
Chapter 15

[1]

The Mono County Site
As I was writing this book, I decided it should be a text book; something you can
take to the beach and read, without a computer anywhere near, and learn what web
development is all about. That is why the examples were kept intentionally short
and with only code snippets in print. The complete code for only a few chapters,
which you can use to test during those hopefully rare moments when you are at a
computer, are available online at Packt Publishing's website.

However, the book would not be complete without a full example of a website or
application where we apply most, if not all, the things we have learned. This is what
this chapter does, and as it only makes sense to try it out right away on a computer,
it is only available online.

Our sample web application
You may have deduced, from the examples that I used and the names of the people
and places that appear in them, that I am also a photographer and a big fan of the
Eastern Sierra portion of California. I even went as far as to write a book about it.

At first, I was thinking of doing a photo gallery as our full example, but instead,
I opted for what could be the website of the Chamber of Commerce of my favorite
county in California—Mono County. Using a Chamber of Commerce website as an
example has the benefit of being more than a photo gallery, so there will be more
opportunities to use some of the elements we learned about in this book. As for
choosing Mono County...

The Mono County Site

[2]

Mono County
Mono County, California, is located between the east entrance of Yosemite
National Park and the border with Nevada. The main road that goes through it is
the extremely beautiful US 395, which travels in a north-south direction. The town
of Bishop is south of the county; Lake Tahoe and Carson City, NV are to the north.

It is a paradise for photographers, hikers, and flyfishers. It is part of the Eastern
Sierra: the area on the east side of the Sierra Nevada mountain range. The county
seat is the small town of Bridgeport, CA.

Its major attractions, besides the High Sierra portion of Yosemite National Park, are
the very unique Mono Lake, Mammoth Lakes (for skiing in winter and mountain
biking in summer), and Bodie, which is a mining town from the Gold Rush days,
turned into a state park. Its true appeal is the great view you can have from US 395,
and all the wonderful lakes you can hike to at elevations exceeding 10,000 ft. My
personal favorite part of Mono County is the wonderful town of June Lake.

However, this is not a tourist guide; this is a book about web development; so
without further delay, we need to start working on our website. I just wanted to give
you an idea about what kind of things and towns the website will need to talk about.

Progressive enhancement – the basic
site (monocountybasic.html)
Before we start our Mobile first, responsive design killer website, we need to create an
old school static one, so people visiting our site using old browsers can actually see
useful information rather than a blank screen. We explained this in an earlier chapter
and now we will give you a real example.

For each of the main attractions of Mono County, we will create a page with some
information and a photograph. One photograph is enough, as we want to encourage
people to look at our site using a modern browser. On the home page, we will have
a menu with links to these pages, and photographs that will also act as links to those
same pages. We can safely assume that the only people who will be looking at this
will be using a decent size computer screen, so we can specify that a width of. 950px
wide is a good choice.

Chapter 15

[3]

The east entrance of Yosemite National Park is at 9,943 feet and is called Tioga Pass.
The entire area around it is beautiful for hiking, both inside and outside the park.
Its best kept secret is Saddlebag Lake, which is a reservoir with 20 lakes on the other
side of it, that you can reach by water taxi in the summer time. So, we will use Tioga
Pass as one of our menu items. The others will be June Lake, Mammoth, Bodie, Mono
Lake, and Lee Vining. The town of Lee Vining is at the junction of the road coming out
of Yosemite and US 395, and is visited by thousands of tourists every year. Most of
them may not remember the name of the town.

We will create a very basic CSS file, where we will specify a background color and
some simple, yet cute, borders for our photographs. As far as fonts go, we need to
make sure we include in the font-family list fonts that are very common in older
computers running Windows, such as Verdana or Arial.

As we are going to eventually have JavaScript files, CSS files, and other kinds of files,
it is best to create subfolders in our project directory to contain those. So, these could
be our basic site components:

•	 basic.css (in a folder called styles)
•	 monocountybasic.html

•	 tioga.html

•	 junelake.html

•	 monolake.html

•	 bodie.html

•	 mammoth.html

•	 leevining.html

We also include an index.html file to glue all the examples together. With our
progressive enhancement approach and the future use of Foundation in mind, we
put our Mono County description in <div> with the class row, our six photos in
<div> with the id basicbody, and add an empty <div> with the id varicontent. In
our basic CSS file, we make sure the latter is not visible. Why? Once we start filling it
up, we do not want people who are forced to see the basic version of our site to see
any of the HTML we are going to put inside it.

Our basic menu is a styled in basic.css, but we wrap an HTML <nav> and
<section> tag around it with the appropriate Foundation classes for an on-canvas
top-menu.

