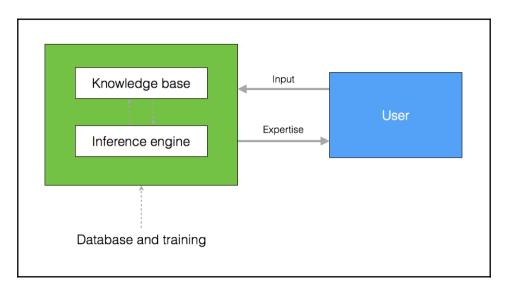
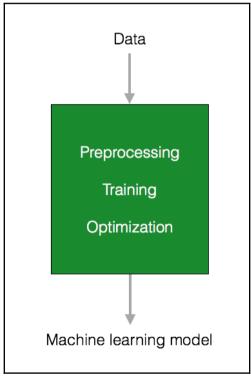
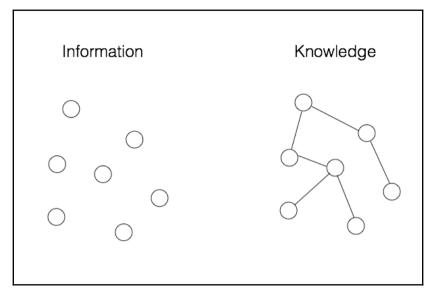
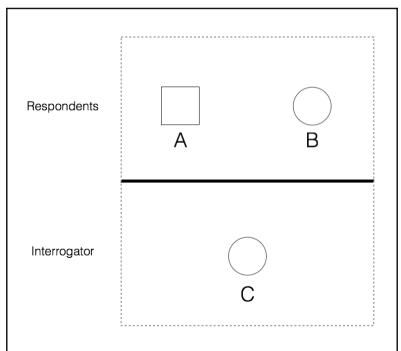

#### **Graphics Bundle**

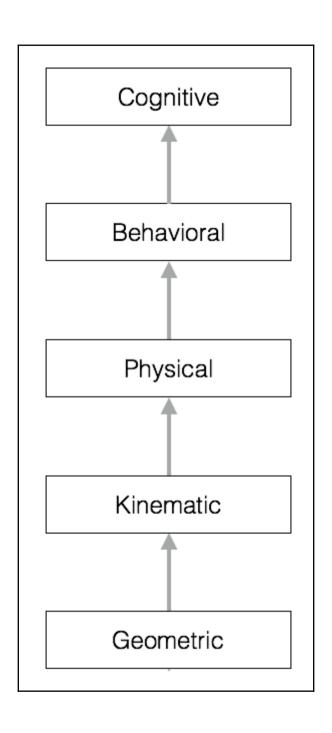
### **Chapter 1: Introduction to Artificial Intelligence**

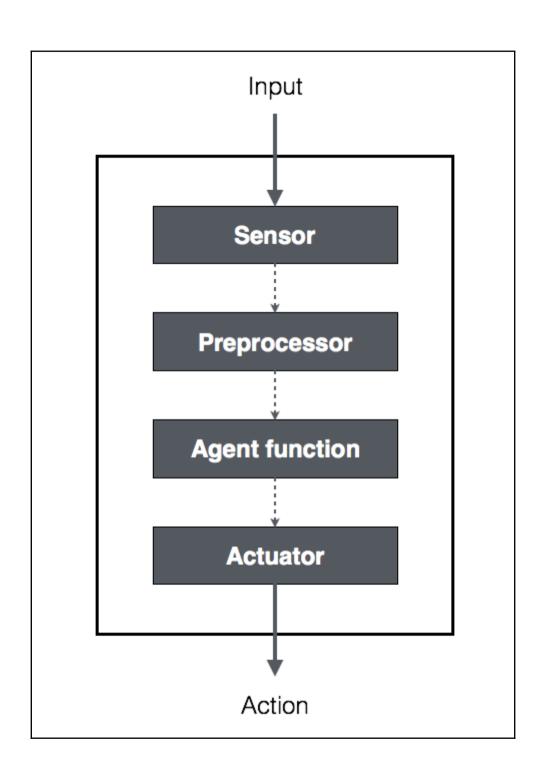


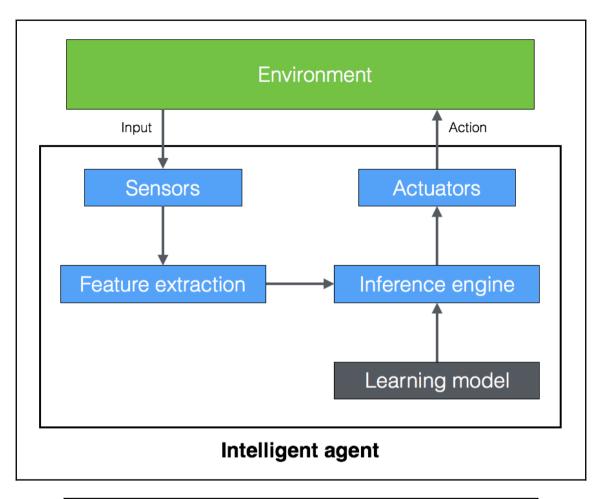







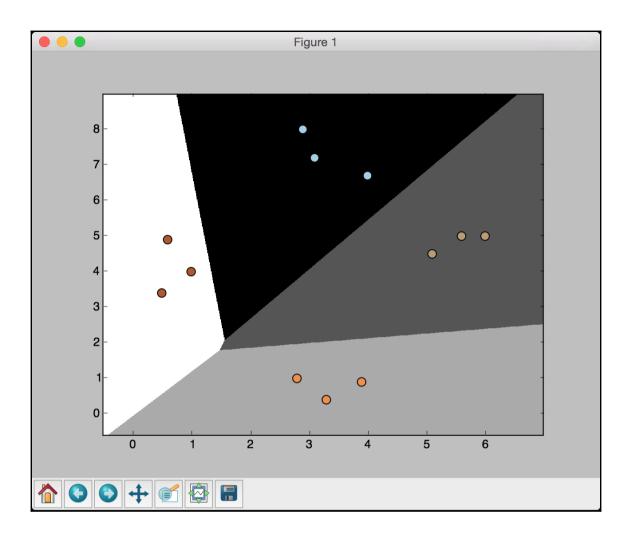


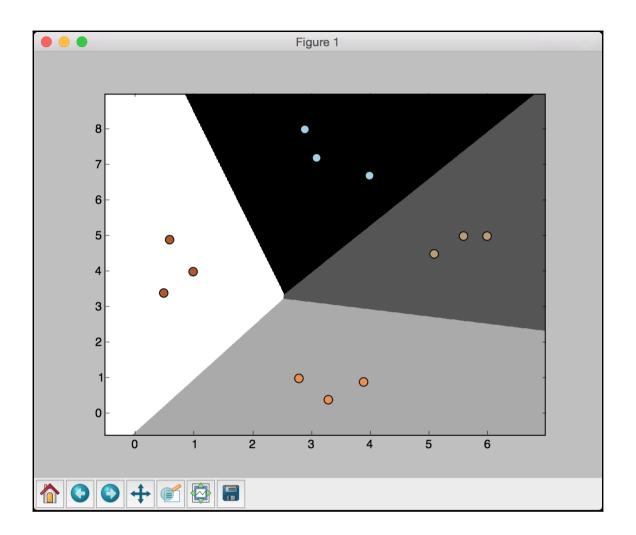


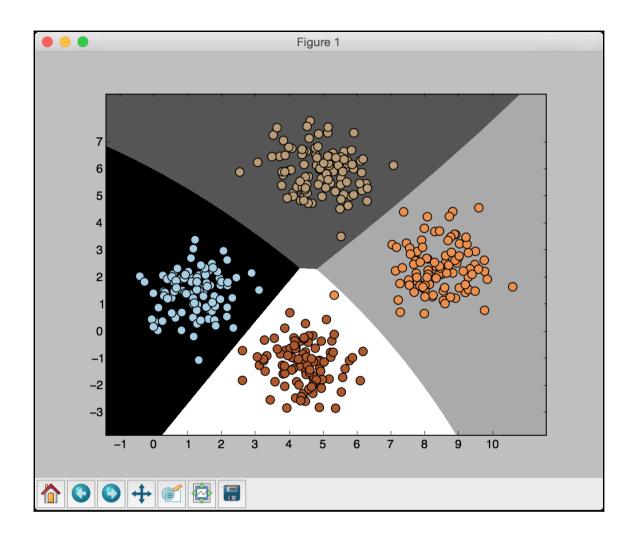


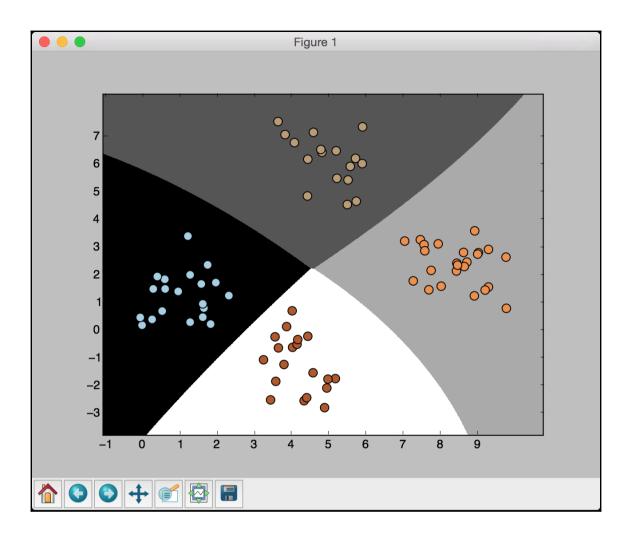

| >>> | print(house_price | es.data)         |                |                  |
|-----|-------------------|------------------|----------------|------------------|
|     | 6.32000000e-03    | 1.80000000e+01   | 2.31000000e+00 | , 1.53000000e+01 |
|     | 3.96900000e+02    | 4.98000000e+00]  |                |                  |
|     | 2.73100000e-02    | 0.00000000e+00   | 7.07000000e+00 | , 1.78000000e+01 |
|     | 3.96900000e+02    | 9.14000000e+00]  |                |                  |
|     | 2.72900000e-02    | 0.00000000e+00_  | 7.07000000e+00 | , 1.78000000e+01 |
|     | 3.92830000e+02    | 4.03000000e+00]  |                |                  |
|     |                   |                  |                |                  |
|     | 6.07600000e-02    | 0.00000000e+00   | 1.19300000e+01 | , 2.10000000e+01 |
|     | 3.96900000e+02    | 5.64000000e+00]  |                |                  |
|     | 1.09590000e-01    | 0.00000000e+00   | 1.19300000e+01 | , 2.10000000e+01 |
|     | 3.93450000e+02    | 6.48000000e+00]  |                |                  |
|     | 4.74100000e-02    | 0.00000000e+00   | 1.19300000e+01 | , 2.10000000e+01 |
|     | 3.96900000e+02    | 7.88000000e+00]] |                |                  |

