
1
Autoencoders and Generative

Adversarial Nets
In this chapter, we present two unsupervised learning techniques that leverage deep
learning: autoencoders, which have been around for decades, and Generative Adversarial
Networks (GANs), which were introduced by Ian Goodfellow in 2014 and which Yann
LeCun has called the most exciting idea in AI in the last ten years. They complement the
methods for dimensionality reduction and clustering introduced in Chapter 12,
Unsupervised Learning.

Unsupervised learning addresses machine learning (ML) challenges such as the limited
availability of labeled data and the curse of dimensionality that requires exponentially
more samples for successful learning from complex, real-life data with many features. At a
higher level, unsupervised learning resembles human learning and the development of
common sense much more closely than supervised and reinforcement learning algorithms.
More specifically, it aims to discover structure and regularities in the world from data so
that it can predict missing input, that is, fill in the blanks from the observed parts, which is
why it's also called predictive learning.

An autoencoder is a neural network trained to reproduce the input while learning a new
representation of the data, encoded by the parameters of a hidden layer. Autoencoders
have long been used for nonlinear dimensionality reduction and manifold learning. More
recently, autoencoders have been designed as generative models that learn probability
distributions over observed and latent variables. A variety of designs leverage the
feedforward network, Convolutional Neural Network (CNN), and recurrent neural
network (RNN) architectures we covered in the last three chapters.

GANs are a recent innovation that train two neural nets—a generator and a
discriminator—in a competitive setting. The generator aims to produce samples that the
discriminator is unable to distinguish from a given class of training data. The result is a
generative model capable of producing new (fake) samples that are representative of a
certain target distribution.



Autoencoders and Generative Adversarial Nets Chapter 1

[ 2 ]

GANs have produced a wave of research and can be successfully applied in many domains.
An example from the medical domain that could potentially be highly relevant for trading
is the generation of time-series data that simulates alternative trajectories and can be used
to train supervised or reinforcement algorithms.

More specifically, in this chapter we'll cover the following topics:

Which types of autoencoders are of practical use and how they work
How to build and train autoencoders using Python
How GANs work, why they're useful, and how they could be applied to trading
How to build GANs using Python

You can find the code examples, references, and additional resources in this chapter's
directory of the GitHub repository for this book at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Machine- ​Learning- ​for- ​Algorithmic- ​Trading.

How autoencoders work
In Chapter 17, Deep Learning, we saw that neural networks are successful at supervised
learning by extracting a hierarchical feature representation that's useful for the given task.
CNNs, for example, learn and synthesize increasingly complex patterns useful for
identifying or detecting objects in an image.

An autoencoder, in contrast, is a neural network designed exclusively to learn a new
representation, that is, an encoding of the input. To this end, the training forces the network
to faithfully reproduce the input. Since autoencoders typically use the same data as input
and output, they are also considered an instance of self-supervised learning.

In the process, the parameters of a hidden layer, h, become the code that represents the
input. More specifically, the network can be viewed as consisting of an encoder
function, h=f(x), that learns the hidden layer's parameters from the input, x, and a decoder
function, g, that learns to reconstruct the input from the encoding, rather than learning the
identity function:

$$x = g(f(x))$$

While the identity function perfectly reproduces the input, it is more interesting to
constrain the reproduction so that the hidden layer produces a new representation of a
practical value.



Autoencoders and Generative Adversarial Nets Chapter 1

[ 3 ]

Nonlinear dimensionality reduction
A traditional use case includes dimensionality reduction, achieved by limiting the size of
the hidden layer so that it performs lossy compression. Such an autoencoder is called
undercomplete and the purpose is to force it to learn the most salient properties of the data
by minimizing a loss function, L, of the following form:

$$L(x, g(f(x)))$$

An example loss function that we will explore in the next section is simply the Mean
Squared Error (MSE) evaluated on the pixel values of the input images and their
reconstruction.

The appeal of autoencoders, when compared to linear dimensionality-reduction methods,
such as Principal Components Analysis (PCA)—see Chapter 12, Unsupervised Learning, is
the availability of nonlinear encoder and decoder activation functions that allow for a wider
range of encodings than.

