/ /
Batch Length: 2 seconds, Window Length: 6 seconds, Slide Interval: 4 seconds

Figure 3-9. Windowed operations example

Chapter 4: The Storage - Apache Cassandra

Visual Guide to NoSQL Systems

Availability
A Data Models

Each client can
always read
and write.

Key-Value

Aster Data Dynamo
Greenplum Voldemort
Vertica Tokyo Cabinet

KAl

Pick Two

CP
Consistency:
All client always Big Table MongoDB Berkeley DB
have the same view Hypertable Terrastore MemcacheDB
of the data Hbase Scalaris Redis

Figure 4-1 CAP Brewer's theorem

col_name

col_value

Figure4-2: Column

Relational (comparison)

Column-Oriented/Tabular
Document-Oriented

AP

Cassandra
SimpleDB
CouchDB
Riak

Partition Tolerance:
The system works
well despite physical
network partitions.

col_name, col_name,

col_value, col_value,

Figure 4-3: Super column

col_name, col_name,
row_key
col_value, col_value,

Figure 4-4: Column family

row_key col_name, col_name, || col_name, col_name,

col_value, col_value, col_value, col_value,

Figure 4-5: Super column family

KeySpacel KeySpace?2

ColumnFamilyl ColumnFamilyl ColumnFamily2

SuperColumn SuperColumn SuperColumn SuperColumn

Columnl Column2 Columnil Column2 Columnl Column3 Columni Column2
Valuel Value2 Valuel Value2 Valuel Value3 Valuel Value2

Figure 4-6: Cluster with key spaces

Row with calculated key K
(MD5) falls in the range
from A to B.

Nodes B, C and D store
all those rows that have
keys in the range from A
to B (which includes the
key K)

Figure 4-7: Nodes within a cluster

Eile

Q.

=

View Help
Conneclions &2 = a
o e ae 2T
== connection [1/1 Connected]
CQL Scripts 21 = 8
Bs% -

pruebaRaull.cql

=] pruebaRaul1.cgl 23} = O B Schema 2 = =0
Run using connection: ~ in keyspace: | with limit: o-
§ PANCREATE KEYSPACE wvideodb WITH REPLICATION = { 'class' 'SimpleStrate , 'replicatilfg
2
@ 3 use videodb:
4
5 // Basic entity table for a user
& // L udes a LIST of email addresses
B 75 CcR) TAE
8 TSETNANE VAIC
9 firstname w: B)
10 lastname varchar, o= Outiine &% B
11 email list<va v = pruebaRaull.cql
12 password va = CREATE KEVSPACE videodb
13 created date timestamp, USE videodb
14 PRIMARY KEY (username) CREATE TABLE users
50 CREATE TABLE videos
16 CREATE TABLE usemame_video_
17 // Entity fabf—e that will store many videos for a unique user CREATE TABLE video_rating
TE TRSLE widsos (CREATE TABLE tag_index
12| videoid muid, CREATE TABLE comments_by_vi
20 videoname W

[

username
description varchar,
location map<wv
tags set<varchar>,

upload date timestamp,
PRIMARY KEY (videoid)

va.

x,varchary,

)i

2
22
23
24
25
26
27
2t

w -

<] 1]

CREATE TABLE comments_by_us
CREATE TABLE video_event

ResultsluueryTrace

Feedback?

S R

Figure 4-8: DataStax OpsCenter

File Action View Help

@ Computer Management (Local
4 m System Tools
Task Scheduler
3 E Event Viewer
1> 2] Shared Folders
3 @ Local Users and Groups
3 @ Perfarmance
ﬂ Device Manager
4 {3 Storage
=0 Disk Management
4 é‘ﬁ Services and Applications
<‘.,,,, Services
&5 WMI Control

4 nr

=

D: - G o _Server Name
S;, Bluetooth Support Service
Stop the service £% BranchCache

Restart the service g
., Certificate Propagation

%}, CNG Key Isolation

% COM+ Event System

7 COM+ System Application
(.,sy, Computer Browser

Description:
DataStax Cassandra Community Server

", Credential Manager
%, Cryptographic Services

DataStax_Cassandra_Cemmunity_:
o' DataStax_OpsCenter_Agent
£, DataStax_OpsCenter_Community

5, DCOM Server Process Launcher

“; Deep Freeze 65 Server Service

Ss,, Desktop Window Manager Session Manager
%, DHCP Client

(.,\f, Diagnostic Policy Service

Diagnostic Service Host

“; Diagnostic System Host

Ss;. Disk Defragmenter

2, Distributed Link Tracking Client

5«, Distributed Transaction Coordinator
4 DNS Client

‘2 Encrypting File System (EFS)

S;, Extensible Authentication Protocol
(.m Fax

i

More Actions 4

Extended J Standard /

Figure 4-9: Microsoft Windows display services

B DataStas OpaCenter

€ | © locahost:8888/or

= DatEIEtElx Test Cluster

A SHBOARD 2 nodes 0 nodes

Alens Storage Capacity

Cluster Heads & Writes Clustor Latency Disk 10PS

Figure 4-10: Display cluster in OpsCenter

Application requests hot, frequently accessed row

Application requests data not in row cache,
but whose key is cached
I E 3

Row cache
rows_per_partition

gl s ol I Check row cache before going to key cache
=10000 2 2 Populate row cache with new row returned

Key cache
keys_cached

=200000

L J

S5Tables on disk

memtables

Figure 4-11: Apache Cassandra cache

Chapter 5: The Broker - Apache Kafka

Producer Producer
(Web Page) (Web Service)

\

NN

Kafkal?luster

Kafka Kafka
Broker Broker

Kafka
Broker

A4

Producer Producer Producer
(Logs) (Adapter) (Proxy)

Consumer
(NosSQL)

Consumer Consumer
(Spark) (Hadoop)

Consumer
(Warehouse)

|

Zookeeper |

Figure 5-1. Apache Kafka typical scenario

A Apache Kafka x

€ - C | kafka.apache.org/downloads.html 2ol =

Apache Kafka |

A high-throughput distributed messaging system.