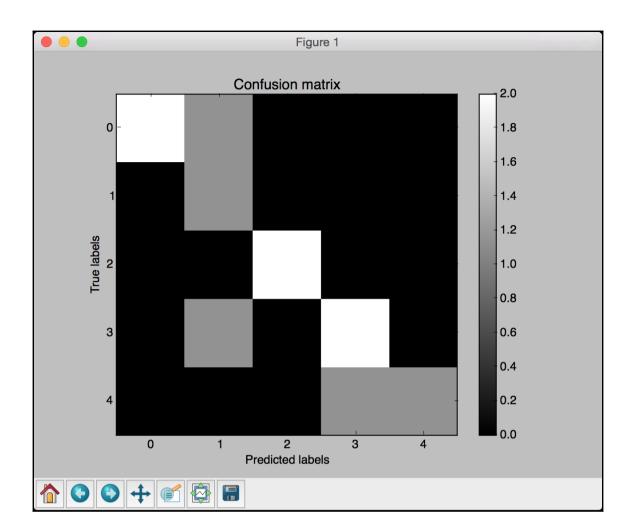
| >> | > pri | nt(hou | se_pri | ces.ta | rget) |      |      |      |      |      |      |      |
|----|-------|--------|--------|--------|-------|------|------|------|------|------|------|------|
| Г  | 24.   | 21.6   | 34.7   | 33.4   | 36.2  | 28.7 | 22.9 | 27.1 | 16.5 | 18.9 | 15.  | 18.9 |
|    | 21.7  | 20.4   | 18.2   | 19.9   | 23.1  | 17.5 | 20.2 | 18.2 | 13.6 | 19.6 | 15.2 | 14.5 |
|    | 15.6  | 13.9   | 16.6   | 14.8   | 18.4  | 21.  | 12.7 | 14.5 | 13.2 | 13.1 | 13.5 | 18.9 |
|    | 20.   | 21.    | 24.7   | 30.8   | 34.9  | 26.6 | 25.3 | 24.7 | 21.2 | 19.3 | 20.  | 16.6 |
|    | 14.4  | 19.4   | 19.7   | 20.5   | 25.   | 23.4 | 18.9 | 35.4 | 24.7 | 31.6 | 23.3 | 19.6 |
|    | 18.7  | 16.    | 22.2   | 25.    | 33.   | 23.5 | 19.4 | 22.  | 17.4 | 20.9 | 24.2 | 21.7 |
|    | 22.8  | 23.4   | 24.1   | 21.4   | 20.   | 20.8 | 21.2 | 20.3 | 28.  | 23.9 | 24.8 | 22.9 |
|    | 23.9  | 26.6   | 22.5   | 22.2   | 23.6  | 28.7 | 22.6 | 22.  | 22.9 | 25.  | 20.6 | 28.4 |
|    | 21.4  | 38.7   | 43.8   | 33.2   | 27.5  | 26.5 | 18.6 | 19.3 | 20.1 | 19.5 | 19.5 | 20.4 |
|    | 19.8  | 19.4   | 21.7   | 22.8   | 18.8  | 18.7 | 18.5 | 18.3 | 21.2 | 19.2 | 20.4 | 19.3 |
|    | 22.   | 20.3   | 20.5   | 17.3   | 18.8  | 21.4 | 15.7 | 16.2 | 18.  | 14.3 | 19.2 | 19.6 |
|    | 23.   | 18.4   | 15.6   | 18.1   | 17.4  | 17.1 | 13.3 | 17.8 | 14.  | 14.4 | 13.4 | 15.6 |
|    | 11.8  | 13.8   | 15.6   | 14.6   | 17.8  | 15.4 | 21.5 | 19.6 | 15.3 | 19.4 | 17.  | 15.6 |
|    | 13.1  | 41.3   | 24.3   | 23.3   | 27.   | 50.  | 50.  | 50.  | 22.7 | 25.  | 50.  | 23.8 |
|    | 23.8  | 22.3   | 17.4   | 19.1   | 23.1  | 23.6 | 22.6 | 29.4 | 23.2 | 24.6 | 29.9 | 37.2 |
|    | 39.8  | 36.2   | 37.9   | 32.5   | 26.4  | 29.6 | 50.  | 32.  | 29.8 | 34.9 | 37.  | 30.5 |
|    | 36.4  | 31.1   | 29.1   | 50.    | 33.3  | 30.3 | 34.6 | 34.9 | 32.9 | 24.1 | 42.3 | 48.5 |
|    | 50.   | 22.6   | 24.4   | 22.5   | 24.4  | 20.  | 21.7 | 19.3 | 22.4 | 28.1 | 23.7 | 25.  |
|    | 23.3  | 28.7   | 21.5   | 23.    | 26.7  | 21.7 | 27.5 | 30.1 | 44.8 | 50.  | 37.6 | 31.6 |
|    | 46.7  | 31.5   | 24.3   | 31.7   | 41.7  | 48.3 | 29.  | 24.  | 25.1 | 31.5 | 23.7 | 23.3 |


| >>> | pri | nt(di | gits. | image | s[4]) |     |    |      |
|-----|-----|-------|-------|-------|-------|-----|----|------|
|     | 0.  | 0.    | 0.    | 1.    | 11.   | 0.  | 0. | 0.]  |
|     | 0.  | 0.    | 0.    | 7.    | 8.    | 0.  | 0. | 0.]  |
|     | 0.  | 0.    | 1.    | 13.   | 6.    | 2.  | 2. | 0.]  |
|     | 0.  | 0.    | 7.    | 15.   | 0.    | 9.  | 8. | 0.]  |
|     | 0.  | 5.    | 16.   | 10.   | 0.    | 16. | 6. | 0.]  |
|     | 0.  | 4.    | 15.   | 16.   | 13.   | 16. | 1. | 0.]  |
|     | 0.  | 0.    | 0.    | 3.    | 15.   | 10. | 0. | 0.]  |
|     | 0.  | 0.    | 0.    | 2.    | 16.   | 4.  | 0. | 0.]] |

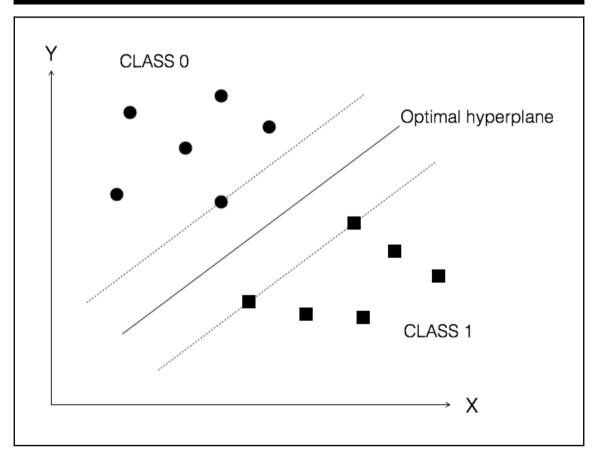

#### **Chapter 2: Classification and Regression Using Supervised Learning**

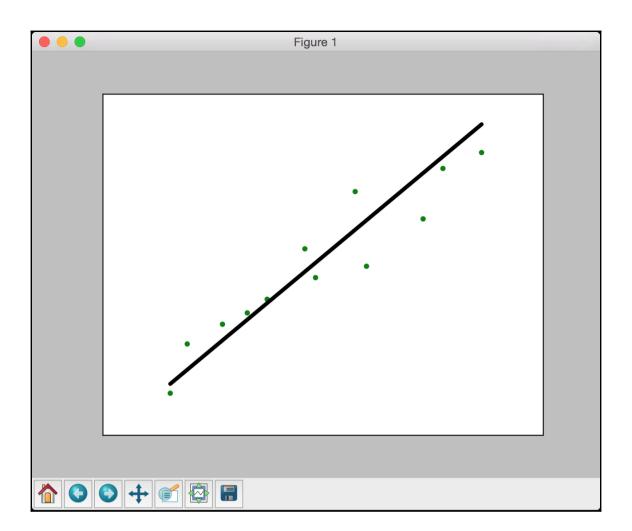

```
Label mapping:
black --> 0
green --> 1
red --> 2
white --> 3
yellow --> 4


Labels = ['green', 'red', 'black']
Encoded values = [1, 2, 0]

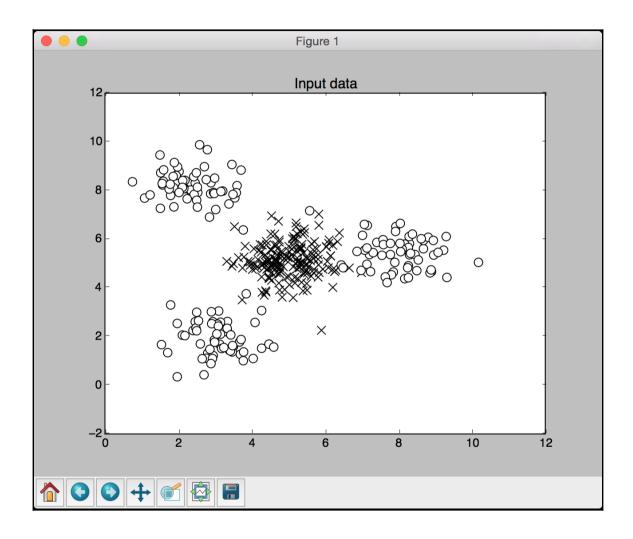

Encoded values = [3, 0, 4, 1]
Decoded labels = ['white', 'black', 'yellow', 'green']
```