The following screenshot illustrates the encoder-decoder logic of an undercomplete
feedforward autoencoder with three hidden layers. The hidden units use nonlinear
activation functions such as Rectified Linear Units (ReLU), sigmoid, or tanh and have
fewer elements than the input that the network aims to reconstruct despite these
constraints:



Autoencoders and Generative Adversarial Nets Chapter 1

[ 4 ]

We will see down that autoencoders can be useful with only a single layer each for the
encoder and the decoder. However, deeper autoencoders offer many advantages, just as for
neural networks more generally that autoencoders are just a special case of. These
advantages include the ability to learn more complex encodings, achieve better
compression, and do so with less computational and training effort. See references on
GitHub for details on experimental evidence: https:/ ​/​github. ​com/​PacktPublishing/
Hands-​On-​Machine- ​Learning- ​for- ​Algorithmic- ​Trading.

Convolutional autoencoders
In addition to feedforward architectures, autoencoders can also use convolutional layers to
learn hierarchical feature representations. As discussed in Chapter 17, Deep Learning,
feedforward architectures aren't well-suited to capturing local correlations typical of data
with a grid-like structure.

Convolutional autoencoders, instead, leverage convolutions and parameter-sharing to learn
hierarchical patterns and features irrespective of their location, translation, or changes in
size.

We'll explore implementations of convolutional autoencoders for image data in the next
section.

Sparsity constraints with regularized
autoencoders
The powerful capabilities of neural networks to represent complex functions require tight
limitations of the capacity of the encoder and decoder to force the extraction of a useful
signal rather than noise. In other words, when it is too easy for the network to recreate the
input, it fails to learn only the most interesting aspects of the data.

This challenge is similar to the overfitting phenomenon that frequently occurs when using
models with a high capacity for supervised learning. Just as in these settings, regularization
can help by adding constraints to the autoencoder that facilitate the learning of a useful
representation.

A common approach that we explore later is the use of L1 regularization, which adds a
penalty to the loss function in the form of the sum of the absolute values of the weights. The
L1 norm results in sparse encodings because it forces parameter values to zero that don't
capture the most salient variation in the data. As a result, even overcomplete autoencoders
with hidden layers of higher dimension than the input may be able to learn signal content.



Autoencoders and Generative Adversarial Nets Chapter 1

[ 5 ]

Fixing corrupted data with denoising
autoencoders
The autoencoders we've discussed so far are designed to reproduce the input despite
capacity constraints. An alternative approach trains autoencoders with corrupted input to
output the desired, original data points.

Corrupted input are a different way of preventing the network from learning the identity
function; instead, they extract the signal or salient features from the data. Denoising
autoencoders have been shown to learn the data-generating process of the original data,
and have become popular in generative modeling where the goal is to learn the probability
distribution that gives rise to the input.

Sequence-to-sequence autoencoders
RNNs (see Chapter 18, Recurrent Neural Networks) have been developed to take into
account the dynamics and dependencies over potentially long ranges often found in
sequential data. Similarly, sequence-to-sequence autoencoders aim to learn representations
attuned to the nature of data generated in sequence.

Sequence-to-sequence autoencoders are based on RNN components, such as Long Short-
Term Memory (LSTM) or Gated Recurrent Units (GRUs). They learn a compressed
representation of sequential data and have been applied to video, text, audio, and time-
series data.

As mentioned in the last chapter, encoder-decoder architectures allow RNNs to process
input and output sequences of variable lengths. These architectures underpin many
advances in complex sequence-prediction tasks, such as speech recognition and text
translation.

It roughly works as follows: the LSTM encoder processes the input sequence step by step to
learn a hidden state. This state becomes a learned representation of the sequence in the
form of a fixed-length vector. The LSTM decoder receives this state as input and uses it to
generate the output sequence. See references on GitHub for additional details: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Machine- ​Learning- ​for- ​Algorithmic- ​Trading.



Autoencoders and Generative Adversarial Nets Chapter 1

[ 6 ]

Variational autoencoders
Variational Autoencoders (VAE) are more recent developments focused on generative
modeling. More specifically, VAEs are designed to learn a latent variable model for the
input data. Note that we encountered latent variables in Chapter 14, Topic Modeling.

