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Figure 1.1 The SMACK pipeline architecture



Chapter 2: The Model - Scala and Akka
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Figure 2-2- The Seq hierarchy
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Chapter 3: The Engine - Apache Spark
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Figure 3-3 One driver program with three worker nodes
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Chapter 4: The Storage - Apache Cassandra
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Chapter 5: The Broker - Apache Kafka
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Figure 5-1. Apache Kafka typical scenario
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Chapter 7: Study Case 1 - Spark and Cassandra
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Figure 7-2. Cassandra process and Spark worker one to one relationship
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Figure 7-6. Step 4 - The Spark worker executes the task with the Spark executor
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Figure 7-8. Data Locality
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Figure 7-11. Async writes to Cassandra (without data locality)
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Figure 7-12. Write to Cassandra with Data Locality
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Chapter 8: Study Case 2 — Connectors
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Chapter 9: Study Case 3 - Mesos and Docker
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Figure 9.1. Comparison between a virtual machine and a Docker container
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