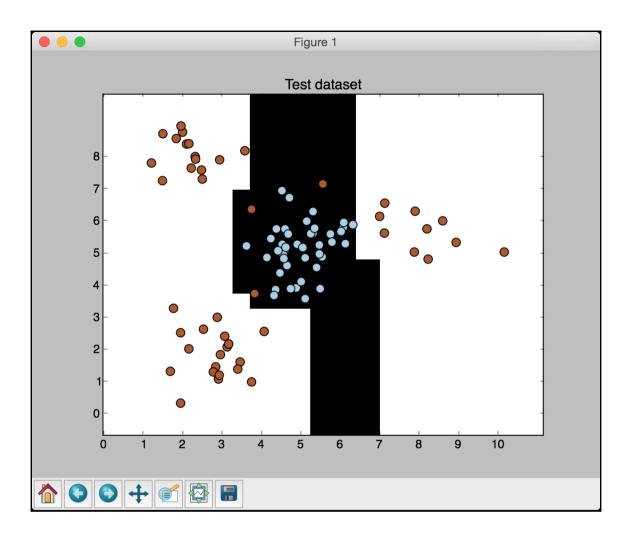




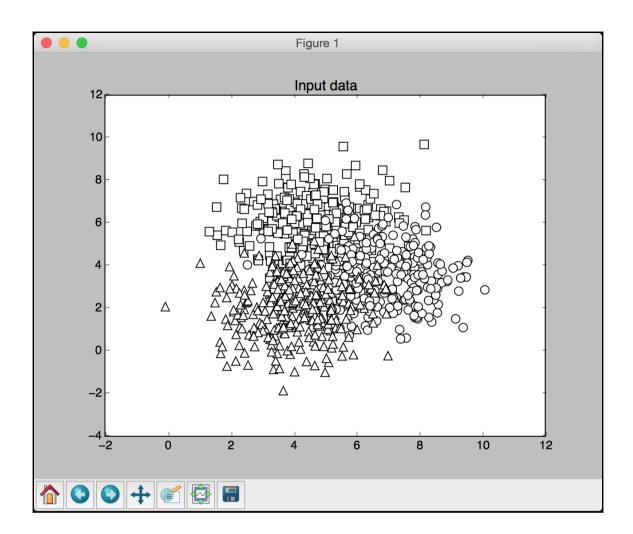



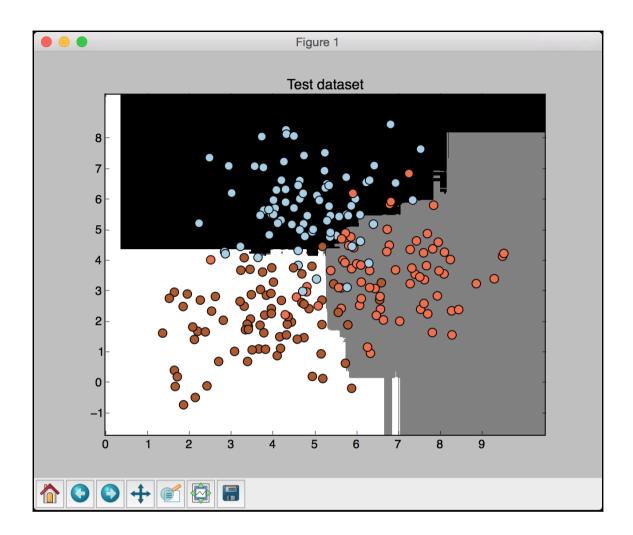


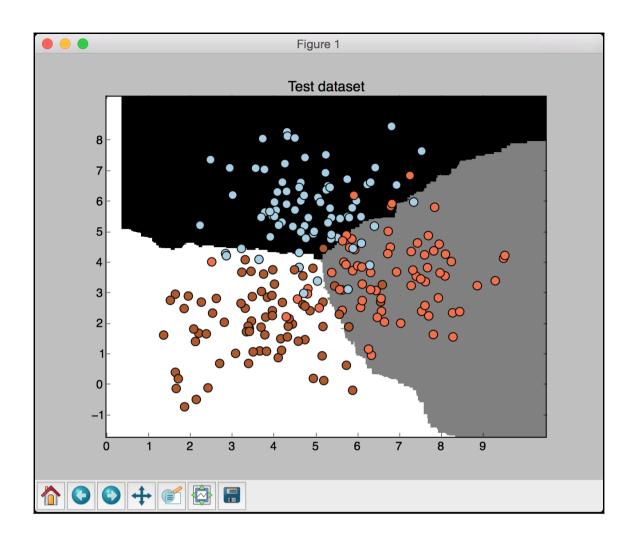



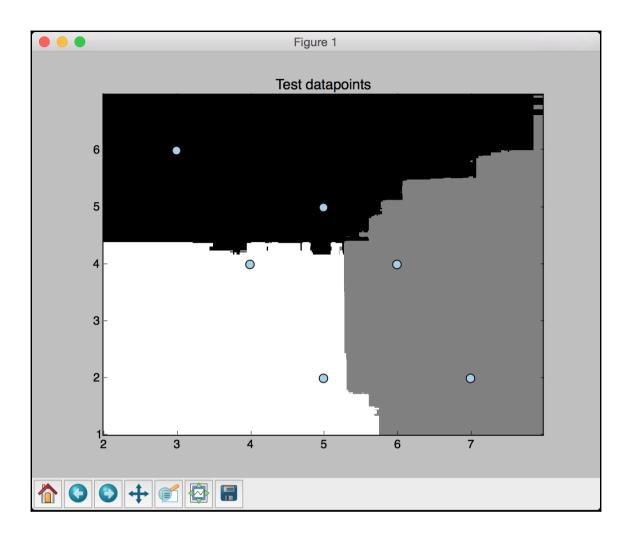


|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| Class-0     | 1.00      | 0.67   | 0.80     | 3       |
| Class-1     | 0.33      | 1.00   | 0.50     | 1       |
| Class-2     | 1.00      | 1.00   | 1.00     | 2       |
| Class-3     | 0.67      | 0.67   | 0.67     | 3       |
| Class-4     | 1.00      | 0.50   | 0.67     | 2       |
| avg / total | 0.85      | 0.73   | 0.75     | 11      |







## **Chapter 3 : Predictive Analytics with Ensemble Learning**




| ########### | ;########### | ########## | ######    |         |  |
|-------------|--------------|------------|-----------|---------|--|
| Classifier  | performance  | on trainin | g dataset |         |  |
|             | precision    | recall     | f1-score  | support |  |
| Class-0     |              |            |           |         |  |
| Class-1     | 1.00         | 0.99       | 1.00      | 133     |  |
| avg / total | 1.00         | 1.00       | 1.00      | 270     |  |
| ##########  | !##########  | ########## | #######   |         |  |
| ##########  | 1########### | #########  | #######   |         |  |
| Classifier  | performance  | on test da | taset     |         |  |
|             | precision    | recall     | f1-score  | support |  |
| Class-0     | 0.93         | 1.00       | 0.97      | 43      |  |
| Class-1     | 1.00         | 0.94       | 0.97      | 47      |  |
| avg / total | 0.97         | 0.97       | 0.97      | 90      |  |
| ########### | 1########### | ########## | #######   |         |  |









Datapoint: [5 5]

Probabilities: [ 0.81427532 0.08639273 0.09933195]

Predicted class: Class-0

Datapoint: [3 6]

Probabilities: [ 0.93574458 0.02465345 0.03960197]

Predicted class: Class-0

Datapoint: [6 4]

Probabilities: [ 0.12232404 0.7451078 0.13256816]

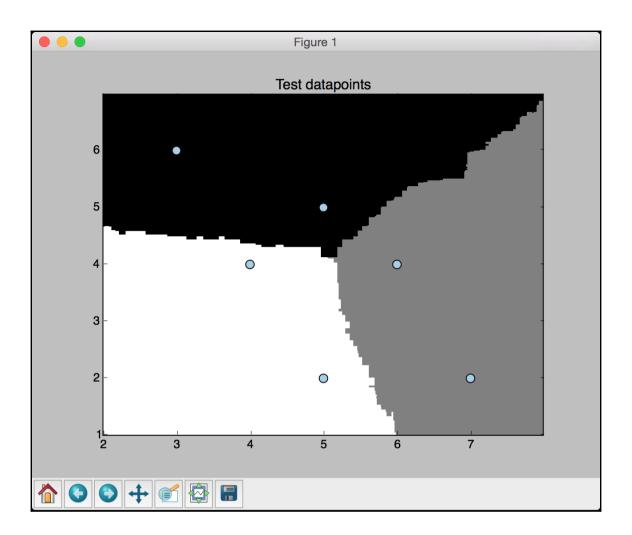
Predicted class: Class-1

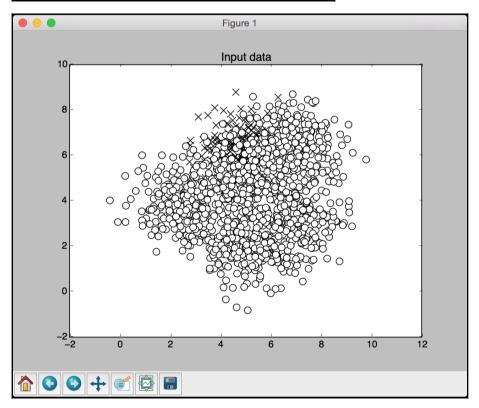
Datapoint: [7 2]

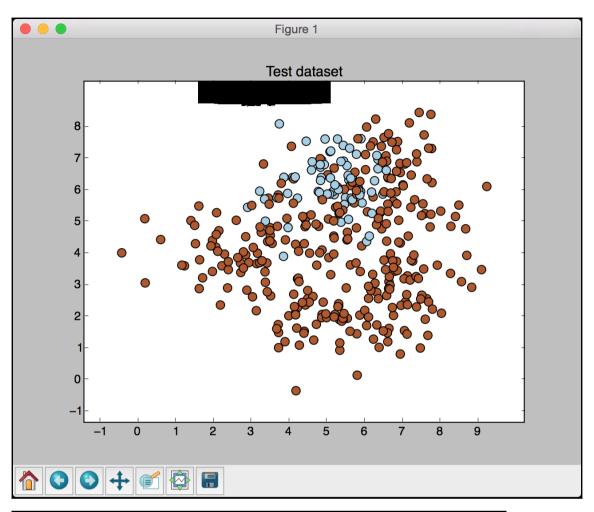
Probabilities: [ 0.05415465 0.70660226 0.23924309]

Predicted class: Class-1

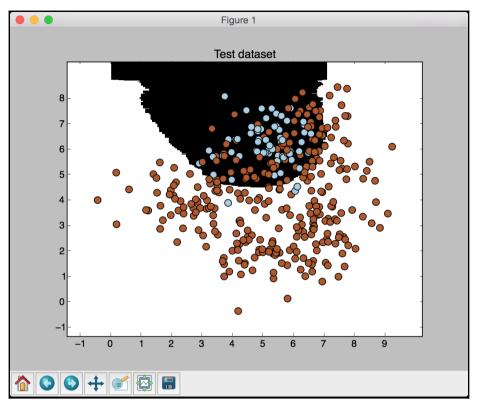
Datapoint: [4 4]


Probabilities: [ 0.20594744 0.15523491 0.63881765]


Predicted class: Class-2


Datapoint: [5 2]

Probabilities: [ 0.05403583 0.0931115 0.85285267]