Hence, VAEs do not let the network learn arbitrary functions as long as it faithfully
reproduces the input. Instead, they aim to learn the parameters of a probability distribution
that generates the input data. In other words, VAEs are generative models because, if
successful, you can generate new data points by sampling from the distribution learned by
the VAE.

The operation of a VAE is more complex than the autoencoders discussed so far and the
details are beyond the scope of this book. They 're able to learn high-capacity input
encodings without regularization—this is useful because the models aim to maximize the
probability of the training data rather than to reproduce the input.

The variational_autoencoder notebook includes a sample VAE implementation
applied to the Fashion MNIST data, adapted from a Keras tutorial. Please see references on
GitHub for additional background: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands- ​On-
Machine-​Learning- ​for- ​Algorithmic- ​Trading.

Designing and training autoencoders using
Python
In this section, we illustrate how to implement several of the autoencoder models
introduced in the preceding section using Keras. We first load and prepare an image
dataset that we use throughout this section because it makes it easier to visualize the results
of the encoding process.

We then proceed to build autoencoders using deep feedforward nets, sparsity constraints,
and convolutions and then apply the latter to denoise images.

Preparing the data
For illustration, we'll use the Fashion MNIST dataset, a modern drop-in replacement for the
classic MNIST handwritten digit dataset popularized by Yann LeCun with LeNet in the
1990s. We also relied on this dataset in Chapter 12, Unsupervised Learning.



Autoencoders and Generative Adversarial Nets Chapter 1

[ 7 ]

Keras makes it easy to access the 60,000 train and 10,000 test grayscale samples with a
resolution of 28 x 28 pixels:

from keras.datasets import fashion_mnist
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
X_train.shape, X_test.shape
((60000, 28, 28), (10000, 28, 28))

The data contains clothing items from 10 classes. The following screenshot plots a sample
image for each class:

We reshape the data so that each image is represented by a flat one-dimensional pixel
vector with 28 x 28 = 784 elements normalized to the range of [0, 1]:

image_size = 28 # pixels per side

input_size = image_size ** 2 # 784

defdata_prep(x, size=input_size):
return x.reshape(-1, size).astype('float32')/255

X_train_scaled = data_prep(X_train)
X_test_scaled = data_prep(X_test)
X_train_scaled.shape, X_test_scaled.shape
((60000, 784), (10000, 784))



Autoencoders and Generative Adversarial Nets Chapter 1

[ 8 ]

One-layer feedforward autoencoder
We start with a vanilla feedforward autoencoder with a single hidden layer to illustrate the
general design approach using the functional Keras API and establish a performance
baseline.

The first step is a placeholder for the flattened image vectors with 784 elements:

input_ = Input(shape=(input_size,), name='Input')

The encoder part of the model consists of a fully-connected layer that learns the new,
compressed representation of the input. We use 32 units for a compression ratio of 24.5:

encoding_size = 32 # compression factor: 784 / 32 = 24.5

encoding = Dense(units=encoding_size,
activation='relu',
name='Encoder')(input_)

The decoding part reconstructs the compressed data to its original size in a single step:

decoding = Dense(units=input_size,
                 activation='sigmoid',
                 name='Decoder')(encoding)

We instantiate the Model class with the chained input and output elements that implicitly
define the computational graph, as follows:

autoencoder = Model(inputs=input_,
                    outputs=decoding,
                    name='Autoencoder')

The defined encoder-decoder computation uses almost 51,000 parameters:

autoencoder.summary()
_____________________________________________________
Layer (type) Output Shape Param #
=====================================================
Input (InputLayer) (None, 784) 0
_____________________________________________________
Encoder (Dense) (None, 32) 25120
_____________________________________________________
Decoder (Dense) (None, 784) 25872
=====================================================
Total params: 50,992
Trainable params: 50,992
Non-trainable params: 0
_____________________________________________________



Autoencoders and Generative Adversarial Nets Chapter 1

[ 9 ]

The functional API allows us to use parts of the model's chain as separate encoder and
decoder models that use the autoencoder's parameters learned during training.

