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Apache Spa-R-k
Chapter 1, Simple Parallelism with R introduced the segue package as a simple means 
to directly utilize a Hadoop cluster, hosted within the cloud on Amazon Web 
Services, direct from your local laptop R session. However, during the writing of 
the book, it became clear that the new Big Data kid-on-the-block, Apache Spark, 
had not just arrived on the scene, but was potentially going to eclipse Hadoop and 
its MapReduce implementation as the platform of choice for running large scale 
data analysis on clusters of commodity hardware, not only reliably, but also with 
interactive levels of performance.

As the author, I decided that I wanted to include a description of this important 
and increasingly popular new parallel distributed big data processing technology 
in the book. As the writing of the book developed so also has Apache Spark and its 
integration with R. My original effort at documenting Spark was quickly superseded 
by its rapid technical development—the interface available from R has been through 
several revisions. The decision was therefore made to create a soft format bonus 
chapter describing the latest available version of Apache Spark and its accompanying 
SparkR package, enabling this aspect of the book to be as late breaking as possible. 
A new major release of Spark, version 2.0, which will improve its mixed workload 
ability for processing both real-time and bulk data, is also due for release later in 
the year. Therefore, Apache Spark is going to continue to maintain and grow in its 
importance as a high-performance processing framework for big data analytics.

At the time of writing this chapter, the latest available release of Spark is version 
1.6.1, released in March 2016, and it is this version that we will focus on in this 
chapter.

So, with our most modern data science hats now adorned, let's find out what all the 
fuss has been about with Apache Spark, and discover how it can be utilized from R.
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In this bonus chapter, we will cover the following topics:

• Installing and setting up a Spark compute cluster
• Using the SparkR package to interact with a Spark cluster from R
• Spark's core Resilient Distributed Datasets programming abstraction (RDD)
• Partitioning RDDs for parallelism
• Importing and Exporting data from Spark
• RDD transformations and actions

About Spark
The development of Spark started in 2009 at Berkeley University's AMPLab, 
where researchers sought to improve on MapReduce to enable iterative and real-
time data processing at scale. Spark was open sourced in 2010, and migrated to 
becoming an Apache-shepherded project in 2013. By late 2014, Apache Spark had 
been fully adopted by the main big data platform distribution providers including 
Hortonworks and Cloudera. Today, it has the most active development community 
of all the big data technologies, and has demonstrated 100x speed-up, compared to 
Hadoop MapReduce, for various types of processing workload.

Apache Spark achieves its impressive performance through a combination of 
in-memory processing, controllable caching of reusable data, and maintaining a 
computational dependency tree that, through lazy evaluation, ensures that only  
the required data is accessed when required for a given complex processing task.

Apache Spark's popularity is also due to its support for a number of different 
processing models within a single platform architecture including: an optimized 
machine learning library (MLLib), a parallel SQL engine that supports both 
structured and semi-structured data, a graph processing engine (GraphX) for 
computing relationships between entities (for example, for analyzing social 
media networks), and a micro-batch mechanism (Streaming) for real-time data 
processing. Apache Spark also has some compatibility with Hadoop, with its own 
implementation of map/reduce operations, and is able to directly read and write 
data in many different formats including direct interoperation with the Hadoop 
filesystem (HDFS), thereby easing data application migration from Hadoop to Spark. 
All these capabilities make Apache Spark a highly attractive one-stop-shop for a 
wide range of both explorative analysis and production data processing pipelines.
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At the core of Spark is its parallelized data abstraction, Resilient Distributed 
Datasets (RDD). An RDD is a collection of data elements partitioned across the nodes 
in the Spark cluster, which can be operated on in parallel. Although RDDs are how 
the internals of Spark work with data, for R itself, a higher level interface abstraction 
is made available from the SparkR package, namely, the DataFrame. The Spark 
DataFrame enables implicit parallel manipulation of the potentially massive tables 
of data distributed across the Spark cluster. Unsurprisingly, Spark's DataFrame 
has much similarity with R's own native tabular data namesake, data.frame, and 
supports a similar set and style of operations that you may already be familiar  
with from the popular R package, dplyr. There is also interface support from R  
for utilizing aspects of Spark's MLLib.

The SparkR package is now made available as part of the standard Spark 
distribution, both binary and source. 

The remainder of this chapter will describe how to install and set up Spark, and how 
you can take advantage of its large-scale, reliable, and high-performance in-memory 
processing directly from R by using the SparkR API.