Predicted class: Class-2







| ############ | ############ | !######## | ######   |         |  |
|--------------|--------------|-----------|----------|---------|--|
| Classifier p | erformance o | n test da | taset    |         |  |
|              | precision    | recall    | f1-score | support |  |
| Class-0      | 0.00         | 0.00      | 0.00     | 69      |  |
| Class-1      | 0.82         | 1.00      | 0.90     | 306     |  |
| avg / total  | 0.67         | 0.82      | 0.73     | 375     |  |
| ############ | ###########  | !#######  | ######   |         |  |



| 01 : 6:      |              |           |          |         |  |
|--------------|--------------|-----------|----------|---------|--|
| Classifier p | erformance o | n test da | taset    |         |  |
|              | precision    | recall    | f1-score | support |  |
| Class-0      | 0.45         | 0.94      | 0.61     | 69      |  |
| Class-1      | 0.98         | 0.74      | 0.84     | 306     |  |
| avg / total  | 0.88         | 0.78      | 0.80     | 375     |  |

```
##### Searching optimal parameters for precision_weighted
 Grid scores for the parameter grid:
Grid scores for the parameter grid:
{'n_estimators': 100, 'max_depth': 2} --> 0.847
{'n_estimators': 100, 'max_depth': 4} --> 0.841
{'n_estimators': 100, 'max_depth': 7} --> 0.844
{'n_estimators': 100, 'max_depth': 12} --> 0.836
{'n_estimators': 100, 'max_depth': 16} --> 0.818
{'n_estimators': 25, 'max_depth': 4} --> 0.846
{'n_estimators': 50, 'max_depth': 4} --> 0.841
{'n_estimators': 250, 'max_depth': 4} --> 0.841
{'n_estimators': 250, 'max_depth': 4} --> 0.845
 Best parameters: {'n_estimators': 100, 'max_depth': 2}
 Performance report:
                                                                  recall f1-score
                                 precision
                                                                                                                  support
                                                                                                                               79
                     0.0
                                               0.94
                                                                       0.81
                                                                                                0.87
                     1.0
                                               0.81
                                                                       0.86
                                                                                                 0.83
                                                                                                                               70
                                                                       0.91
                                                                                                                               76
                     2.0
                                               0.83
                                                                                                 0.87
 avg / total
                                               0.86
                                                                       0.86
                                                                                                 0.86
                                                                                                                             225
 ##### Searching optimal parameters for recall_weighted
 Grid scores for the parameter grid:
Grid scores for the parameter grid:
{'n_estimators': 100, 'max_depth': 2} --> 0.84
{'n_estimators': 100, 'max_depth': 4} --> 0.837
{'n_estimators': 100, 'max_depth': 7} --> 0.841
{'n_estimators': 100, 'max_depth': 12} --> 0.834
{'n_estimators': 100, 'max_depth': 16} --> 0.816
{'n_estimators': 25, 'max_depth': 4} --> 0.843
{'n_estimators': 50, 'max_depth': 4} --> 0.836
{'n_estimators': 100, 'max_depth': 4} --> 0.837
{'n_estimators': 250, 'max_depth': 4} --> 0.841
 Best parameters: {'n_estimators': 25, 'max_depth': 4}
```

recall f1-score

0.88

0.85

0.88

0.87

0.84

0.86

0.92

0.87

support

70

76 225

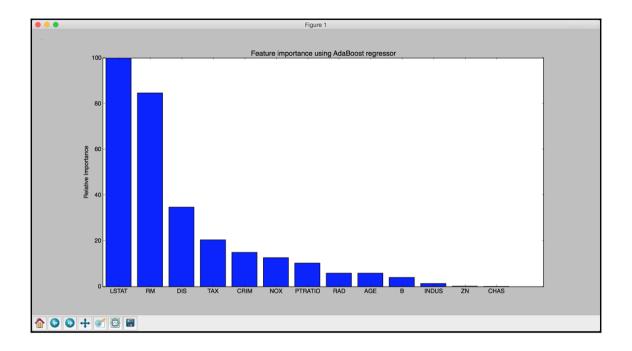
Performance report:

0.0

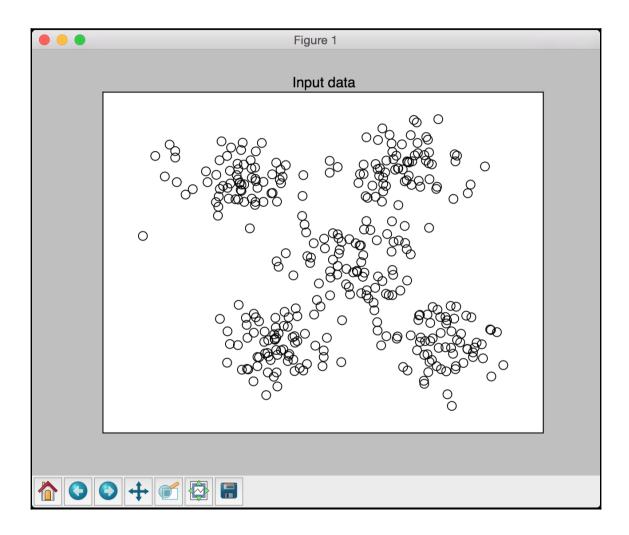
1.0

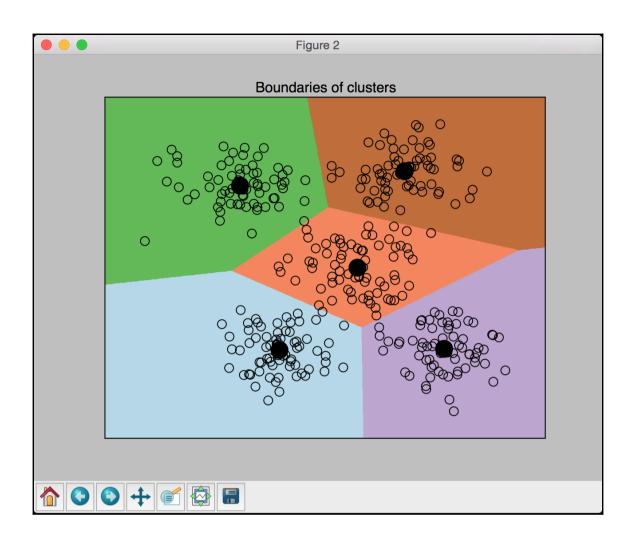
2.0

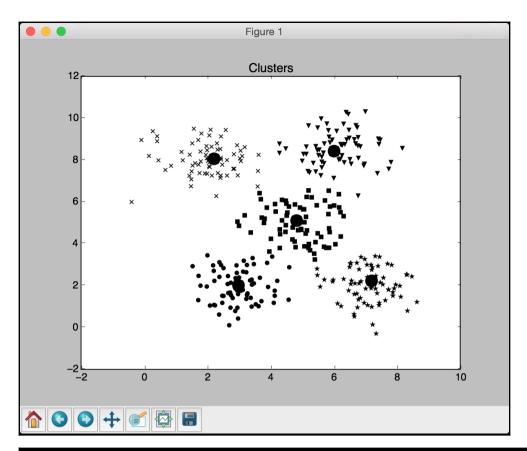
avg / total


precision

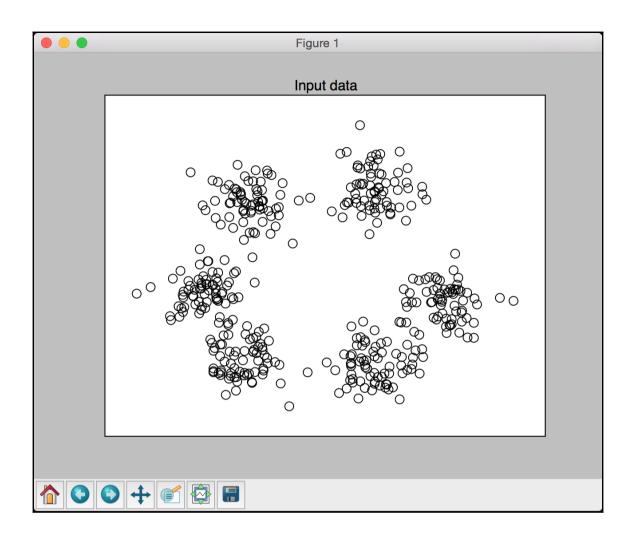
0.93

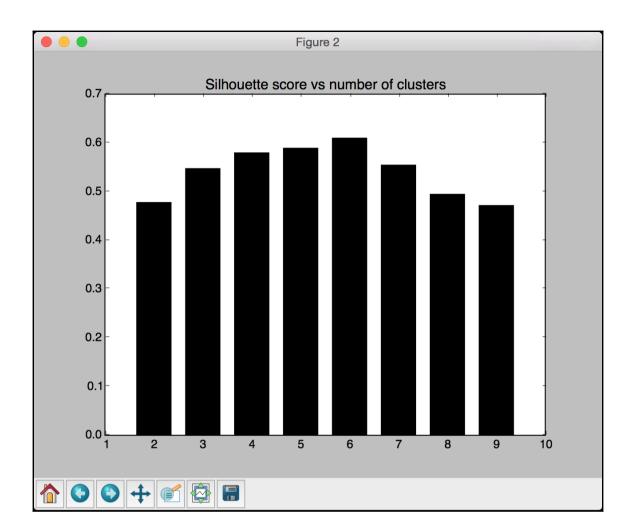

0.85


0.84


0.87




# **Chapter 4: Detecting Patterns with Unsupervised Learning**








```
Centers of clusters:
   [[ 2.95568966   1.95775862]
   [ 7.17563636   2.18145455]
   [ 2.17603774   8.03283019]
   [ 5.97960784   8.39078431]
   [ 4.81044444   5.0711111]]
Number of clusters in input data = 5
```



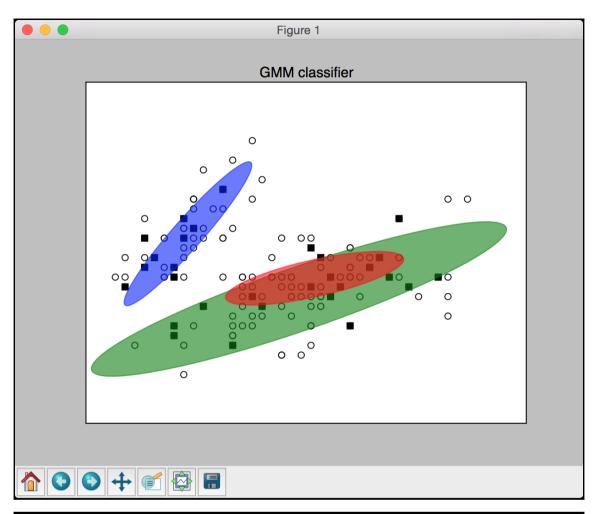


```
Number of clusters = 2
Silhouette score = 0.477626248705
```

Number of clusters = 3 Silhouette score = 0.547174241173

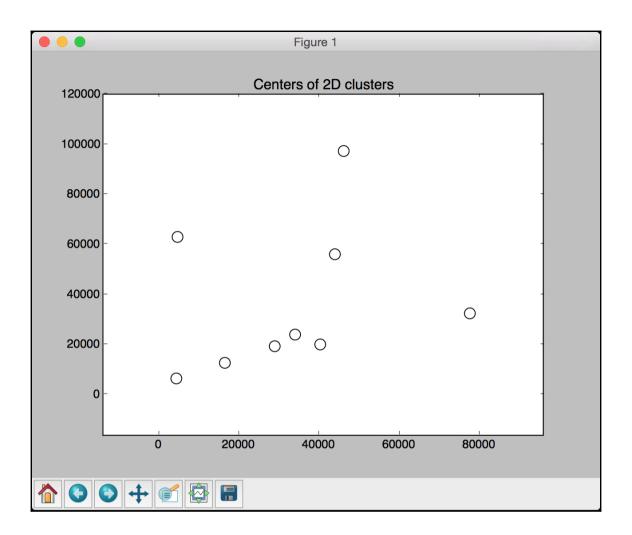
Number of clusters = 4 Silhouette score = 0.579480188969

