
Installation of PHP,  
MariaDB, and Apache

A few years ago, one would have had to walk over to the closest pizza store to order 
a pizza, go over to the bank to transfer money from one account to another account, 
and go to the book store and spend hours looking for the right book. Today, we 
can order a pizza, transfer money across accounts and countries, and circle down 
on the right book in a matter of minutes by clicking on a button. The Internet has 
revolutionized a lot of business processes that are known to us. Today, it is almost 
impossible to come across people who haven't heard or used the Internet. Now 
that we are talking about the Internet, how does a person, a business, a company, 
or a process get onto the Internet? We use web pages and websites to build our 
footprint on the Internet, and this chapter is a step-by-step journey of installing the 
components such as a web server, the libraries for a server-side scripting language, 
and a relational database server that would be required to build a website.

The most popular architecture in web development is the client-server architecture;  
a client is considered to be a PC from which a user requests for the content on the 
Web or it could be another web page looking for a data. A server is software that 
receives requests from users on the Internet and delivers the requested web content. 
Based on the type of request, the server may need the support of the server-side 
scripting programs to perform complex operations and execute site-specific process. 
A server-side scripting language is used to write scripts that are executed by the web 
server to parse the requests from the client and generate the necessary response that 
has to be delivered back to the client. If the data that is used for the website has to be 
persistent, then the data has to be stored in a file or a database. In this book, we will 
be working with the Apache web server, the PHP server-side scripting language, 
and the MariaDB database server for building our websites. Apache, MariaDB, and 
PHP (AMP) are open source software (OSS) available for free and for all the popular 
operating systems.



Installation of PHP, MariaDB, and Apache

[ 2 ]

Apache HTTP Server has been the most popular web server since 1996. According to a 
survey done by Netcraft in July 2013, Apache HTTP Server is the preferred web server 
for over 50 percent of all active websites on the Internet. Apache HTTP Server is also 
popularly used as a load balancer. Load balancing, as the name suggests, is a method 
in which requests from clients are distributed across multiple computers to handle  
the work load. By employing a load balancer with a cluster of computers running  
our application, we can achieve high availability for our website. We will be taking  
a deeper dive into load balancing and high availability concepts in later chapters.

PHP is a popular server-side scripting language that is commonly used for web 
development, and is currently used by more than 244 million websites. The stable 
version of PHP recommended at the time of this writing is 5.5; having said this, 
many of the existing websites and hosts use PHP 5.4, PHP 5.3, or versions less than 
PHP 5.3. We will be using PHP 5.5 in this book. PHP is an interpreted programming 
language; the PHP code is executed line-by-line and is converted into operation 
code (opcode). Opcode consists of machine language instructions that specify the 
operation that is to be performed. As the PHP code has to be interpreted for every 
request, the time taken to complete a request can be slower when compared to 
precompiled languages, the reason being that the compiled languages compile the 
code only once and execute the compiled code whenever required. However, PHP 
5.5 comes with an inbuilt opcode cache that stores the output of the PHP bytecode 
compiler in the memory. The opcode cache helps in reducing the time taken 
for interpretation of the PHP code for future requests and for disk input-output 
operations. The opcode cache is not enabled by default and we will enable it in 
Chapter 7, Caching.

PHP 5.3 is the most installed version.

MariaDB is a relational database management system (RDBMS) that is forked  
from the popular MySQL database management system. It is claimed to be a  
drop-in replacement database for MySQL. MariaDB was initially released by  
Michael "Monty" Widenius and a team of core MySQL developers in January 2009, 
after concerns were raised by the original developers of MySQL about the direction 
in which MySQL was headed after it was acquired by Oracle. As MariaDB is 
considered to be a drop-in replacement, the developers working on MariaDB  
take a lot of care to make sure that the code that they add is compatible with  
the existing MySQL APIs and commands.

Subqueries, replication of data, and indexing are faster in 
MariaDB when compared to MySQL.



Bonus chapter 1

[ 3 ]

Installing AMP on Mac OS X
On a MAC OS X operating system, for web development using the AMP stack, 
the first step will be to turn on the Web Sharing option. Web Sharing opens up the 
required ports for HTTP, thereby allowing other users to view web pages that are 
available on this server. To turn on Web Sharing, click on the System Preferences 
icon available in the dock, click on the Sharing icon, and make sure that the Web 
Sharing checkbox is checked. If not, click on the checkbox next to Web Sharing  
to save the settings, then click on the lock icon at the bottom-left corner of the  
System Preferences window as shown in the following screenshot:

Now we are all set to start working on the AMP stack. We will begin by opening 
up a terminal window that provides us a shell to communicate with the operating 
system and allows us to execute the commands. To open up a terminal window,  
click on Finder in the dock, then click on Applications, then click on Utilities,  
and finally double-click on Terminal.