Installing and setting up Spark and 
SparkR
The first component to download and install is Spark itself from the main Apache 
site at http://spark.apache.org/downloads.html. The version of Spark I have 
used in this chapter is 1.2.1, compiled with the default option for Hadoop 1.X. You 
will need to uncompress and unarchive the pre-built binaries and download them 
into a suitable directory on your computer.

Although Spark is written in a language called Scala, Scala itself compiles to Java 
bytecode. Since we are using the pre-built binaries, you only need to have Java 
(version 6 or later) installed on your system in order to run Spark.

The second component to download and install is the SparkR package. At the time 
of writing, SparkR is still in its pre-production phase and is made available in source 
form from GitHub. By using another R package, devtools (itself available directly 
from CRAN), you can use the following command directly from within your R 
session to both install and compile SparkR:

> library(devtools)

> install_github("amplab-extras/SparkR-pkg", subdir="pkg")
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This will take several minutes to download the package and auto-run the SparkR build 
script, and will generate substantial logging output to the console as it proceeds.

Note that SparkR has a dependency on the rJava and testthat packages. 
You should review the current details on the prerequisites and installation 
instructions for SparkR, as described on the project's GitHub page at 
http://amplab-extras.github.io/SparkR-pkg/.

The simplest SparkR program
Once the installation process completes, you can run the following sequence of R 
commands to test all is well:

> sc = sparkR.init(master="local")

Launching java with command  java …

01/03/12 19:45:12 INFO Slf4jLogger: Slf4jLogger started

> rdd <- parallelize(sc, 1:100)

> rdd2 <- lapply(rdd, function(x) { x + 100 })

> cache(rdd2)

> take(rdd2,1)

[[1]]

[1] 101

> sparkR.stop()

Stopping SparkR

01/03/12 19:47:31 INFO RemoteActorRefProvider$RemotingTerminator:  
  Remote daemon shut down; proceeding with flushing remote  
  transports.

Some of the output in the preceding code has been removed for brevity. This simple 
sequence of half a dozen statements touches on the main features of a SparkR 
program including lazy evaluation of RDDs. 

The call to sparkR.init() creates a special local standalone Spark quasi-cluster 
within the context of what is known as the Driver Program, and returns a handle 
to the specific Spark Context for our newly created R Spark application instance. 
The next statement, parallelize(), creates an RDD containing 100 elements with 
the values 1 to 100, and returns a handle to the RDD. The third statement is an RDD 
transformation, and uses SparkR's lapply() to add 100 to each element of rdd, 
creating a second separate RDD with the reference handle rdd2. Note that rdd2 is 
not itself evaluated at this point. 
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The fourth statement effectively marks rdd2 for caching according to the default 
persistency setting, which, in this case, is the default of in-memory only. Again, 
nothing is calculated or persisted at this point; this will only happen when the 
RDD is next evaluated.  The very next statement, take() (an action), retrieves the 
first (optimal access) element value in rdd2 from the cluster, causing the RDD to 
be evaluated, and materializes (in this case) the value 101 into the R session itself. 
Finally, the call to sparkR.stop() terminates our Spark application instance; in this 
case, because the cluster was explicitly created (master="local") rather than pre-
existing, the "cluster" is also itself completely shut down rather than just disconnected.

If you wish to quickly look ahead in this chapter, take a look at the bottom-half of 
Figure 5—you will see a depiction of the Spark system level components that are 
active under this example of a default local configuration of a Spark cluster within 
the driver program. We will see later how we can create a persistent running Spark 
cluster to which multiple running R sessions can potentially connect and execute 
parallel operations.

Testing SparkR programs:
For testing the correctness of SparkR programs on a small machine such 
as a laptop, using the master="local" setting can be very useful, 
though it is important to remember that you will be much more limited in 
performance, particularly with regard to holding RDDs in memory. So, it 
is best to use this approach with relatively small sample datasets.

The Spark application web console
But first, let's rerun the previous script one statement at a time, and take a look at the 
additional web-based system monitoring that comes built-in with Spark.

> sc = sparkR.init(master="local")

Once this command has been run, start up your favorite web browser, and type in 
the URL: http://localhost:4040. You should see a web page similar to the Figure 
1 given next. This is the application monitoring console showing the currently active 
and past jobs executed by our SparkR application instance.