Defining the enoder
The encoder just uses the input and hidden layer with about half of the total parameters:

encoder = Model(inputs=input_, outputs=encoding, name='Encoder')

encoder.summary()
_______________________________________________________________
Layer (type) Output Shape Param #
===============================================================
Input (InputLayer) (None, 784) 0
_______________________________________________________________
Encoder (Dense) (None, 32) 25120
===============================================================
Total params: 25,120
Trainable params: 25,120
Non-trainable params: 0
_______________________________________________________________

Once we train the autoencoder, we can use the encoder to compress the data.

Defining the decoder
The decoder consists of the last autoencoder layer, fed by a placeholder for the encoded
data:

encoded_input = Input(shape=(encoding_size,), name='Decoder_Input')
decoder_layer = autoencoder.layers[-1](encoded_input)
decoder = Model(inputs=encoded_input, outputs=decoder_layer)

decoder.summary()
_______________________________________________________________
Layer (type) Output Shape Param #
===============================================================
Decoder_Input (InputLayer) (None, 32) 0
_______________________________________________________________
Decoder (Dense) (None, 784) 25872
===============================================================
Total params: 25,872
Trainable params: 25,872
Non-trainable params: 0
_______________________________________________________________



Autoencoders and Generative Adversarial Nets Chapter 1

[ 10 ]

Training the model
We compile the model to use the Adam optimizer (see Chapter 17, Deep Learning) to
minimize the MSE between the input data and the reproduction achieved by the
autoencoder. To ensure that the autoencoder learns to reproduce the input, we train the
model using the same input and output data:

autoencoder.compile(optimizer='adam', loss='mse')
autoencoder.fit(x=X_train_scaled, y=X_train_scaled,
                epochs=100, batch_size=32,
                shuffle=True, validation_split=.1,
                callbacks=[tb_callback, early_stopping, checkpointer])

Evaluating the results
Training stops after some 20 epochs with a test RMSE of 0.1122:

mse = autoencoder.evaluate(x=X_test_scaled, y=X_test_scaled)
mse, mse **.5
(0.012588984733819962, 0.11220064497951855)

To encode data, we use the encoder we just defined, like so:

encoded_test_img = encoder.predict(X_test_scaled)
Encoded_test_img.shape
(10000, 32)

The decoder takes the compressed data and reproduces the output according to the
autoencoder training results:

decoded_test_img = decoder.predict(encoded_test_img)
decoded_test_img.shape
(10000, 784)

The following screenshot shows ten original images and their reconstruction by the
autoencoder and illustrates the loss after compression:



Autoencoders and Generative Adversarial Nets Chapter 1

[ 11 ]

Feedforward autoencoder with sparsity
constraints
The addition of regularization is fairly straightforward. We can apply it to the dense
encoder layer using Keras' activity_regularizer, as follows:

encoding_l1 = Dense(units=encoding_size,
                    activation='relu',
                    activity_regularizer=regularizers.l1(10e-5),
                    name='Encoder_L1')(input_)

The input and decoding layers remain unchanged. In this example, with a compression of
factor 24.5, regularization negatively affects performance with a test RMSE of 0.2946.

Deep feedforward autoencoder
To illustrate the benefit of adding depth to the autoencoder, we build a three-layer
feedforward model that successively compresses the input from 784 to 128, 64, and 34 units,
respectively:

input_ = Input(shape=(input_size,))
x = Dense(128, activation='relu', name='Encoding1')(input_)
x = Dense(64, activation='relu', name='Encoding2')(x)
encoding_deep = Dense(32, activation='relu', name='Encoding3')(x)

x = Dense(64, activation='relu', name='Decoding1')(encoding_deep)
x = Dense(128, activation='relu', name='Decoding2')(x)
decoding_deep = Dense(input_size, activation='sigmoid',
                      name='Decoding3')(x)

autoencoder_deep = Model(input_, decoding_deep)