Number of clusters = 5 Silhouette score = 0.589003263565


Number of clusters = 6 Silhouette score = 0.609690411895

Number of clusters = 7 Silhouette score = 0.554310234032

Number of clusters = 8 Silhouette score = 0.494433661954


Number of clusters = 9 Silhouette score = 0.471414689437

Optimal number of clusters = 6



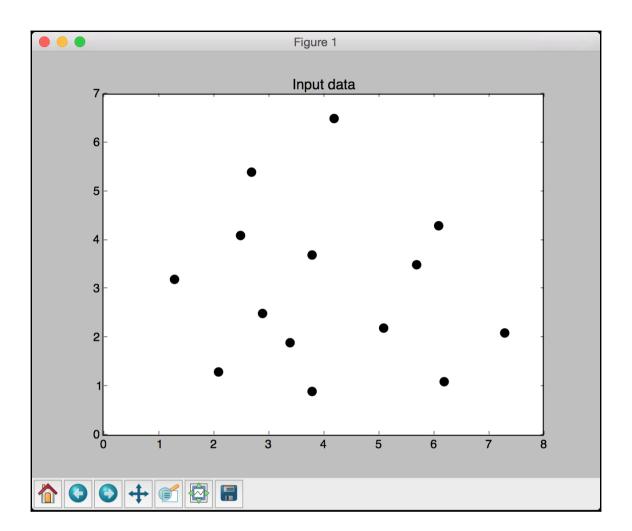
```
Clustering of stocks based on difference in opening and closing quotes:

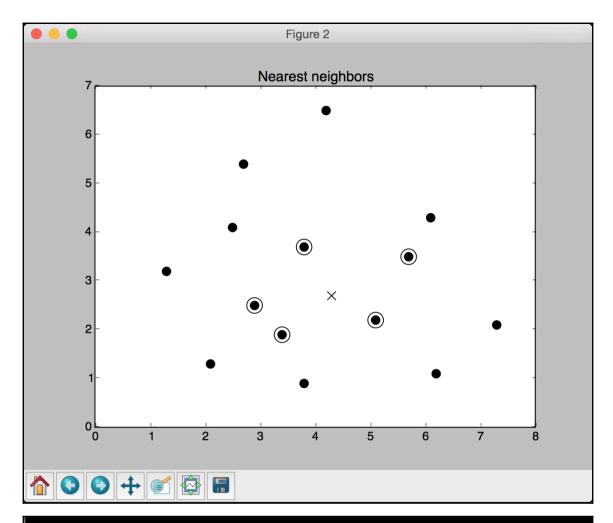
Cluster 1 ==> Kraft Foods
Cluster 2 ==> CVS, Walgreen
Cluster 3 ==> Amazon, Yahoo
Cluster 4 ==> Cablevision
Cluster 5 ==> Pfizer, Sanofi-Aventis, GlaxoSmithKline, Novartis
Cluster 6 ==> HP, General Electrics, 3M, Microsoft, Cisco, IBM, Texas instruments, Dell
Cluster 7 ==> Coca Cola, Kimberly-Clark, Pepsi, Procter Gamble, Kellogg, Colgate-Palmolive
Cluster 8 ==> Comcast, Wells Fargo, Xerox, Home Depot, Wal-Mart, Marriott, Navistar, DuPont de Nemours, A
merican express, Ryder, JPMorgan Chase, AIG, Time Warner, Bank of America, Goldman Sachs
Cluster 9 ==> Canon, Unilever, Mitsubishi, Apple, Mc Donalds, Boeing, Toyota, Caterpillar, Ford, Honda, S
AP, Sony
Cluster 10 ==> Valero Energy, Exxon, ConocoPhillips, Chevron, Total
Cluster 11 ==> Raytheon, General Dynamics, Lookheed Martin, Northrop Grumman
```



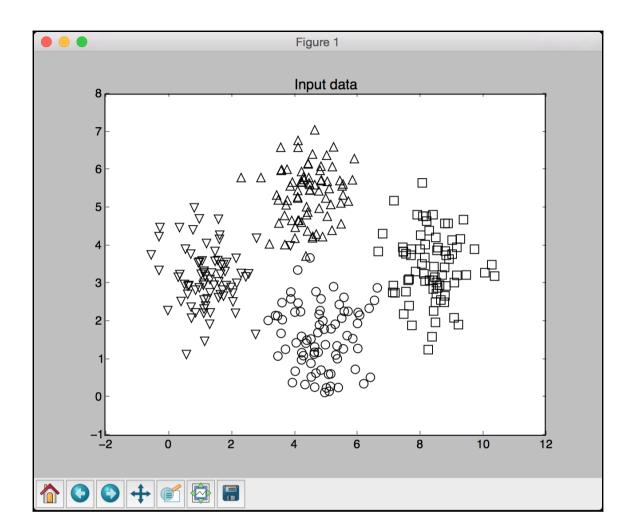
# Number of clusters in input data = 9

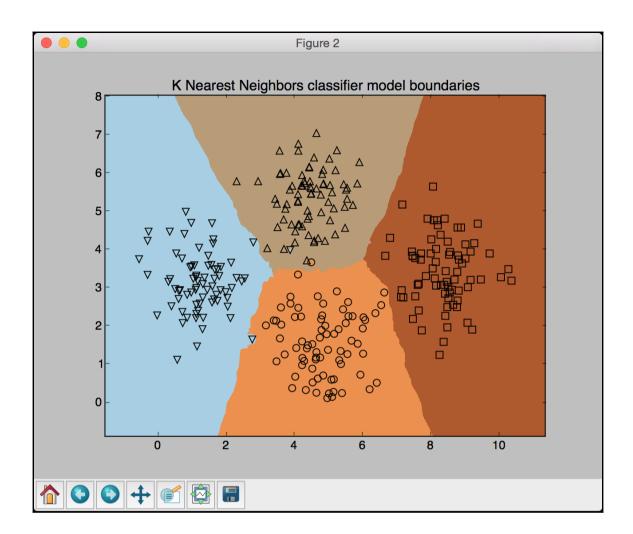
## Centers of clusters:

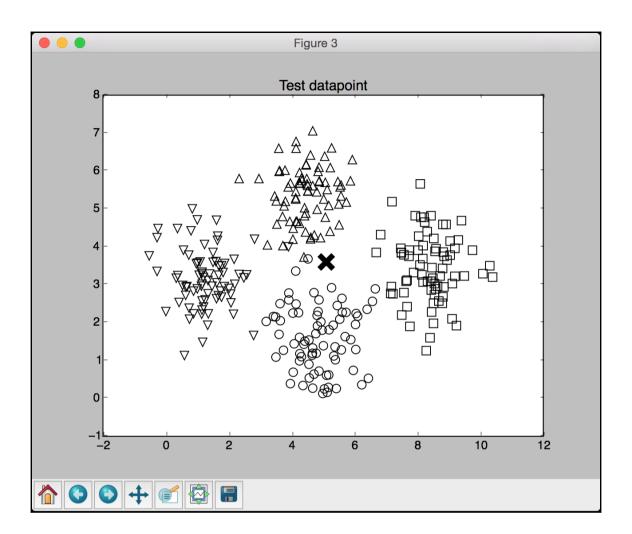

| Tan   | Hal                                                                | Tur                                                                           | Tub                                                                                                             | Swe                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4637  | 6539                                                               | 2607                                                                          | 2228                                                                                                            | 1239                                                                                                                                                                                                                                                                                                                                                                                     |
| 44199 | 56158                                                              | 5030                                                                          | 24674                                                                                                           | 4125                                                                                                                                                                                                                                                                                                                                                                                     |
| 4939  | 63081                                                              | 134                                                                           | 40066                                                                                                           | 1332                                                                                                                                                                                                                                                                                                                                                                                     |
| 16745 | 12775                                                              | 66900                                                                         | 1298                                                                                                            | 5613                                                                                                                                                                                                                                                                                                                                                                                     |
| 77873 | 32543                                                              | 1005                                                                          | 21035                                                                                                           | 837                                                                                                                                                                                                                                                                                                                                                                                      |
| 29186 | 19415                                                              | 16016                                                                         | 5060                                                                                                            | 9372                                                                                                                                                                                                                                                                                                                                                                                     |
| 40539 | 20120                                                              | 35059                                                                         | 255                                                                                                             | 50710                                                                                                                                                                                                                                                                                                                                                                                    |
| 34263 | 24065                                                              | 5575                                                                          | 4229                                                                                                            | 18076                                                                                                                                                                                                                                                                                                                                                                                    |
| 46397 | 97393                                                              | 1127                                                                          | 37315                                                                                                           | 3235                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 4637<br>44199<br>4939<br>16745<br>77873<br>29186<br>40539<br>34263 | 46376539441995615849396308116745127757787332543291861941540539201203426324065 | 463765392607441995615850304939630811341674512775669007787332543100529186194151601640539201203505934263240655575 | 4637       6539       2607       2228         44199       56158       5030       24674         4939       63081       134       40066         16745       12775       66900       1298         77873       32543       1005       21035         29186       19415       16016       5060         40539       20120       35059       255         34263       24065       5575       4229 |

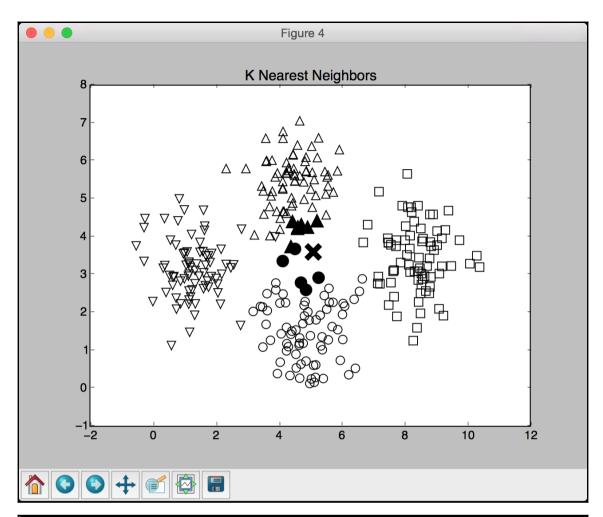

## **Chapter 5: Building Recommender Systems**

#### Predicted output:


Score: 0.893333333333


Indices of selected features: 13, 15, 18, 19, 21, 23, 24




```
K Nearest Neighbors:
1 ==> [ 5.1  2.2]
2 ==> [ 3.8  3.7]
3 ==> [ 3.4  1.9]
4 ==> [ 2.9  2.5]
5 ==> [ 5.7  3.5]
```