Apache Spa-R-k

[ 6 ]

Note that the default name given to our application is displayed in the top-right 
corner on the menu bar of the page preceding application UI—in this case, SparkR. 
An option to sparkR.init() allows you to set the name of your application  
instance explicitly.

Figure 1: SparkR application monitoring web console showing initial jobs start-up state.

If you switch to the Executors tab, you will see a screen similar to Figure 2, where a 
Java Virtual Machine, designated "driver", has been started up. Since we are running 
a local cluster, this is the executor that will be used to perform any parallel data 
processing operations. The Spark framework is itself implemented in Scala/Java, 
but is capable of executing code written in other languages. SparkR ensures that 
the JVM will be able to run any R code necessary to carry out the computation by 
automatically transferring the required variables and function definitions across the 
wire to the executing JVM. There are some aspects of this we need to be more aware 
of when running our R session against a remote cluster, which we will cover later in 
the chapter.

Figure 2: SparkR Application monitoring showing local "driver" JVM task executor.
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Now run the following command:

> rdd <- parallelize(sc, 1:100)

If you look at the main Jobs tab in the web console, you will see three completed  
jobs associated with this one RDD creation statement. Spark maps the high-level 
RDD API calls into an efficient sequence of tasks that are run by the allocated  
cluster executors.

Run the next two statements:

> rdd2 <- lapply(rdd, function(x) { x + 100 })

> cache(rdd2)

And now look at the Storage tab in the web console—it will be empty. Until rdd2 is 
evaluated, for example, by running an action, it will not be manifested in the cache. 
So let's do that by executing the take() statement:

> take(rdd2,1)

And then look at the Storage tab—it should now have a single entry similar to the 
one shown in the following screenshot:

Figure 3: SparkR web console showing an RDD has been manifested in the cache.

Partitioning RDDs for parallelism
RDDs are distributed in terms of partitions. As you can see in the Cached Partitions 
field in Figure 3, our simple example RDD has been cached with only one partition, 
which effectively means that parallelism will be limited for this dataset to a single 
processing task. A Spark task is a single unit of work, and even if we had more than 
one worker, a single task cannot be split between multiple workers.
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Helpfully, you can directly repartition an existing RDD into more (or less) partitions 
with the following (note the use of the L qualifier to indicate to R that an integer, 
and not a numeric value, must be passed as the parameter type for the number of 
partitions requested):

> rdd4 <- repartition(rdd2,4L)

> numPartitions(rdd4)

[1] 4

> numPartitions(rdd2)

[1] 1

Notice how the number of partitions for rdd2 has remained unchanged—we have 
created a new rdd4 with the same set of elements, but now split into four separately 
taskable smaller parts. One thing to be aware of is that repartitioning large datasets 
can be a time consuming process requiring data to be shuffle-exchanged amongst 
the workers. Spark does this in order to spread data evenly, and ensure a balanced 
parallel workload. You can see just how much shuffling has been invoked with an 
RDD operation through reviewing the Stages tab in the web console. As we can see 
in Figure 4, the repartition (stage number 8) invoked a shuffle write of nearly the size 
of the whole dataset.

It is useful to observe this aspect of Spark execution with the web monitoring 
console, particularly if you find your program taking a long time to run, since this 
could be indicative of significant data shuffling—something that we want to to 
reduce from happening in order to maintain highest performance.

A key aspect of partitioning an RDD is the relationship between partitions which 
result in an equivalent number of tasks, and the number of tasks to be computed 
by each worker in the cluster. The general rule of thumb—though "caveat emptor!" 
still applies—is to have a minimum of two to four tasks per partition per separate 
worker node. So, if we have a cluster of 10 workers, then splitting RDDs into at least 
40 partitions will ensure efficient use of the cluster resources, reduce the impact of 
workload imbalance, and deliver best overall performance.
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Figure 4: Observation of the need for potentially expensive data shuffling (stage 8) when repartitioning RDDs.

Now all we have to do is increase the number of cores available to our cluster from 
the default of just one. To do that, we are going to shut down our current local 
cluster by calling sparkR.stop(), and fire up a separate standalone cluster with 
multiple workers to provide full parallel compute.
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Firing up your own Spark cluster
The arrangement of the Spark cluster that we are going to create is depicted in Figure 
5. We will launch a separate Master and two Workers using the appropriate Spark 
command line shell scripts. The diagram shows the key components highlighting the 
default web monitoring URLs for each component, and the basic steps involved in 
running up your own cluster, which we will now explore in detail.

Figure 5: SparkR driver program, and Spark cluster Master/Worker configuration.