The resulting model has over 222,000 parameters, more than four times the capacity of the
preceding single-layer model:

autoencoder_deep.summary()
___________________________________________________________
Layer (type) Output Shape Param #
===========================================================
input_1 (InputLayer) (None, 784) 0
___________________________________________________________
Encoding1 (Dense) (None, 128) 100480
___________________________________________________________
Encoding2 (Dense) (None, 64) 8256



Autoencoders and Generative Adversarial Nets Chapter 1

[ 12 ]

___________________________________________________________
Encoding3 (Dense) (None, 32) 2080
___________________________________________________________
Decoding1 (Dense) (None, 64) 2112
___________________________________________________________
Decoding2 (Dense) (None, 128) 8320
___________________________________________________________
Decoding3 (Dense) (None, 784) 101136
===========================================================
Total params: 222,384
Trainable params: 222,384
Non-trainable params: 0
____________________________________________________________

Training stops after 10 epochs and results in a 14% reduction of the test RMSE to 0.0968.
Due to the low resolution, it is difficult to visually note the better reconstruction.

Visualizing the encoding
We can use the t-distributed Stochastic Neighbor Embedding (t-SNE) manifold learning
technique, see Chapter 12, Unsupervised Learning, to visualize and assess the quality of the
encoding learned by the autoencoder's hidden layer.

If the encoding is successful in capturing the salient features of the data, the compressed
representation of the data should still reveal a structure aligned with the 10 classes that
differentiate the observations.

We use the output of the deep encoder we just trained to obtain the 32-dimensional
representation of the test set:

tsne = TSNE(perplexity=25, n_iter=5000)
train_embed = tsne.fit_transform(encoder_deep.predict(X_train_scaled))

The following distribution shows that the 10 classes are separated, suggesting that the
encoding is useful as a lower-dimensional representation that preserves key characteristics
of the data:



Autoencoders and Generative Adversarial Nets Chapter 1

[ 13 ]

Convolutional autoencoders
The insights from Chapter 19, Convolutional Neural Networks, suggest we incorporate
convolutional layers into the autoencoder to extract information characteristic of the grid-
like structure of image data.

We define a three-layer encoder that uses 2D convolutions with 32, 16, and 8 filters,
respectively, ReLU activations, and 'same' padding to maintain the input size. The
resulting encoding size at the third layer is 4 x 4 x 8 = 128, higher than for the preceding
examples:

x = Conv2D(filters=32, kernel_size=(3, 3), activation='relu',
           padding='same', name='Encoding_Conv_1')(input_)
x = MaxPooling2D(pool_size=(2, 2), padding='same',
                 name='Encoding_Max_1')(x)
x = Conv2D(filters=16, kernel_size=(3, 3), activation='relu',



Autoencoders and Generative Adversarial Nets Chapter 1

[ 14 ]

           padding='same', name='Encoding_Conv_2')(x)
x = MaxPooling2D(pool_size=(2, 2), padding='same',
                 name='Encoding_Max_2')(x)
x = Conv2D(filters=8, kernel_size=(3, 3), activation='relu',
           padding='same', name='Encoding_Conv_3')(x)
           encoded_conv = MaxPooling2D(pool_size=(2, 2),
           padding='same', name='Encoding_Max_3')(x)

We also define a matching decoder that reverses the number of filters and uses 2D
upsampling instead of max pooling to reverse the reduction of the filter sizes. The three-
layer autoencoder has 12,785 parameters, a little more than 5% of the capacity of the
preceding deep autoencoder.

Training stops after 75 epochs and results in a further 9% reduction of the test RMSE, due to
a combination of the ability of convolutional filters to learn more efficiently from image
data and the larger encoding size.

Denoising autoencoders
The application of an autoencoder to a denoising task only affects the training stage. In this
example, we add noise to the Fashion MNIST data from a standard normal distribution
while maintaining the pixel values in the range of [0, 1], as follows:

defadd_noise(x, noise_factor=.3):
return np.clip(x + noise_factor * np.random.normal(size=x.shape), 0, 1)
X_train_noisy = add_noise(X_train_scaled)
X_test_noisy = add_noise(X_test_scaled)

We then proceed to train the convolutional autoencoder on noisy input with the objective to
learn how to generate the uncorrupted originals:

autoencoder_denoise.fit(x=X_train_noisy,
y=X_train_scaled,

...)