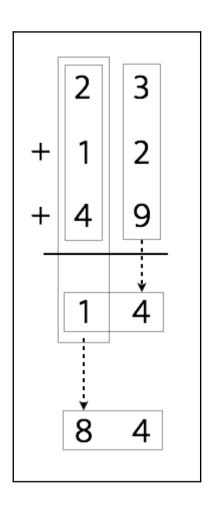


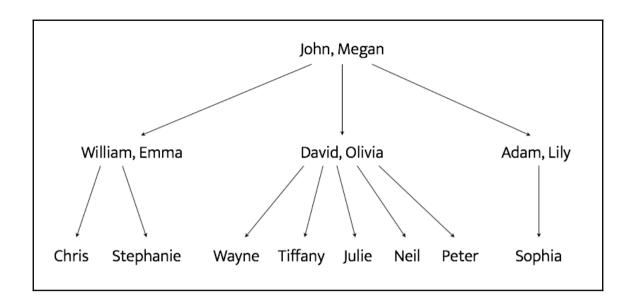




| Users similar to Bill Duffy: |                  |  |  |  |  |
|------------------------------|------------------|--|--|--|--|
| User                         | Similarity score |  |  |  |  |
| David Smith<br>Samuel Miller | 0.99<br>0.88     |  |  |  |  |
| Adam Cohen                   | 0.86             |  |  |  |  |

# Users similar to Clarissa Jackson:


Movie recommendations for Chris Duncan:


- 1. Vertigo
- 2. Goodfellas
- 3. Scarface
- 4. Roman Holiday

Movie recommendations for Julie Hammel:

- 1. The Apartment
- 2. Vertigo
- 3. Raging Bull

# **Chapter 6: Logic Programming**





```
List of Megan's grandchildren:
Chris
Sophia
Peter
Stephanie
Julie
Tiffany
Neil
Wayne
List of David's siblings:
William
Adam
List of Tiffany's uncles:
William
Adam
List of all spouses:
Husband: Adam <==> Wife: Lily
Husband: David <==> Wife: Olivia
Husband: John <==> Wife: Megan
Husband: William <==> Wife: Emma
```



```
Is Nevada adjacent to Louisiana?:
No
List of states adjacent to Oregon:
Washington
California
Nevada
Idaho
List of coastal states adjacent to Mississippi:
Alabama
Louisiana
List of 7 states that border a coastal state:
Georgia
Pennsylvania
Massachusetts
Wisconsin
Maine
Oregon
Ohio
List of states that are adjacent to Arkansas and Kentucky:
Missouri
Tennessee
```

| Name    | Pet    | Car color | Country   |
|---------|--------|-----------|-----------|
| Steve   | dog    | blue      | France    |
| Jack    | cat    | green     | Canada    |
| Matthew | rabbit | yellow    | USA       |
| Alfred  | parrot | black     | Australia |

| Matthew is the owner of the rabbit |        |      |        |  |  |  |  |
|------------------------------------|--------|------|--------|--|--|--|--|
| Here are all the details:          |        |      |        |  |  |  |  |
| Name Pet Color Country             |        |      |        |  |  |  |  |
|                                    |        |      |        |  |  |  |  |
| Steve                              | dog    | blue | France |  |  |  |  |
| Jack                               | cat    | ~_9  | Canada |  |  |  |  |
| Matthew                            | rabbit | ~_11 | USA    |  |  |  |  |
| Alfred ~_13 black Australia        |        |      |        |  |  |  |  |

#### **Chapter 7: Heuristic Search Techniques**

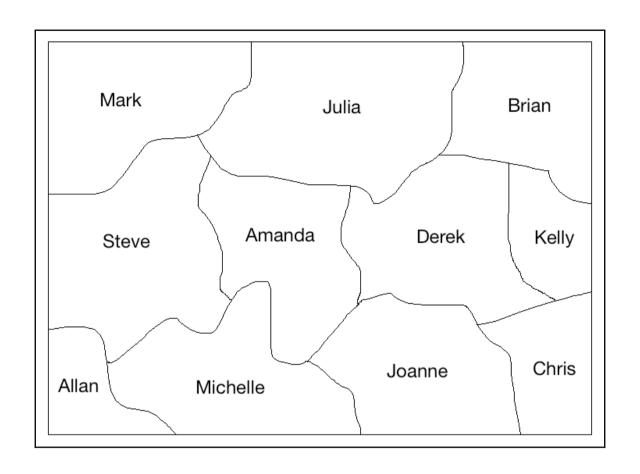
```
Path to the solution:
(None, '')
('A', 'A')
      'Ar')
      'Art')
      'Arti')
      'Artif')
     'Artifi')
      'Artific')
      'Artifici')
      'Artificia')
      'Artificial')
     'Artificial')
      'Artificial I')
      'Artificial In')
      'Artificial Int')
  e', 'Artificial Inte')
    , 'Artificial Intel')
     'Artificial Intell')
      'Artificial Intelli')
('g', 'Artificial Intellig<sup>'</sup>)
('e', 'Artificial Intellige')
 'n', 'Artificial Intelligen')
 'c', 'Artificial Intelligenc')
 'e', 'Artificial Intelligence')
```

```
Path to the solution:
       'Artificial Inte')
(None,
('1'.
      'Artificial Intel')
      'Artificial Intell')
      'Artificial Intelli')
      'Artificial Intellig')
      'Artificial Intellige')
      'Artificial Intelligen')
      'Artificial Intelligenc')
      'Artificial Intelligence')
      'Artificial Intelligence ')
      'Artificial Intelligence w')
      'Artificial Intelligence wi')
      'Artificial Intelligence wit')
      'Artificial Intelligence with')
      'Artificial Intelligence with
      'Artificial Intelligence with P')
      'Artificial Intelligence with Pv')
      'Artificial Intelligence with Pyt')
      'Artificial Intelligence with Pyth')
      'Artificial Intelligence with Pytho')
      'Artificial Intelligence with Python')
```

```
Solutions:

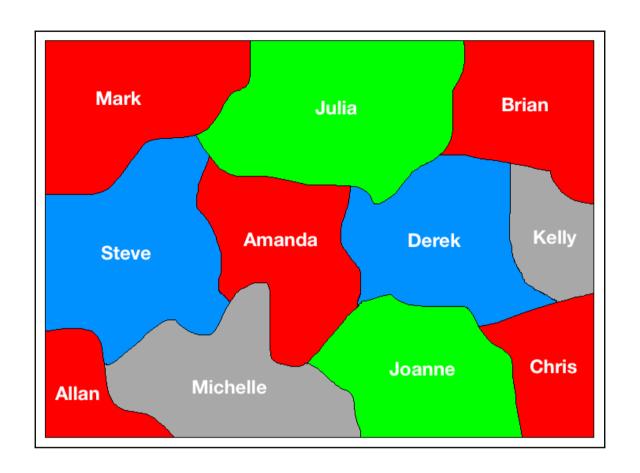
Normal: {'Patricia': 2, 'John': 1, 'Anna': 3, 'Tom': 4}

Most constrained variable: {'Patricia': 2, 'John': 3, 'Anna': 1, 'Tom': 2}


Highest degree variable: {'Patricia': 2, 'John': 1, 'Anna': 3, 'Tom': 4}

Least constraining value: {'Patricia': 2, 'John': 1, 'Anna': 3, 'Tom': 4}

Most constrained variable and least constraining value: {'Patricia': 2, 'John': 3, 'Anna': 1, 'Tom': 2}


Highest degree and least constraining value: {'Patricia': 2, 'John': 1, 'Anna': 3, 'Tom': 4}

Minimum conflicts: {'Patricia': 4, 'John': 1, 'Anna': 3, 'Tom': 4}
```

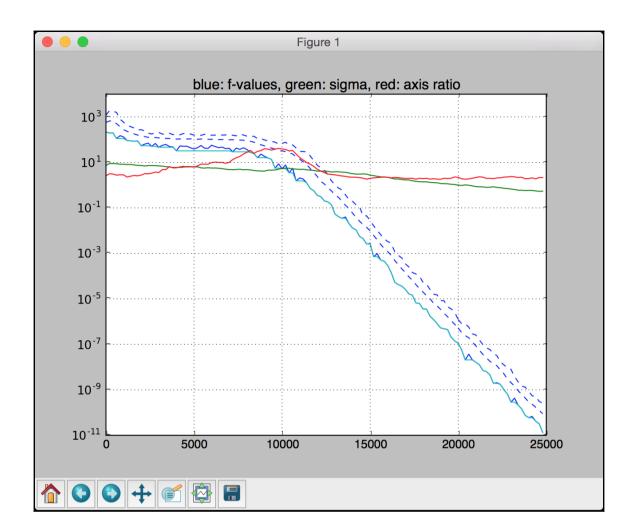


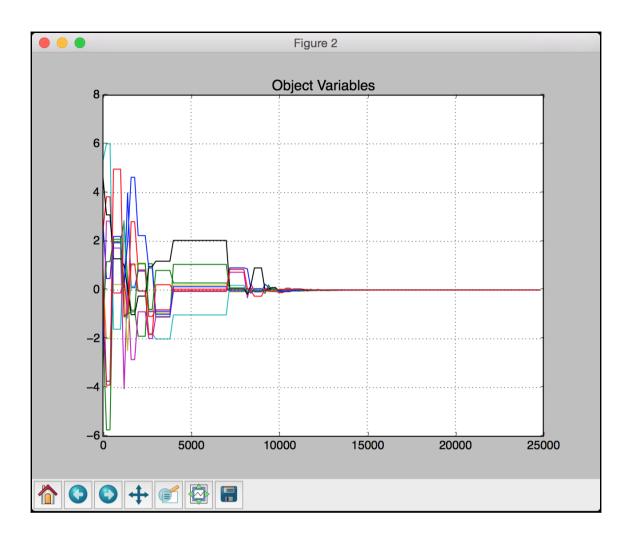
# Color mapping:

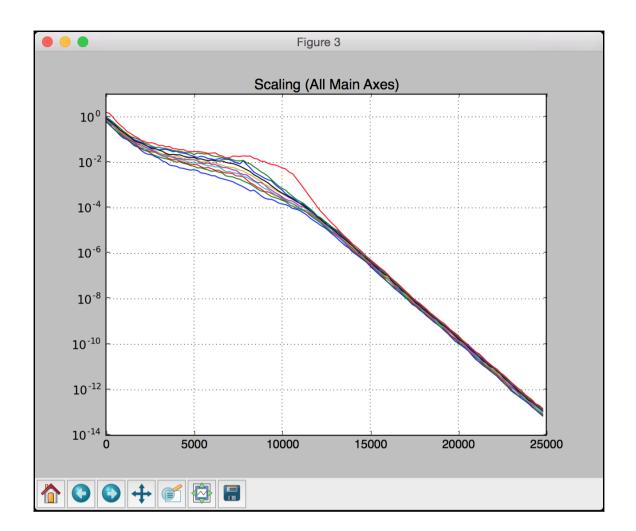
```
Derek ==> blue
Michelle ==> gray
Allan ==> red
Steve ==> blue
Julia ==> green
Amanda ==> red
Joanne ==> green
Mark ==> red
Kelly ==> gray
Brian ==> red
```