Starting the Master
First fire up a terminal window on your system, change directory to the location of 
your downloaded Spark installation, and then type the following at the command-
line prompt to start the Master:

prompt$ ./sbin/start-master.sh 

starting org.apache.spark.deploy.master.Master, logging to  
  /Users/simon/Downloads/spark-1.2.1/sbin/../logs/  
  spark-simon-org.apache.spark.deploy.master.Master-1-Simons- 
  MacBook-Pro.local.out



Appendix

[ 11 ]

The Master has its own web monitoring console, and, by default, this will be 
accessible at http://localhost:8080. Typing this into your favorite web  
browser should yield a web page similar to Figure 6:

 Figure 6: Master's web monitoring console at its default URL of localhost:8080  
in its initial state with no Workers.

Note the Spark URL being advertised by the Master is spark://Simons-MacBook-
Pro.local:7077; we use this when starting up a Worker so that it knows which 
Master to register itself with.

Starting the Workers
There are two key aspects to Workers that we want to control—how much memory 
and how many processor cores they use. The start script for a Worker allows us 
to control these two aspects directly with command-line parameters. Spark also 
operates with configuration files. TODO add reference link for how to manipulate 
configuration files.

On my MacBook Pro, there is a maximum of 16 GB memory space that is available 
along with four processing cores. Let's start the two Workers with 6 GB of memory 
(-m option) and two processing cores (-c option) each (note that Spark terminology 
uses slave and worker interchangeably):

prompt$ ./sbin/start-slave.sh 1 spark://Simons-MacBook-Pro.local:7077  
  -m 6G -c 2

starting org.apache.spark.deploy.worker.Worker, logging to  
  /Users/simon/Downloads/spark-1.2.1/sbin/../ 
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  logs/spark-simon-org.apache.spark.deploy.worker.Worker-1 
  -Simons-MacBook-Pro.local.out

Let's take a quick glance at the Worker's log file, you should output similar to the 
following (some of the output has been trimmed for brevity):

…

15/03/14 17:59:06 INFO Remoting: Starting remoting

15/03/14 17:59:06 INFO Remoting: Remoting started; listening on  
  addresses :[akka.tcp://sparkWorker@localhost:50287]

15/03/14 17:59:06 INFO Remoting: Remoting now listens on addresses:  
  [akka.tcp://sparkWorker@localhost:50287]

15/03/14 17:59:06 INFO Utils: Successfully started service  
  'sparkWorker' on port 50287.

15/03/14 17:59:07 INFO Worker: Starting Spark worker localhost:50287  
  with 2 cores, 6.0 GB RAM

15/03/14 17:59:07 INFO Worker: Spark home:  
  /Users/simon/Downloads/spark-1.2.1

15/03/14 17:59:07 INFO Utils: Successfully started service 'WorkerUI'  
  on port 8081.

15/03/14 17:59:07 INFO WorkerWebUI: Started WorkerWebUI at  
  http://localhost:8081

15/03/14 17:59:07 INFO Worker: Connecting to master spark://Simons- 
  MacBook-Pro.local:7077...

15/03/14 17:59:07 INFO Worker: Successfully registered with master  
  spark://Simons-MacBook-Pro.local:7077

You can see from the logging output that the Worker is communicating with the 
Master  through a Spark-specific protocol channel.

We launch the second worker in the same way as previously, except that the first 
argument to the launch script is 2 rather than 1 in order to assign a distinct numeric 
ID to the second worker:

prompt$ ./sbin/start-slave.sh 2 spark://Simons-MacBook-Pro.local:7077  
  -m 6G -c 2

starting org.apache.spark.deploy.worker.Worker, logging to / 
  Users/simon/Downloads/spark-1.2.1/sbin/../logs/ 
  spark-simon-org.apache.spark.deploy.worker.Worker-2-Simons- 
  MacBook-Pro.local.out
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Some of the content of this second Worker's log file is as follows:

15/03/14 18:00:12 INFO Worker: Starting Spark worker localhost:50357  
  with 2 cores, 6.0 GB RAM

…

15/03/14 18:00:12 INFO WorkerWebUI: Started WorkerWebUI at  
  http://localhost:8082

15/03/14 18:00:12 INFO Worker: Connecting to master spark:// 
  Simons-MacBook-Pro.local:7077…

15/03/14 18:00:12 INFO Worker: Successfully registered with  
  master spark://Simons-MacBook-Pro.local:7077

You can also see from their logging output that each of the Workers has its own web 
monitoring page (WorkerWebUI)—the first worker providing its monitor at http://
localhost:8081, and the second at http://localhost:8082, similar to Figure 7 
that follows:

Figure 7: Worker's web monitoring console in its initial state with no application executors created.
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If we also now look back at the Master's web console, we will see the two Workers 
are indeed registered, as in Figure 8.