After 60 epochs, the test RMSE is 0.926, unsurprisingly higher than before. The following
screenshot shows, from top to bottom, the original images as well as the noisy and
denoised versions. It illustrates that the autoencoder is successful in producing compressed
encodings from the noisy images that are quite similar to those produced from the original
images:



Autoencoders and Generative Adversarial Nets Chapter 1

[ 15 ]

How GANs work
The supervised learning algorithms that we focused on for most of this book receive input
data that's typically complex and predicts a numerical or categorical label that we can
compare to the ground truth to evaluate its performance. These algorithms are also called
discriminative models because they learn to differentiate between different output classes.

How generative and discriminative models differ
The goal of generative models is to produce complex output, such as realistic images, given
simple input, which can even be random numbers. They achieve this by modeling a
probability distribution over the possible output. This probability distribution can have
many dimensions, for example, one for each pixel in an image or its character or token in a
document. As a result, the model can generate output that are very likely representative of
the class of output. In this context, we can refer Richard Feynman's quote:

"What I cannot create, I do not understand."

This is often used to emphasize that modeling generative distributions is an important step
toward more general AI and resembles human learning, which succeeds using fewer
samples.



Autoencoders and Generative Adversarial Nets Chapter 1

[ 16 ]

Generative models are useful for several purposes beyond their ability to generate
additional samples from a given distribution. For example, they can be incorporated into
model-based reinforcement learning algorithms (see Chapter 18, Recurrent Neural
Networks). Generative models can also be applied to time-series data to simulate alternative
past or possible future trajectories that could be used for planning in reinforcement learning
or supervised learning more generally. Other use cases include semi-supervised learning,
where GANs facilitate feature-matching to assign missing labels with fewer training
samples than current approaches.

How adversarial training works
The key innovation of GANs is a new way of learning this probability distribution. The
algorithm sets up a competitive—or adversarial—game between two neural networks
called the generator and the discriminator, respectively.

The learning objective of the generator is to create output from random input, for example,
images of faces. The discriminator, in turn, aims to differentiate between the generator's
output and a set of training data that reflects the target output, for example, a database of
celebrities as in a popular application. The overall purpose is that both networks get better
at their respective tasks while they compete so that the generator ends up producing output
that a machine can no longer distinguish from the originals.

The following diagram illustrates a generic GAN architecture and how training works. We
assume the generator uses a deep CNN architecture (using the VGG example from Chapter
18, Recurrent Neural Networks) that's reversed, just like the decoder part of the convolutional
autoencoder we discussed in the previous section. The generator receives a random input
and produces a fake output image that's passed on to the discriminator network, which uses
a mirrored CNN architecture. The discriminator network also receives real samples that
represent the target distribution and predicts the probability that the input is real as
opposed to fake. Learning takes place by backpropagating the gradients of the discriminator
and generator losses to the respective network's parameters:



Autoencoders and Generative Adversarial Nets Chapter 1

[ 17 ]

The recent GAN Lab is a great interactive tool inspired by TensorFlow Playground that
allows the user to design GANs and visualize various aspects of the learning process and
performance over time (see references on GitHub: https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Machine- ​Learning- ​for- ​Algorithmic- ​Trading).

How GAN architectures are evolving
Since publication in 2014, GANs have experienced an enormous amount of interest, as
evidenced by Yann LeCun's quote in the introduction, and have triggered a flurry of
research.

The bulk of this work has refined the original architecture to adapt it to different domains
and tasks, and expand it to include additional information, creating a conditional
GAN (cGAN). Additional research has focused on improving methods for the challenging
training process that requires achieving a stable game-theoretic equilibrium between two
networks, each of which can be tricky to train on its own. The GAN landscape has become
more diverse than we can cover here, but you can find additional references to both
surveys and individual milestones on GitHub.