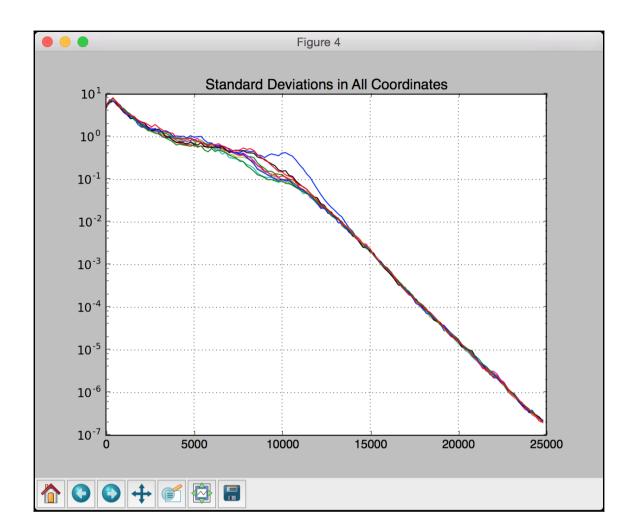


```
Initial configuration
1-e-2
6-3-4
7-5-8
After moving 2 into the empty space
1-2-е
6-3-4
7-5-8
After moving 4 into the empty space
1-2-4
6-3-e
7-5-8
After moving 3 into the empty space
1-2-4
6-e-3
7-5-8
After moving 6 into the empty space
1-2-4
e-6-3
7-5-8
```


```
After moving 2 into the empty space
e-2-3
1-4-6
7-5-8
After moving 1 into the empty space
1-2-3
e-4-6
7-5-8
After moving 4 into the empty space
1-2-3
4-e-6
7-5-8
After moving 5 into the empty space
1-2-3
4-5-6
7-e-8
After moving 8 into the empty space. Goal achieved!
1-2-3
4-5-6
7-8-е
```


```
#
             #
                                  #
                                       #
                                  #
#
             ########
  ####
                                  #
                                       #
#
      #
             #
    0
#
      ###
                 #####
#
         #
                       #
                                       #
              ###
         #
                 #
                       #
                                    ###
#
                           #
                               #
#
        #####
                    #
                           #
                               # x
                                       #
#
                    #
                               #
                                       #
```


```
#
                                 #
#
                                      #
#
             ########
                                 #
  ####
#
   0 #
             #
#
     ·###
                 #####
                          ######
              ###
#
         #
                      #
#
                 #
                    • • #
                         •#
                                    ###
       •#####
                   •#
                          #
                              # x
                                      #
#
                              #
```


#### **Chapter 8: Genetic Algorithms**

```
Starting the evolution process
Evaluated 500 individuals
===== Generation 0
Evaluated 297 individuals
Min = 58.0, Max = 75.0
Average = 70.43 , Standard deviation = 2.91
===== Generation 1
Evaluated 303 individuals
Min = 63.0, Max = 75.0
Average = 72.44 , Standard deviation = 2.16
===== Generation 2
Evaluated 310 individuals
Min = 65.0, Max = 75.0
Average = 73.31 , Standard deviation = 1.6
===== Generation 3
Evaluated 273 individuals
Min = 67.0 , Max = 75.0
Average = 73.76 , Standard deviation = 1.41
```





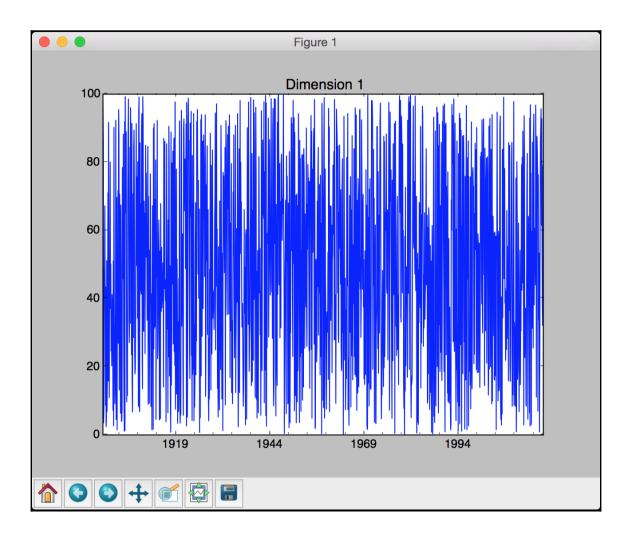


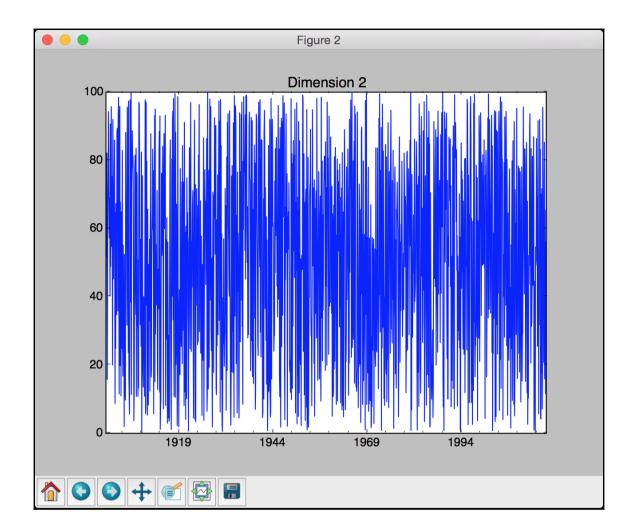


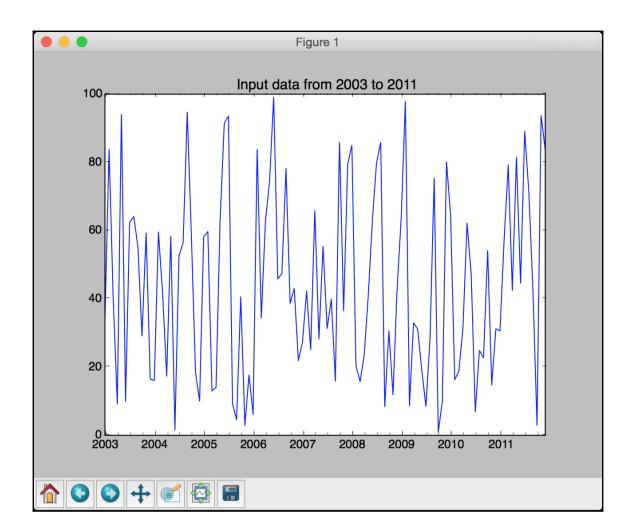
| gen | evals | std     | min     | avg     | max     |
|-----|-------|---------|---------|---------|---------|
| 0   | 200   | 188.36  | 217.082 | 576.281 | 1199.71 |
| 1   | 200   | 250.543 | 196.583 | 659.389 | 1869.02 |
| 2   | 200   | 273.081 | 199.455 | 683.641 | 1770.65 |
| 3   | 200   | 215.326 | 111.298 | 503.933 | 1579.3  |
| 4   | 200   | 133.046 | 149.47  | 373.124 | 790.899 |
| 5   | 200   | 75.4405 | 131.117 | 274.092 | 585.433 |
| 6   | 200   | 61.2622 | 91.7121 | 232.624 | 426.666 |
| 7   | 200   | 49.8303 | 88.8185 | 201.117 | 373.543 |
| 8   | 200   | 39.9533 | 85.0531 | 178.645 | 326.209 |
| 9   | 200   | 31.3781 | 87.4824 | 159.211 | 261.132 |
| 10  | 200   | 31.3488 | 54.0743 | 144.561 | 274.877 |
| 11  | 200   | 30.8796 | 63.6032 | 136.791 | 240.739 |
| 12  | 200   | 24.1975 | 70.4913 | 125.691 | 190.684 |
| 13  | 200   | 21.2274 | 50.6409 | 122.293 | 177.483 |
| 14  | 200   | 25.4931 | 67.9873 | 124.132 | 199.296 |
| 15  | 200   | 26.9804 | 46.3411 | 119.295 | 205.331 |
| 16  | 200   | 24.8993 | 56.0033 | 115.614 | 176.702 |
| 17  | 200   | 21.9789 | 61.4999 | 113.417 | 170.156 |
| 18  | 200   | 21.2823 | 50.2455 | 112.419 | 190.677 |
| 19  | 200   | 22.5016 | 48.153  | 111.543 | 166.2   |
| 20  | 200   | 21.1602 | 32.1864 | 106.044 | 171.899 |
| 21  | 200   | 23.3864 | 52.8601 | 107.301 | 163.617 |
| 22  | 200   | 23.1008 | 51.1226 | 109.628 | 185.777 |
| 23  | 200   | 22.0836 | 51.3058 | 106.402 | 179.673 |

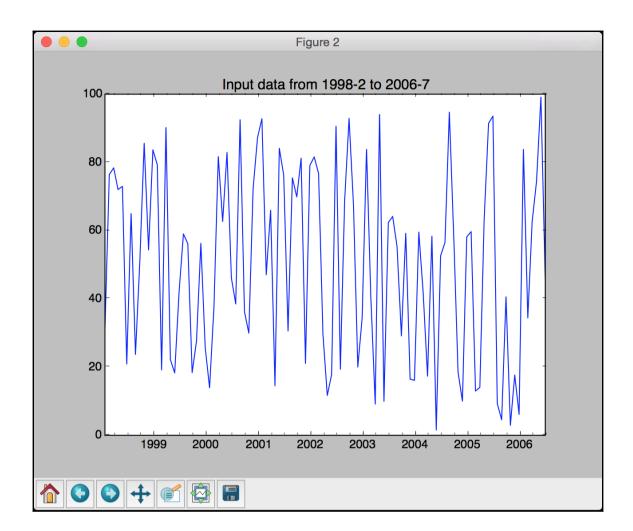
| 100 | 200 | 2.38865e-07 | 1.12678e-07 | 5.18814e-07 | 1.23527e-06 |
|-----|-----|-------------|-------------|-------------|-------------|
| 101 | 200 | 1.49444e-07 | 5.56979e-08 | 3.3199e-07  | 7.98774e-07 |
| 102 | 200 | 1.11635e-07 | 2.07109e-08 | 2.41361e-07 | 7.96738e-07 |
| 103 | 200 | 9.50257e-08 | 3.69117e-08 | 1.94641e-07 | 5.75896e-07 |
| 104 | 200 | 5.63849e-08 | 2.09827e-08 | 1.26148e-07 | 2.887e-07   |
| 105 | 200 | 4.42488e-08 | 1.64212e-08 | 8.6972e-08  | 2.58639e-07 |
| 106 | 200 | 2.34933e-08 | 1.28302e-08 | 5.47789e-08 | 1.54658e-07 |
| 107 | 200 | 1.74434e-08 | 7.13185e-09 | 3.64705e-08 | 9.88235e-08 |
| 108 | 200 | 1.17157e-08 | 6.32208e-09 | 2.54673e-08 | 7.13075e-08 |
| 109 | 200 | 8.73027e-09 | 4.60369e-09 | 1.79681e-08 | 5.88066e-08 |
| 110 | 200 | 6.39874e-09 | 1.92573e-09 | 1.43229e-08 | 4.00087e-08 |
| 111 | 200 | 5.31196e-09 | 2.05551e-09 | 1.13736e-08 | 3.16793e-08 |
| 112 | 200 | 3.15607e-09 | 1.72427e-09 | 7.28548e-09 | 1.67727e-08 |
| 113 | 200 | 2.3789e-09  | 1.01164e-09 | 5.01177e-09 | 1.24541e-08 |
| 114 | 200 | 1.38424e-09 | 6.43112e-10 | 2.94696e-09 | 9.25819e-09 |
| 115 | 200 | 1.04172e-09 | 2.87571e-10 | 2.06068e-09 | 7.90436e-09 |
| 116 | 200 | 6.08685e-10 | 4.32905e-10 | 1.4704e-09  | 3.80221e-09 |
| 117 | 200 | 4.51515e-10 | 2.1538e-10  | 9.23627e-10 | 2.2759e-09  |
| 118 | 200 | 2.77204e-10 | 1.46869e-10 | 6.3507e-10  | 1.44637e-09 |
| 119 | 200 | 2.06475e-10 | 7.54881e-11 | 4.41427e-10 | 1.33167e-09 |
| 120 | 200 | 1.3138e-10  | 5.97282e-11 | 2.98116e-10 | 8.60453e-10 |
| 121 | 200 | 9.52385e-11 | 6.753e-11   | 2.32358e-10 | 5.45441e-10 |
| 122 | 200 | 7.55001e-11 | 4.1851e-11  | 1.72688e-10 | 5.05054e-10 |
| 123 | 200 | 5.52125e-11 | 3.2216e-11  | 1.23505e-10 | 3.10081e-10 |
| 124 | 200 | 4.38068e-11 | 1.32871e-11 | 8.94929e-11 | 2.57202e-10 |