The path can be explained as Finder | Applications | 
Utilities | Terminal.



Installation of PHP, MariaDB, and Apache

[ 4 ]

The Apache web server, which already comes preinstalled with Mac OS X, is 
system software and regular user accounts do not have enough permission to work 
with Apache. In order to work with Apache, we would need root access, and we 
would use the Terminal window to request root access. For requesting root access, 
type sudo su in the terminal app. On hitting the return key, the operating system 
prompts the user for the root user's password. The following screenshot displays  
the terminal app:

Once we have root access, the next step is to start the preinstalled Apache web 
server. We will be using the start command to fire up our Apache web server  
as shown in the following screenshot:

Now that we have our web server up-and-running, it is time for us to look at  
the existing settings of our Apache web server. These settings are stored in the 
httpd.conf file. This configuration file, along with other configurations files for 
Apache, is stored in the /etc/apache2 folder. I will be using the vi text editor for 
accessing and editing the file, but any text editor of your choice can be used to 
modify this configuration file.

A good way to familiarize yourself with the vi editor is to use 
Vimtutor, a tutor designed to help working with the vi editor.

Keep in mind that we would need root access to modify this file, and we have 
already requested for root permissions in the terminal window. The following 
screenshot displays the usage of the vi editor for accessing and editing the  
httpd.conf file stored in the /etc/apache2 folder:



Bonus chapter 1

[ 5 ]

The first change that we will be making to the httpd.conf file is to modify 
DocumentRoot. The DocumentRoot folder contains all files that are accessible to  
the web server. Any files outside DocumentRoot are not accessible to the web server, 
and therefore are not available to the outside world. Comment out the existing 
DocumentRoot by adding # at the beginning of the current DocumentRoot. Add a 
new line beneath and set it to a preferred location. We will be using /var/www as  
our DocumentRoot shown as follows:

The second change that we will be making is to replace the value of the existing 
directory that has been set to the new the directory location for DocumentRoot,  
as shown in the following screenshot:

Now save the changes, and exit from the configuration file. Apache web server  
reads this configuration file upon start and in order to make these changes active,  
we will have to restart the web server.

It is recommended to use the configtest option provided by 
apachectl to test the configuration before restarting Apache.



Installation of PHP, MariaDB, and Apache

[ 6 ]

We will be using the restart command to restart the Apache web server as shown 
in the following screenshot:

We have now completed setting the document root, and have restarted the Apache 
web server so that it can start accessing the document root. Now we will have to create 
a folder that will be used as the document root. To create a folder for the document 
root, we will be using the mkdir command as shown in the following screenshot:

Now that the document root is created, we will have to provide Apache web server 
with the required access to this folder. This access would allow Apache to read, 
write, and/or execute the files in the document root as needed. The /etc/passwd 
file stores the list of users that are available on this machine and gives a description 
of their role. We will use this file to get the user identity for the Apache web server 
shown as follows:

Apache is registered as a _www user and the description of the user is World Wide 
Web Server. The next step is to provide ownership access for the _www user to our 
document root folder /var/www. We will be using the chown command to change the 
owner and group access for our document root shown as follows:



Bonus chapter 1

[ 7 ]

Use the cd command to enter into the /var/www folder and use your favorite  
editor to create a test HTML web page. The aim of this web page would be  
to determine if Apache is working as expected and if it serves the content as 
requested. The following screenshot displays the HTML web page:

Now save the HTML file and load the web page in a web browser. To access this web 
page, we will build the URL by appending the file name to localhost/. Now add 
this URL to the address bar in your favorite web browser and hit Return. We should 
receive the success message that has been added in between the paragraph tags 
shown as follows:

The localhost hostname in computer networking is considered to be the current 
computer, and the users can use this as a hostname to access the computer's internal 
network via the loopback interface. The IP address that this hostname is mapped to is 
127.0.0.1, and this IP address can be interchanged with localhost to load the files.

127.0.0.1 is the IP address for the IPv4 loopback addresses. 
For the IPv6 loopback address, use ::1. That is a 128-bit number 
with the first 127 bits being 0 and the 128th bit being 1.