Seiiliad Releases
introduction
pass . 0.10.0.0 is the latest release. The current stable version is 0.10.0.0.
documentation
quickstart You can verify your download by following these procedures and using these KEYS.
performance
clients
- 0.10.0.0
security
fag + Release Notes
project * Source download: kafka-0.10.0.0-src.tgz (asc, md5)
o twitter ® Binary downloads:
9 \t:"k' o Scala2.10 - kafka_2.10-0.10.0.0.tgz (asc, md5)
o bugs
& riailin lises o Scala2.11 - kafka_2.11-0.10.0.0.tgz (asc, md5)
o committers We build for multiple versions of Scala. This only matters if you are using Scala and you want a version
o powered by built for the same Scala version you use, Otherwise any version should work (2.11 is recommended).
Figure 5-2. Apache Kafka download page
Producer Producer Producer Producer Producer

Zookeeper

e—>

Broker

Consumer Consumer Consumer Consumer

Figure 5-3. Single node - single broker Kafka cluster example

[Producer][Producer]

[Producer][Producer][Producer]

\

|

/

Kafka Node

Kafka
Broker
1

Kafka
Broker
2

Kafka
Broker
3

\\

/\

o\

Zookeeper
e———>

</
~

[Consumer][Consumer [Consumer [Consumer]

Figure 5-4. Single node - multiple broker Kafka cluster example.

\ ~
! 7\

/S~]
7 = I

Kafka
Broker 1

s =) e
I VA S

Zookeeper

_r/

Figure 5-5. Multiple node - multiple broker Kafka cluster

[Zookeeper

A A
1 1
1 1
1 1
1 1
1 "

“
Producer / Kafka Topic \ Consumer
’\ Partition 1
-
| —> C
Producer 0 1 2 3 onsumer
,\ . \
Partition 2
™ 4
Producer) Eﬂ)‘-—) Consumer
S \
.\ Partition 3 p
Producer 4)‘) E E ——>»| Consumer
0 1
4 \.

Figure 5-6. A topic with 3 partitions

Chapter 7: Study Case 1 - Spark and Cassandra

Figure 7-1. Canonical Spark Cassandra cluster

® © o e

Figure 7-2. Cassandra process and Spark worker one to one relationship

Here we define our
business logic

Spark Context

® © e

Figure 7-3. Step 1 - Define the business logic

Spark Client

Spark Context

Figure 7-4. Step 2 - Driver send the tasks to the Spark Master

Spark Client

Spark Context

Figure 7-5. Step 3 - The Spark Master distributes the task among the workers

Spark Client

Spark Context

“& "% "o %

Spark Executor Spark Executor Spark Executor Spark Executor

® © o o

Figure 7-6. Step 4 - The Spark worker executes the task with the Spark executor

Spark Context

Spark Executor Spark Executor Spark Executor Spark Executor

Figure 7-7. Step 5 - The Spark Executor executes the task with the Cassandra Process

Cassandra
tokens ranges

|

|

|

|

|

|

|

N LLRTT
i

O L L /
». £

Figure 7-8. Data Locality

— Read from Cassandra

= Saa

il

v
-
ud

Figure 7-9. Read data from Cassandra

~— Spark shuffle operations

S [S

Figure 7-10. Spark shuffle operations

Figure 7-11. Async writes to Cassandra (without data locality)

——— rdd.repartitionByCassandraReplica("keyspace”,"table”)

— Write to Cassandra

Figure 7-12. Write to Cassandra with Data Locality

Failure handling

Tune parameters:

@™ spark.locality.wait

@ spark.locality.wait. process
® spark.locality.wait.node

Figure 7-13. Failure handling

Sanitize, validate, normalize, transform data

——y + D
Use Cases = ~‘—4 /

T I A (o 1 k=

S orK .
Load data from various P Schema migration,
sources | Data conversion

P 1w
IIII ﬁ:%_

Analytics (join, aggregate, transform, ...)

Figure 7-14. Spark Cassandra use cases

Chapter 8: Study Case 2 — Connectors

TwitterReadActor
receive()

buildTweet()

TweetScannerActor TweetWriteActor
, — receive() > saveTweet()
TweetMarschaller receive()

Figure 8-1. Twitter downloader actors

Chapter 9: Study Case 3 - Mesos and Docker

Application A Application B
Binaries/ Libraries | | Binaries/ Libraries Application A Application B
Guest OS Guest OS Binaries/ Libraries Binaries/ Libraries

Hypervisor Docker Engine

Host OS Host OS

Server Server

Virtual Machine Docker Container

Figure 9.1. Comparison between a virtual machine and a Docker container

Mesos Slave Process Mesos Slave Process

Containerizer API

CPU Memory Disk
isolator || isolator isolator

Isolator APl - - - - _____ Docker APl - - - - . _____

Container1 Container2 Container1 Container2

Slave Operating System Slave Operating System

Hardware ---======---c- - oo

Figure 9.2. Containerization in Mesos

	Chapter 1: An Introduction to SMACK
	Chapter 2: The Model - Scala and Akka
	Chapter 3: The Engine - Apache Spark
	Chapter 4: The Storage - Apache Cassandra
	Chapter 5: The Broker - Apache Kafka
	Chapter 7: Study Case 1 - Spark and Cassandra
	Chapter 8: Study Case 2 – Connectors
	Chapter 9: Study Case 3 - Mesos and Docker