Autoencoders and Generative Adversarial Nets Chapter 1

[ 18 ]

Deep Convolutional GAN (DCGAN)
Deep Convolutional GAN (DCGAN) was motivated by the successful application of CNN
to supervised learning for grid-like data. The architecture pioneered the use of GANs for
unsupervised learning by developing a feature extractor based on adversarial training. It's
also easier to train and generates higher-quality images. It is now considered a baseline
implementation with numerous open source examples available (see references on GitHub:
https:/​/​github.​com/ ​PacktPublishing/ ​Hands- ​On- ​Machine- ​Learning- ​for- ​Algorithmic-
Trading).

The DCGAN network takes uniformly-distributed random numbers as input and outputs a
color image with a resolution of 64 x 64 pixels. As the input changes incrementally, so do
the generated images. The network consists of standard CNN components, including
deconvolutional layers that reverse convolutional layers as in the preceding autoencoder
example or fully-connected layers.

The authors experimented exhaustively and made several recommendations, such as the
use of batch normalization and ReLU activations in both networks. We will explore a Keras
implementation layer.

Conditional GANs 
cGANs introduce additional label information into the training process, resulting in better
quality and some control over the output.

cGANs alter the baseline architecture displayed precedingly by adding a third input value
to the discriminator, which contains class labels. These labels, for example, could convey
gender or hair color information when generating images.

Extensions include the Generative Adversarial What-Where Network (GAWWN), which
uses bounding-box information to not only generate synthetic images but also place objects
at a given location.

Successful and emerging GAN applications
Alongside a large variety of extensions and modifications of the original architecture,
numerous applications have emerged. We list a few examples here and then dive into more
detailed an application to time-series data that may become particularly relevant to
algorithmic trading and investment (see GitHub references for additional examples).



Autoencoders and Generative Adversarial Nets Chapter 1

[ 19 ]

CycleGAN – unpaired image-to-image translation
Supervised image-to-image translation aims to learn a mapping between aligned input and
output images. CycleGAN solves this task when paired images are not available and
transforms images from one domain to match another.

Popular examples include the synthetic painting of horses as zebras and vice versa. It also
includes the transfer of styles by generating a realistic sample of an Impressionist print
from an arbitrary landscape photo.

StackGAN – text-to-photo image synthesis
One of the earlier applications of GANs to domain-transfer is the generation of images
based on text. Stacked GAN, shorted to StackGAN, uses a sentence as input and generates
multiple images that match the description.

The architecture operates in two stages: the first stage yields a low-resolution sketch of
shape and colors, and the second stage enhances the result to a high-resolution image with
photo-realistic details.

Photo-realistic image super-resolution
Super-resolution aims at producing photo-realistic higher-resolution images from low-
resolution input. GANs applied to this task have deep CNN architectures that use batch
normalization, ReLU, and skip connection as encountered in ResNET (see Chapter 18,
Recurrent Neural Networks) to produce impressive results that are likely to find commercial
application.

Synthetic time series with recurrent cGANs
Recurrent (conditional) GANs are two model architectures that aim to synthesize realistic
real-valued multivariate time series. The authors target applications in the medical domain
but the approach could be highly valuable to overcome the limitations of historical market
data.

RGANs rely on RNNs (see the last chapter) for the generator and the discriminator.
RCGANs further add auxiliary information in the spirit of cGANs (see the previous
section).



Autoencoders and Generative Adversarial Nets Chapter 1

[ 20 ]

The authors succeeded in generating visually and quantitatively compelling realistic
samples. Furthermore, they evaluated the quality of the synthetic data, including synthetic
labels, by using it to train a model with only minor degradation of the predictive
performance on a real test set. The authors also demonstrated the successful application of
RCGANs to an early warning system using a medical dataset of 17,000 patients from an
intensive care unit. Hence, the authors illustrated that RCGANs are capable of generating
time-series data useful for supervised training. It could be a worthwhile endeavor to apply
this approach to financial market data.

Building GANs using Python
To illustrate the implementation of a GAN using Python, we use the Deep Convolutional
GAN (DCGAN) example discussed precedingly to synthesize images from the fashion
MNIST dataset. See the
deep_convolutional_generative_adversarial_network notebook for
implementation details and references.