Installation of PHP, MariaDB, and Apache

[ 8 ]

We have successfully tested that Apache is working. Now let us turn our attention to 
PHP. PHP comes preinstalled out of the box; the PHP version on Mac Mavericks is 
5.4, while the PHP version on Mac Lion is 5.3. PHP is by default turned off for web 
development on Apache and needs to be turned on by uncommenting the line that 
has the instructions to load the php5_module when Apache is started. Open up the 
Apache configuration file (/etc/apache2/httpd.conf) that we worked on earlier 
in this chapter to set the document root. Search for the string php5_module and 
uncomment that line by removing the # tag shown as follows:

We will have to restart the web server for Apache to recognize the changes that 
we have made in the configurations. Let us use the restart command that we 
have used earlier to restart our Apache HTTP Server. The current stable version of 
PHP is 5.5 and we will be installing PHP 5.5 in the next few steps. We will leave 
the preinstalled PHP package as it is, and this preinstalled version can be used for 
testing features across versions. For the installation of PHP 5.5, we will be using the 
shell script that is available on http://php-osx.liip.ch/; they provide a shell 
script that installs and builds PHP. We will be using the curl command to make a 
command-line request to the shell script and mention 5.5 as the version of PHP that 
we would want to install, as shown in the following screenshot:

Upon the successful execution of the earlier curl command, PHP 5.5 is now  
installed in /usr/local/php5. We will have to add the location of the binaries  
of PHP 5.5 to the PATH variable, in order to start using it. We will be using the  
.bash_profile file for appending the location of the PHP 5.5 binaries to the PATH 
variable. The .bash_profile file is commonly used for storing configurations that 
have to be loaded when a user's login is successful, and since Mac OS X's terminal 
app runs a login in the background every time a terminal shell is opened, the 
configurations that we add to the .bash_profile file are loaded by default.

http://php-osx.liip.ch/


Bonus chapter 1

[ 9 ]

If a .bash_profile file does not exist, it has to be created.

Use a text editor of your choice to open up or create the .bash_profile file  
as shown:

In the .bash_profile file, let's append the location of PHP 5.5 binaries to the 
existing PATH variable. The PATH variable is an environmental variable that keeps 
a track of directories for the shell to search for executable files in response to the 
commands issued by users. This is a quick way for the operating system to store 
the metadata of the locations of the executable files. The locations of the directories 
that contain the executable files are stored in a colon-separated string. When a new 
directory location is added to the PATH variable, it is only available within the scope 
of the script. We will use the export keyword to make it available outside the scope 
of that script as shown in the following screenshot:

Add export PATH=/usr/local/php5/bin:$PATH to your .bash_profile file 
as shown in the previous screenshot, and save it. Now that the PATH variable has 
been modified, we can quickly check if our change was successful by echoing the 
PATH variable in the shell. The result would be negative, the reason being that our 
configurations in the .bash_profile file are loaded only when a new shell is loaded. 
Unless we reload the configurations, the changes made to the PATH variable will not 
be available in the context of the current shell. 



Installation of PHP, MariaDB, and Apache

[ 10 ]

There are two ways of reloading the .bash_profile file: the first is to use the 
source command followed by .bash_profile and the other method is just to use 
the . character to reload the configurations as shown in the following screenshot:

Once the .bash_profile file is reloaded, the new PATH variable will be available and 
then we will be able to verify the version of PHP that we have installed earlier in this 
chapter. We will be using the -v option that is provided by the PHP executable to 
print the current version of PHP.

The previous screenshot reflects a successful installation of PHP 5.5. Now the next 
step is to install MariaDB on Mac OS X. For installation of MariaDB on Mac OS X, 
we will be using Homebrew, which is popularly described as the missing package 
manager for Mac OS X.

If Homebrew is not installed, run the following installation 
command in the terminal app:
ruby -e "$(curl -fsSL https://raw.github.com/
Homebrew/homebrew/go/install)"



Bonus chapter 1

[ 11 ]

Once Homebrew is installed, run brew update to get all the required updates.  
Once the update is successful, we are ready to install MariaDB. Installation of 
MariaDB is as simple as running a single line of instruction; we will be using  
the install command for Homebrew as shown in the following screenshot:

On successful installation of MariaDB, we will have to make the operating system 
aware of the daemon that is required to run MariaDB. Mac OS X uses property list 
(plist) files to keep a track of the required properties for running an application. 
MariaDB being launchd compliant comes with the required plist files. The launchd 
command manages the processes for the Mac operating system and for individual 
users. The plist files that will be used for launching or loading the MariaDB daemon 
are located in the /usr/local/opt/mariadb folder. A reference of these files has to 
be created in the ~/Library/LaunchAgents folder for MariaDB to be launched as a 
daemon as shown in the following screenshot:

Now that these files are available, the MariaDB daemon can be invoked using 
the launchctl command. The launchctl interfaces with launchd to manage the 
required processes. We will be using the load command for launchctl and this 
will load the specified configurations that are needed to start the MariaDB daemon 
shown as follows:



Installation of PHP, MariaDB, and Apache

[ 12 ]

Once the configurations are successfully loaded, we will have to modify the PATH 
variable to recognize the mysql command. Though we will use the mysql command, 
we will be setting the PATH variable to look for MariaDB's executable files. Open the 
.bash_profile file in your favorite text editor and add the location of MariaDB's 
executable files shown as follows:

Save the .bash_profile file and reload that file by either using the source 
command or by using the . operator. Now we have all the required configurations 
for running the MariaDB daemon. We will use the start command to start the 
MariaDB daemon shown as follows:

Our MariaDB installation and configuration are a success, and the MariaDB  
database server is now active and running. Let us open a client connection for  
our MariaDB database server. We will be using the -u option for the username  
and password in root as the username for the database server. This is shown  
in the following screenshot:



Bonus chapter 1

[ 13 ]

The default root login for MariaDB doesn't need a password, but it is always a good 
practice to add the password. Let us secure the password for the root user, MariaDB 
stores the metadata information in the MySQL database as shown:

Once we are in the MySQL database, we will use the UPDATE SQL statement,  
discussed in the next chapter, to change the password for the root user.  
The UPDATE SQL statement, as the name suggests, is used to modify data in  
a table, as shown in the following screenshot. We will be going over various  
SQL statements in the next chapter.

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

On successful execution of the query, as shown in the previous screenshot,  
we will need to reload the privileges and purge any of the privileges' metadata  
that was cached.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Installation of PHP, MariaDB, and Apache

[ 14 ]

After the privileges have been flushed, we can use the quit or exit command to exit 
out of the MariaDB shell and again log in to the MariaDB server by using the mysql 
command with the -u option that mentions the user as root and use the -p option. 
Upon hitting the Return key, you are prompted for the password. Enter the new 
password that has been set to log in to the MariaDB server.

Installing AMP on Windows
Installation of AMP on Windows will be relatively simple when compared to the AMP 
stack's installation on Mac OS X. There are a few different web server solution stacks 
that are available from which WAMP and XAMPP are popular. For our installation 
process, we will be downloading two packages: the first package will be XAMPP and 
the second one will be the MariaDB database suite. XAMPP is a free and open source 
stack package that delivers using the Apache web server, MySQL database server, and 
interpreter libraries for PHP and Perl scripts. We will be using the Apache web server 
and the interpreter libraries for PHP and as we are using MariaDB as our database 
server, we will ignore the MySQL database server provided by the XAMPP stack.  
To download XAMPP for windows, visit http://www.apachefriends.org/en/
xampp-windows.html and choose the appropriate package that contains PHP 5.5.  
At the time of writing this book, the version of XAMPP stack with PHP 5.5 is 1.8.3.  
On downloading, run the XAMPP executable as an administrator.

http://www.apachefriends.org/en/xampp-windows.html
http://www.apachefriends.org/en/xampp-windows.html


Bonus chapter 1

[ 15 ]

The first step of the installation for the XAMPP stack is as shown in the preceding 
screenshot. Click on Next to continue with the installation.

As we will be going with a default installation of the XAMPP stack, we will not 
be changing any default choices as shown in the preceding screenshot. In the 
future chapters where we discuss the optimization of our server stack to support 
production environment needs, we will be revisiting the installation to modify the 
components that are needed for our production environment. 



Installation of PHP, MariaDB, and Apache

[ 16 ]

Click on Next to proceed with the installation.

In this step, we will be assigning a default location for the XAMPP package to 
be installed. As this is a default installation, let us continue with the installation 
by clicking on Next as shown in the preceding screenshot. This is the last step of 
installation and the XAMPP server stack is now installed.



Bonus chapter 1

[ 17 ]

The XAMPP control panel, as shown in the following screenshot, is the control station 
for all the tools that XAMPP provides. As we are only utilizing the Apache web server 
and PHP's interpreter libraries, we will leave the rest of the tools turned off. The 
XAMPP server stack is installed in C:/xampp. To access the necessary configuration 
files, browse C:\xampp\apache\conf for Apache and C:\xampp\php for PHP. The 
default document root for XAMPP stack is located at C:\xampp\htdocs. Let us create 
an HTML test page to verify that the Apache web server is working as expected.