Figure 8: Master's web monitoring console showing both Workers registered.

Note how the Master has listed the total amount of resources at its disposal in the top 
half of the page: two Workers, four cores and 12 GB of memory. Now that we have 
our Spark cluster up and running, we just have to connect our R session to it…

Connecting SparkR to a running cluster
Connecting to a running Spark cluster and creating our SparkR context is really very 
simple, and is done by passing in the Master's spark URL as the value of the master 
parameter. However, we also need to take into consideration how much of the 
Workers' resources we want to use when running our application.
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A Spark cluster is designed to accommodate many running applications by creating 
separate executors for each application instance with their own private portion of 
memory. This separation introduces a layer of both safety and security; an executor 
from one application cannot interfere with the data being processed in another. We 
can tell Spark how much executor resource to use when we connect to the Master by 
passing in additional sparkEnvir environment arguments as follows:

> sc = sparkR.init(master="spark://Simons-MacBook-Pro.local:7077",

appName="MyRApp", sparkEnvir=list(spark.executor.memory="6g"))

Easy! You can now verify our R session is connected by once again reviewing the 
Master's web console, as shown in Figure 9 that follows. You should notice that  
the application entry is now present for our explicitly named App MyRApp, and  
that both the workers have allocated the 6 GB of memory we had requested for  
our application.

To round out our view of the web monitoring consoles, Figure 10 and Figure 11 show 
the executors in use by our application on both of the workers. This is also reflected 
in the application web monitoring console itself, as in Figure 12 which shows the 
Executor tab including the driver program's JVM executor.

Hopefully, by now you have a fairly complete view of what a Spark cluster looks 
like on the inside so-to-speak, how to start one up, and how to navigate the various 
monitoring screens that are available. All of this cluster structure is as depicted 
earlier in Figure 5. Working with a remotely located Spark cluster running in the 
cloud is a very similar experience.

Now, however, its time to look at SparkR API in detail, and the various RDD 
transformations and actions it provides within its 70+ function interface.

Shutdown cluster? Start cluster with ability to shut it down from web console?

Worker states? Separation of worker configuration from application configuration.
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Spark on AWS?

Figure 9: Master's web monitoring console showing our R session as a newly registered application.

Figure 10: Worker 1's web monitoring console showing the Application Executor JVM its running.
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Figure 11: Worker-1's web monitoring console showing the Application Executor JVM its running.

Figure 12: Our application's web monitoring console showing the three Executor JVMs,  
one from each Worker, and its own driver program JVM executor.

Types of RDD
An RDD is essentially a table of data. Each column of data can be made up of a 
numeric or string value, but must remain consistent across all rows in the table. The 
RDD abstraction itself does not name individual columns or provide simple typing 
information as say a DataTable in R.
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Note:
Spark 1.3 introduces a new abstraction called Data Frame, which adds 
naming and typing metadata to the underlying RDD abstraction, and 
provides an extended API for easy manipulation of data frames. Spark 
1.4, was released in July 2015, is due to include this new Data Frame API 
for SparkR. Data frames do not detract from RDD itself—they provide 
additional convenience and some extra efficiency for applying basic 
operations to tabular data.

SparkR RDD Transformations
The following table provides a short description of each of the RDD transformations 
available in SparkR. Recall that a transformation is an operation on an RDD that 
generates another separate RDD, creating a computational dependency chain, which 
is only evaluated by Spark whenever an action is applied to generate a result for 
consumption by an application, that is, Spark applies lazy evaluation.