Defining the discriminator network
Both the discriminator and generator use a deep CNN architecture, wrapped in a function:

defbuild_discriminator():
         model = Sequential([
                 Conv2D(32, kernel_size=3, strides=2,
                        input_shape=img_shape, padding='same'),
                        LeakyReLU(alpha=0.2),
                        Dropout(0.25),
                        Conv2D(64, kernel_size=3, strides=2,
                        padding='same'),
                        ZeroPadding2D(padding=((0, 1), (0, 1))),
                        BatchNormalization(momentum=0.8),
                        LeakyReLU(alpha=0.2),
                        Dropout(0.25),
                        Conv2D(128, kernel_size=3, strides=2,
                        padding='same'),
                        BatchNormalization(momentum=0.8),
                        LeakyReLU(alpha=0.2),
                        Dropout(0.25),
                        Conv2D(256, kernel_size=3, strides=1,
                        padding='same'),
                        BatchNormalization(momentum=0.8),
                        LeakyReLU(alpha=0.2),
                        Dropout(0.25),



Autoencoders and Generative Adversarial Nets Chapter 1

[ 21 ]

                        Flatten(),
                        Dense(1, activation='sigmoid')
                      ])

model.summary()
img = Input(shape=img_shape)
validity = model(img)
return Model(img, validity)

A call to this function and subsequent compilation shows that this network has over
393,000 parameters.

Defining the generator network
The generator network is slightly shallower but has more than twice as many parameters:

defbuild_generator():
model = Sequential([
Dense(128 * 7 * 7, activation='relu', input_dim=latent_dim),
Reshape((7, 7, 128)),
UpSampling2D(),
Conv2D(128, kernel_size=3, padding='same'),
BatchNormalization(momentum=0.8),
Activation('relu'),
UpSampling2D(),
Conv2D(64, kernel_size=3, padding='same'),
BatchNormalization(momentum=0.8),
Activation('relu'),
Conv2D(channels, kernel_size=3, padding='same'),
Activation('tanh')])

model.summary()

noise = Input(shape=(latent_dim,))
img = model(noise)

return Model(noise, img)



Autoencoders and Generative Adversarial Nets Chapter 1

[ 22 ]

Combining both networks to define the GAN
The combined model consists of the stacked generator and discriminator and trains the
former to fool the latter:

# The generator takes noise as input and generates imgs
z = Input(shape=(latent_dim,))
img = generator(z)
# For the combined model we will only train the generator
  discriminator.trainable = False
# discriminator determines validity for generated images
valid = discriminator(img)
combined = Model(z, valid)
combined.compile(loss='binary_crossentropy', optimizer=optimizer

Adversarial training
Adversarial training iterates over the epochs, generates random image and noise input, and
trains both the discriminator and the generator (as part of the combined model):

valid = np.ones((batch_size, 1))

fake = np.zeros((batch_size, 1))

for epoch in range(epochs):
# Select a random half of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]

# Sample noise and generate a batch of new images
noise = np.random.normal(0, 1, (batch_size, latent_dim))
gen_imgs = generator.predict(noise)

# Train the discriminator
d_loss_real = discriminator.train_on_batch(imgs, valid)
d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

# Train the generator (wants discriminator to mistake images as real)
g_loss = combined.train_on_batch(noise, valid)



Autoencoders and Generative Adversarial Nets Chapter 1

[ 23 ]

Evaluating the results
After 4,000 epochs, which only takes a few minutes, the synthetic images created from
random noise clearly resemble the originals:

Summary
In this chapter, we introduced two unsupervised learning methods that leverage deep
learning. Autoencoders learn sophisticated, nonlinear feature representations that are
capable of significantly compressing complex data while losing little information. As a
result, they are very useful to counter the curse of dimensionality associated with rich
datasets that have many features, which is especially common in alternative data. We also
saw how to implement various types of autoencoders using Keras.

Then, we covered GANs, which learn a probability distribution over the input data and are
hence capable of generating synthetic samples that are representative of the target data.
While there are many practical applications for this very recent innovation, they could be
particularly valuable for algorithmic trading if the success in generating time-series training
data in the medical domain can be transferred to financial market data. Finally, we learned
how to set up adversarial training using Keras.

In the next chapter, we'll focus on reinforcement learning, where we will build agents that
interactively learn from their (market) environment.