This is a simple HTML test page that we will be creating in the C:\xampp\htdocs 
folder; text of our choice can be used to create this document. I have used  
Notepad++ for building this page and would recommend using this editor. Now  
that we have the HTML page ready, let us verify if Apache is able to serve this page.

As seen from the preceding screenshot, the Apache HTTP Server provided by the 
XAMPP stack has served our test HTML web page as expected. Now let us move 
forward with our installation of the MariaDB database server. For the installation 
of MariaDB on Windows, we will have to download the latest stable MSI package 
of the MariaDB server. The latest MSI package available for installation during this 
book being written is 5.5.34, and it is advised to visit the Downloads section on the 
MariaDB website at https://downloads.mariadb.org/mariadb to download the 
latest version. Once the download has been completed, right-click on the installer 
and run it as an administrator.

https://downloads.mariadb.org/mariadb


Installation of PHP, MariaDB, and Apache

[ 18 ]

Next, refer to the following screenshot:

This is the initial screen. Click on the Next button and accept the terms in the license 
agreement after going through them. You will come to a screen as shown in the 
following screenshot:



Bonus chapter 1

[ 19 ]

Choose a strong password for the root user and click on the Next button. We will 
be discussing the use of allowing users to access our MariaDB server from remote 
machines in the next chapters. We will thoroughly address the benefits, hazards,  
and precautions for allowing access from remote machines. The following screenshot 
shows the default properties for the database configuration:

As this is a default installation, we will not be changing any of the existing values. 
Keep in mind that the MariaDB server will be running on port 3306, so the MySQL 
server on XAMPP should always be turned off. If not, both the daemons will 
compete to use the same port. 



Installation of PHP, MariaDB, and Apache

[ 20 ]

After our installation is completed, we will come to the screen shown in the 
following screenshot:

Our installation has completed and is successful. Now to connect to our MariaDB 
database server, click on Start, then click on All Programs, scroll down to MariaDB 
(5.5), and click on MySQL client (MariaDB 5.5) to fire up a client connection to our 
MariaDB database server. MariaDB database server would by default assume that a 
root user has requested the client connection access, and would prompt the user to 
enter the root user's password. Upon successful login, the user will receive a success 
message that would let them run queries against the MariaDB database server as 
shown in the following screenshot:

MySQL Workbench is a popular GUI tool that can be used to 
connect to MariaDB and execute queries.



Bonus chapter 1

[ 21 ]

Installing AMP on Linux (Ubuntu)
There are multiple distributions of Linux, of which Ubuntu is one of the most 
popular distributions among open source programmers. We will be using Ubuntu 
13.10 (Saucy Salamander), the latest Ubuntu distribution that is available. Saucy 
Salamander arrives with preinstalled Apache web server. The default document  
root for Apache on Ubuntu is /var/www. Now let us create an HTML test page to 
verify that Apache web server is working as expected, shown as follows:



Installation of PHP, MariaDB, and Apache

[ 22 ]

Now that we have verified that Apache is up-and-running, we will need to install 
PHP 5.5 and MariaDB. To install PHP 5.5, we will be using Ondrej Sury's repository, 
which is available for open source development. To execute these commands, open 
up a terminal window and run these commands step-by-step. We would need the 
sudo permissions for executing these commands successfully shown as follows:

Upon successful installation of PHP 5.5, we will move to the installation of  
the MariaDB database server. For the installation of the MariaDB database server,  
we will be using Open Source Lab's mirror that hosts the required binaries.  
Use the terminal window and execute these commands step-by-step as shown  
in the following screenshot:

Upon successful installation of the MariaDB database server, use the existing 
terminal window to request a client connection to the MariaDB server. Use MySQL's 
-u operator to specify the user as root and use the -p operator for providing a 
password on prompt, and press Enter. Then the user will be prompted to enter  
the root user's password as shown:



Bonus chapter 1

[ 23 ]

Summary
This chapter deals with a basic introduction to web development and how  
Apache, MariaDB, and PHP (AMP) stack can be used for web development.  
We have thoroughly gone through the process of installing and configuring the  
AMP stack on the Mac OS X, Windows, and Linux (Ubuntu) operating systems.

In the next chapter, we will begin an introduction to the relational Database 
Management Systems and Structured Query Language; we will also understand  
how MariaDB can be used for data storage.