The Mono County Site

[4]

Testing enhance.js
(monocountyenhancetest.html)
Next, we will add the enhance.js testsuite to the code that we described in Chapter 12,
Mobile first, Responsive Design with Progressive Enhancement. To make sure that
everything works, we load a different CSS file, using a lighter background color, and
load the jQuery library when the tests are successful. We use the copy of jQuery that
comes with Foundation, so we put that one in foundation5/js/vendor/jquery.js.
For enhance.js, we use a separate folder.

To check if jQuery works, we add a small JavaScript file that actually changes the
color of the header text. Now we know enhance.js works.

Starting to build the home page with
Foundation (monocountyfoundation.html)
Now that we have set up our basic site in the spirit of progressive enhancement,
it is time to produce the skeleton of our Foundation based site. You should have
downloaded the framework itself by now, as we have already used its copy of
jQuery. We now add the relevant files to load in the enhance() function.

You will notice that, because of the inclusion the Foundation CSS file, our Mono
County description is in a different font and size. And because we wrapped a <div>
with the class row around it, our site is already partially responsive.

The same is the case with the menu. It already has the Foundation look and feel, but
when we click on a menu item, we still land on a different, static page. However,
this required a little bit of extra work. In the basic stylesheet, we gave our horizontal
menu some styling, using the class horizontalmenu. We use JavaScript to remove
that class in this intermediate version of our site.

This might trigger our first case of Flash of unstyled content (FOUC). The menu
shows up as being way too big and long and then reappears as a smooth, Foundation
style menu. We can avoid this by taking advantage of our knowledge that enhanced.js
adds a class enhanced to the html element and enhance our basic.css file with
the lines:

html.enhanced #mainmenu {
visibility:hidden;
}

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=b2cd4643-2030-62af-4671-53bbc03803e3

Chapter 15

[5]

Of course, in the JavaScript file where we remove the class horizontalmenu, we will
have to show it again, like this:

$('#mainmenu').show();

The only other thing we need inside it at this point is to hide the #basicbody <div>
as we are about to start putting content in the #varicontent <div>. We also include
jQuery code to make the, albeit still empty, #varicontent visible.

Mobile first – determining what is
important
Mobile devices with HTML5 capable browsers support cool features that are not
available on computer screens. Simple and common features include touching, sliding,
and so on; others that are more typical for these devices are GPS capabilities, audio,
video, and automatically dialing a phone number if the device is a phone. This is
intended to be a bonus chapter, not an entirely new book, so we will not cover adding
support for these features.

What we want to be focused on here is what information the mobile visitor is
interested in and how we are going to give them access to it. Monthly costs of using
smartphones have come down and bandwidths have gone up but that does not mean
that we need to make the service providers of our visitors rich (and our visitors poor)
by forcing downloads of high resolution photographs and then having the browser
shrink it to size.

If you use headers and footers on small screens as well, the eye-catching info on the
homepage may not be visible on a GSM without scrolling down first.

So, I recommend, and Foundation makes this easy for us to do, not to show the
following on a small screen:

•	 headers
•	 footers
•	 slideshows

On the other hand, we want to use the cool off-canvas capabilities to have a menu
show up as if it were coming from right next (it is actually left) to where the phone is,
with the main information and contact information first on the list.

Put down your thoughts on a piece of paper or on the smart drive that is inside your
brain, as you will need it later, not now.

The Mono County Site

[6]

The slideshow (monocountyowl.html)
Many modern websites start with a moving slideshow of pictures or other graphical
elements that are almost as wide as the screen, except on extremely wide ones. There,
the use of margin:auto is in order. For the actual size of the images, we recommend
1280px by 480px. It is recommended not to use photographs with a standard aspect
ratio of 4:3 or 6:4, because then visitors will have to always scroll down before they
see some of the information part on your home page.

Foundation includes and supports Orbit, a JavaScript portion of the framework,
to create sliders. This is what attracted me to Foundation to begin with. However,
Orbit is now deprecated (by the way, I find this to be one of the strangest words in
the English language). Depreciated may be a better choice.

At the time of writing this bonus chapter, the Foundation folks recommended
two alternatives: Slick and Owl. I decided to go with Owl. You can find them
at kenwheeler.github.io and owlgraphic.com, and make your own choice,
depending on your taste.

So, what are we using the slider for? We are using it to draw attention by using
photographs and adding some animation. With so much beauty present in Mono
County, the only challenge is probably to not include too many. I decided to go
with showing one photograph at a time.

The portion of our page that contains the slider will be a <div> that is inside our
#varicontent <div> , as we will also want some kind of headline or blog information
in the section between the header and the footer. I went for six photographs in total
on Mono County subjects. I have also added, as a caption, a short version of the text
that was used in the static files, so if people want to know what it is and nothing else,
no further navigation is needed. To accommodate Owl, we will need some additional
CSS and JavaScript, so we are adding myowl.css and myowl.js. The latter contains the
options we want to use for Owl and the code to start up the slider. The CSS file we can
use to style or caption.