For the mini examples presented in the table, the following R script preamble  
is assumed:

RDD Transformation Description
aggregateByKey

cogroup

combineByKey

coalesce

Related: repartition
Equivalent to repartition()

distinct

filterRDD

flatMap

flatMapValues

foldByKey

Related action: fold
groupByKey

join

fullOuterJoin

leftOuterJoin

rightOuterJoin

keyBy



Appendix

[ 19 ]

RDD Transformation Description
keys

lapply

lapplyPartition

lapplyPartitionsWithIndex

Related: map

Equivalent to map. The duplicated naming 
reflects the intersection of the R (lapply) world 
with that of the Hadoop (map/reduce) fraternity.

map

mapPartitions

mapPartitionsWithIndex

mapValues

Related: lapply

map(), mapPartitions(), and 
mapPartitionsWithIndex() are all 
interchangeable with their similarly named 
lapply() cousins: see previous entry in table 
for equivalent description.
mapValues 

parallelize

numPartitions

partitionBy

hashCode

reduceByKey

repartition

sampleRDD

sortBy

sortByKey

unionRDD

values

zipWithIndex

zipWithUniqueId

SparkR RDD Actions
The following table provides a short description and examples of each of the RDD 
actions available in SparkR. An action returns a result to R from a potentially 
complex and large chain of RDD transformations. If repeated actions on an RDD are 
expected, then performance can be significantly improved by persisting the end of 
chain RDDs and action intermediate RDDs.

For the mini examples presented in the table, the following R script preamble is 
assumed:

> sparkR.init()   # Starts a local Spark cluster instance

> rdd123 <- parallelize(sc,c(11,11,11,22,22,33))
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> rdd09 <- parallelize(sc,0:9)

> rdd092 <- repartition(rdd09,2L)

> rddAZ <- parallelize(sc,c('A','B','C','D','E','V','W','X','Y','Z'))

> rddAZ2 <- repartition(rddAZ,2L)

> rddAE <- parallelize(sc,c('A','Z','B','X','D','V','C','Y','W','E'))

> tuples <- list(list('A',10),list('B',20))

> rddABtuples <- parallelize(sc,tuples)

> rddABduples <- parallelize(sc,append(tuples,tuples))

RDD action Description
aggregateRDD

collect(RDD)

collectPartition(RDD, 
index: integer)

collectAsMap(KV_RDD)

collect() returns the contents of the RDD as an R list in 
its natural order, that is, the order in which the data was 
presented when the RDD was created.
> collect(rddAZ2)

[[1]]

[1] "A"

…

[[10]]

[1] "Z"

collectPartition() allows you to select the partition of 
the RDD that is returned: note that partitions are numbered 
according to JAVA indices, that is, from 0 to N-1, as 
opposed to 1 to N:
> unlist(collectPartition(rdd092,0L))

[1] 0 2 4 6 8

> unlist(collectPartition(rdd092,1L))

[1] 1 3 5 7 9

collectAsMap() returns the contents of a key-value RDD 
as an R named-list:
> map <- collectAsMap(rddABtuples)

> map$A

[1] 10

> map$B

[1] 20
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RDD action Description
count(RDD)

countByKey(KV_RDD)

countByValue(RDD)

count() simply returns the number of elements in the 
RDD, and is equivalent to length(rdd):
> count(rdd123)

[1] 6

> count(distinct(rdd123))

[1] 3

countByKey() counts the number of distinct keys in a key-
value RDD, returning a nested list of results:
> countByKey(rddABduples)

[[1]]

[[1]][[1]]

[1] "A"

[[1]][[2]]

[1] 2

[[2]]

[[2]][[1]]

[1] "B"

[[2]][[2]]

[1] 2

countByValue() counts the number of distinct 
occurrences of each value in an RDD—useful for creating 
frequency distributions:
> unlist(countByValue(rdd123))

[1] 11  3 22  2 33  1 # 11=3,22=2,33=1

fold

Related: reduce
lookup

maximum(RDD)

minimum(RDD)

maximum() and minimum() scan the whole RDD to locate 
the numerically highest and lowest values:
> minimum(rdd09)

[1] 0

> maximum(rddAZ)

[1] "Z"

> maximum(values(rddABtuples))

[1] 20



Apache Spa-R-k

[ 22 ]

RDD action Description
reduce

Related: fold
reduceByKeyLocally

Related action: 
reduceByKey

take

takeOrdered

takeSample

top

SparkR System & Data Management API
The following table deals with, essentially, the "leftovers" in the SparkR API— 
those operations which are about the messy practicalities of making the clean RDD 
abstraction work, including system interaction and data management.

API call Description
broadcast

value

setBroadcastValue

Use value to access the broadcast variable inside 
your compute function.

cache

persist

unpersist

Equivalent to persist()

checkpoint

setCheckpointDir

foreach

foreachPartition

includePackage

objectFile

saveAsObjectFile

pipeRDD

print.jobj

textFile

saveAsTextFile