All of this will eventually move into the real files we will use for the final version
monocountyhfooter.less, monocountyhfooter.css and a few JavaScript files.
What we are doing here, constantly changing filenames, is not the recommended
way of doing your development; it is just a didactical approach so you can follow
along with what the various steps are.

http://owlgraphic.com

Chapter 15

[7]

Adding less.js (monocountyless.html)
As we are about to add our own styling from now on, it would be smart to start using
less.js from this point on. This will allow us to better organize our CSS, making it more
manageable to change, and overall, having to write, you guessed it, less CSS.

So, we are modifying our code and are preparing ourselves for more (using less), by
downloading the less.js JavaScript file and creating a monocounty.less file.

For this example, so you can continue to follow this step by step, we will create a
monocountyless.less file in a folder called less. The only code we put in there is
to create a variable for what will be our color for h1 elements—to make it extremely
obvious that it works, we picked red for this example and added the simple CSS to
define the color of all our h1 elements, the less way:

@h1color: red;
h1{
color: @h1color;
}

Note that when you use the less files, the rel attribute has to be stylesheet/less.
Note also that enhance.js supports specifying the attributes in the following format:

 { href:'less/monocountyless.less', rel:'stylesheet/less',
type:'text/css' }

Using less should be for our development phase. Once we go to production, you
should convert your final less file into a css file, to avoid the overhead for the
people visiting your site.

Adding the blog section
(monocountyblog.html)
Next, we probably want some kind of blog section underneath the slider. This is
where the grid portion of Foundation will come in really handy. This content will
typically come out of a database, but here we just add some blocks of text so we
can test the responsiveness of our site. We want them to stack horizontally on wide
screens and vertically on narrow screens, and Foundation will do that for us.

The Mono County Site

[8]

The blog section mimics events that go on in Mono County. A main event is always
the opening of Tioga Pass, another one, the opening of the fishing season. This is
always the key part of a site that needs to be updated as often as possible. The challenge
there is usually that there needs to be an easy way for people who are not web
developers to be able to update/change/add content. We will give you a few hints
as to how to do that, at the end of the chapter.

We add a simple note for every one of our six Mono County topics.

The header and the footer
(monocountyhfooter.html)
Headers and footers are the apparent easy portions of a page, and also the ones that
usually never change. However, in responsive design, they offer challenges of their
own; headers often contain logos and header text. As a consequence, you use images
and text with large font sizes. This is the area where the smart use of media queries
can become extremely important. We may also want to simplify what the header/
footer contains once the viewport becomes smaller. As suggested before, we can also
leave them out completely on the smallest ones.

Footers typically contain additional contact information and useful links to other
sites, and usually have a copyright notice at the bottom. So, I added some links to
sites of our various popular Mono County destinations, giving it an id popular. For
the footer itself, I only included a Copyright line.

For the header, I just included a placeholder with a different background color. Both
of them are <div> elements with the id #header and #footer. After we create them,
we have to make sure we change our basic.css, so that nothing shows up on the
basic view.

The on-canvas menu: refurbishing the
menu (monocountynewmenu.html)
We promised a responsive design site and also a single application site where we
always remain on the same page, so now is the moment to refurbish our standard
menu, so that we actually replace a part of the page when a user clicks on a menu
item, rather than send them to one of the many static html pages.

Of course, a real killer site will have additional menu items and submenus. Our
exercise is to simply show you how to transform the existing basic menu into a modern
one, and nothing else. We will accomplish this task by using JavaScript (jQuery).

Chapter 15

[9]

We basically add an event handler that does what needs to be done when someone
clicks on a menu item. The first thing we need is to make sure what happened
until now no longer happens—going to another static html file. This is where the
JavaScript function, preventdefault(), comes in handy.

For the event handler to work, we simply add a class, spa, to the <a> tags in the
menu. I picked spa because what we are doing here is the first step to turning our
site into a Single Page Application. In the JavaScript file that comes with it, we
fetch the name of the original link and compose the name of the html file that needs
to be loaded.

So, when a user clicks on a menu item, we use the jQuery/Ajax load() function to
load in html from that file and replace the content of the #varicontent <div> by
that code. A convenient way to do this is to use the names of the original static html
files but to go fetch them in a different directory, in our case, foundation5/content.

In real life, things will be a bit more complex and we will typically pass a string to a
.php file using .post(), and extract what we need from a database.

Adding the history fix
(monocountyhist.html)
The Single Page Application approach has repercussions on what happens when a
visitor presses the BACK button in the browser. We spent an entire chapter on this
topic in the book, as it is that important. Now that we have changed partial content
of our page, each time a user clicks on a menu item, we need to make sure that part
works as well when they want to go back to what they think of as the previous page.

Fortunately, this is not difficult at all. Now may be the right time to go read the chapter
on this topic again. We just created JavaScript code to stuff #varicontent with the
appropriate content; we now simply add some more JavaScript to do the right thing on
a popstate event and do a pushstate each time we load html that corresponds with a
menu item. When a popstate event occurs, due to the visitor pushing the BACK key,
we recompose the name of the HTML file, based on what we pushed earlier, and load
that file to replace what is inside #varicontent, making people think they landed on
what they believe is the first page.

As a mathematician, I admit that there is a fine line between being smart and being
lazy. I did not include code to restore the initial home page once a visitor typed
BACK, so much so that the history stack is empty. Some browsers, such as Safari,
issue popstate on startup, and adding such code would only create more delay and
more FOUC. Of course, when a visitor wants to see the HOME page, all they need to
do is to hit the HOME menu item. Simple comme bonjour, excuse my French.

The Mono County Site

[10]

The off-canvas menu
(monocountyoffcanvas.html)
We kept our Mobile first promise by jotting down on paper, first, what we wanted
people to see when they visited our site on their small mobiles. Now it is time to
implement it. The way Foundation is structured, makes it easier to add the code at
a later stage, as it wraps around the code of the main menu.

The off-canvas menu feature allows us to put a real menu behind the three line icon
you see on these devices when there is not enough screen real estate left to place a
real menu, for example, when you use a phone or turn a small tablet from landscape
to portrait.

Once you click on that menu, it will appear as if it comes from the left of your phone.
To users of the Facebook app, this will look very familiar.

When people arrive at an airport and use their cell phone to look up the site of the
hotel where they booked a room, they are not doing that to see what the rooms
look like—they did that at home—but rather because they want to know the phone
number or address. With smartphones, they may even want to use the GPS features
of the device to get there.

It would not be unwise to have additional menu items that on larger screens would
appear in the footer section. That way, for instance, a cell phone user is only two
clicks away from the websites of some of the motels in Mono County.

So, the off-canvas menu is organized in a similar way to the main menu, but we
added a few things that on larger screens appear in the practical section, so you can
quickly, from your phone, visit exciting sites with useful information.

Putting it all together (monocounty.html)
There may be a thing or two we need to add or clean up before we have our final
version, so this is the file that contains it. I have provided comments where needed.

One thing would be to convert your less file back to a CSS file. Check lesscss.org
on how to do that. It is very easy; you use a less compiler, lessc, that you need to
install using npm. Another thing is to remove the enhance.js toggle, as this can only
confuse your visitors.

It is part of the enhance.js API. Simply set the appendToggleLink property to false.

http://lesscss.org

Chapter 15

[11]

The next steps
We supplied an example of a website, taking you through the steps you need to
follow to go from a basic site that works everywhere and is potentially boring, to one
that works on mobile phones and tablets and is totally responsive, by using what
you learned from this book and the Foundation framework.

However, to dynamically create portions of our page when a user navigates, we still
used static html files. This was intentional, so you could download the entire site
(do not go off and print and frame my pictures), check out the code, and see how
it works, without the need to choose a database, set up and propagate tables into a
database, and so on.

But that would be a logical next step. Rather than loading html code from static files,
you want to consider storing the content information on the server in a database.
Take your pick; we presented you with two databases, MySQL and MongoDB, as
well as good structured formats for data, such as XML and JSON.

The potential other next step is to create a program for the people that you made the
site for; to allow them to—in an easy way—add and change content for that site. You
are not going to do this by teaching them about databases and forcing them to read
this book first. Instead, you could write a special program just for those people.

A program like that is often referred to as a Content Management System (CMS).
Some popular commercial ones are Wordpress, Joomla!, and Drupal, but nothing
prevents you from writing your own, which will be tailored to the needs of your
customer, so that it only does what it needs to do.

Summary
We have walked you through the basic steps of building a Mobile first, responsive
design website. We did not include a database, we did not use any PHP code; all we
wanted to do was to give you an idea of what the workflow or stepping stones are,
so that you do not leave users of old gear in the dark, and make sure your site looks
cool when looked at with HTML5-capable browsers on modern devices.

The sky is the limit, moving forward. As we cannot fit the sky into this chapter, we
will leave it up to you to be creative; look into and use the cool features Foundation
(or Bootstrap) offers. There was neither time nor space to give you an example that
demonstrates all of them.

The Mono County Site

[12]

I hope you, as a beginner or experienced developer, learned a thing or two from this
book, and more importantly, enjoyed reading it. I enjoyed writing it. There were
words of wisdom and words of wit, as I believe that reading up on a serious topic
should be fun too.

Enjoy the World Wide Web and add content in the coolest possible way, but
remember, it has to be mobile first, and responsive.