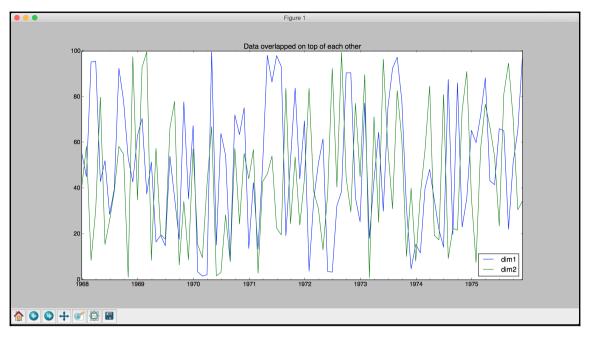
|     |        | fitness |         |         | size    |         |     |     |         |
|-----|--------|---------|---------|---------|---------|---------|-----|-----|---------|
| gen | nevals | avg     | max     | min     | std     | avg     | max | min | std     |
| 0   | 450    | 18.6918 | 47.1923 | 7.39087 | 6.27543 | 3.73556 | 7   | 2   | 1.62449 |
| 1   | 251    | 15.4572 | 41.3823 | 4.46965 | 4.54993 | 3.80222 | 12  | 1   | 1.81316 |
| 2   | 236    | 13.2545 | 37.7223 | 4.46965 | 4.06145 | 3.96889 | 12  | 1   | 1.98861 |
| 3   | 251    | 12.2299 | 60.828  | 4.46965 | 4.70055 | 4.19556 | 12  | 1   | 1.9971  |
| 4   | 235    | 11.001  | 47.1923 | 4.46965 | 4.48841 | 4.84222 | 13  | 1   | 2.17245 |
| 5   | 229    | 9.44483 | 31.478  | 4.46965 | 3.8796  | 5.56    | 19  | 1   | 2.43168 |
| 6   | 225    | 8.35975 | 22.0546 | 3.02133 | 3.40547 | 6.38889 | 15  | 1   | 2.40875 |
| 7   | 237    | 7.99309 | 31.1356 | 1.81133 | 4.08463 | 7.14667 | 16  | 1   | 2.57782 |
| 8   | 224    | 7.42611 | 359.418 | 1.17558 | 17.0167 | 8.33333 | 19  | 1   | 3.11127 |
| 9   | 237    | 5.70308 | 24.1921 | 1.17558 | 3.71991 | 9.64444 | 23  | 1   | 3.31365 |
| 10  | 254    | 5.27991 | 30.4315 | 1.13301 | 4.13556 | 10.5089 | 25  | 1   | 3.51898 |

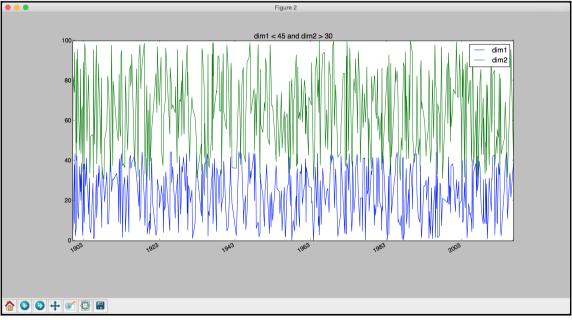

| 36 | 209 | 1.10464 | 22.0546 0.0474957  | 2.71898 26.4867 | 46 1 | 5.23289 |
|----|-----|---------|--------------------|-----------------|------|---------|
| 37 | 258 | 1.61958 | 86.0936 0.0382386  | 6.1839 27.2111  | 45 3 | 4.75557 |
| 38 | 257 | 2.03651 | 70.4768 0.0342642  | 5.15243 26.5311 | 49 1 | 6.22327 |
| 39 | 235 | 1.95531 | 185.328 0.0472693  | 9.32516 26.9711 | 48 1 | 6.00345 |
| 40 | 234 | 1.51403 | 28.5529 0.0472693  | 3.24513 26.6867 | 52 1 | 5.39811 |
| 41 | 230 | 1.4753  | 70.4768 0.0472693  | 5.4607 27.1     | 46 3 | 4.7433  |
| 42 | 233 | 12.3648 | 4880.09 0.0396503  | 229.754 26.88   | 53 1 | 5.18192 |
| 43 | 251 | 1.807   | 86.0936 0.0396503  | 5.85281 26.4889 | 50 1 | 5.43741 |
| 44 | 236 | 9.30096 | 3481.25 0.0277886  | 163.888 26.9622 | 55 1 | 6.27169 |
| 45 | 231 | 1.73196 | 86.7372 0.0342642  | 6.8119 27.4711  | 51 2 | 5.27807 |
| 46 | 227 | 1.86086 | 185.328 0.0342642  | 10.1143 28.0644 | 56 1 | 6.10812 |
| 47 | 216 | 12.5214 | 4923.66 0.0342642  | 231.837 29.1022 | 54 1 | 6.45898 |
| 48 | 232 | 14.3469 | 5830.89 0.0322462  | 274.536 29.8244 | 58 3 | 6.24093 |
| 49 | 242 | 2.56984 | 272.833 0.0322462  | 18.2752 29.9267 | 51 1 | 6.31446 |
| 50 | 227 | 2.80136 | 356.613 0.0322462  | 21.0416 29.7978 | 56 4 | 6.50275 |
| 51 | 243 | 1.75099 | 86.0936 0.0322462  | 5.70833 29.8089 | 56 1 | 6.62379 |
| 52 | 253 | 10.9184 | 3435.84 0.0227048  | 163.602 29.9911 | 55 1 | 6.66833 |
| 53 | 243 | 1.80265 | 48.0418 0.0227048  | 4.73856 29.88   | 55 1 | 7.33084 |
| 54 | 234 | 1.74487 | 86.0936 0.0227048  | 6.0249 30.6067  | 55 1 | 6.85782 |
| 55 | 220 | 1.58888 | 31.094 0.0132398   | 3.82809 30.5644 | 54 1 | 6.96669 |
| 56 | 234 | 1.46711 | 103.287 0.00766444 | 6.81157 30.6689 | 55 3 | 6.6806  |
| 57 | 250 | 17.0896 | 6544.17 0.00424267 | 308.689 31.1267 | 60 4 | 7.25837 |
| 58 | 231 | 1.66757 | 141.584 0.00144401 | 7.35306 32      | 52 1 | 7.23295 |
| 59 | 229 | 2.22325 | 265.224 0.00144401 | 13.388 33.5489  | 64 1 | 8.38351 |
| 60 | 248 | 2.60303 | 521.804 0.00144401 | 24.7018 35.2533 | 58 1 | 7.61506 |

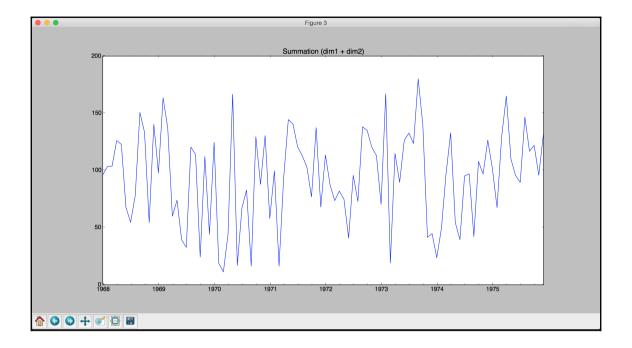

| S##        |
|------------|
| <i>#</i>   |
| ######     |
|            |
|            |
|            |
| ########## |
| ###        |
| ###        |
| ###        |
| #######    |
| # #        |
| ####       |
| #          |
| ##         |
| #          |
| ##         |
|            |
| ###        |
| ##         |
| ####       |
| #####      |
| ####       |
| #####      |
| ###        |
|            |
| #########  |
| .##        |
| .##        |
| .#######   |
| .##        |
|            |
| #######    |
|            |
|            |
|            |

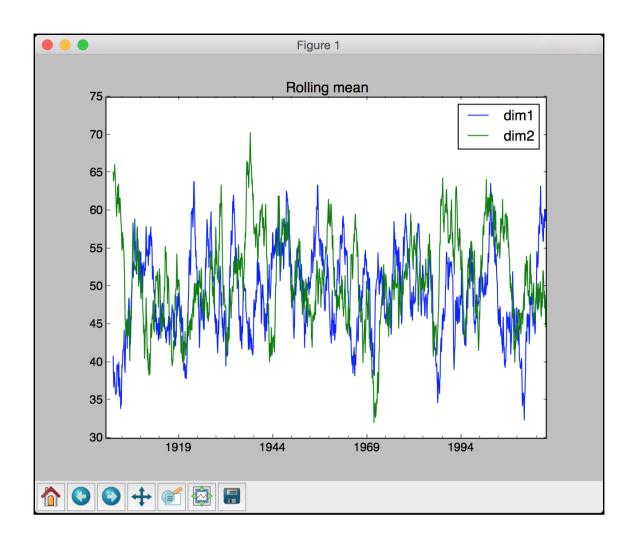

| gen | nevals | avg     | std     | min | max |
|-----|--------|---------|---------|-----|-----|
| 0   | 400    | 1.4875  |         | 0   | 62  |
| 1   | 231    | 4.285   | 7.56993 | 0   | 73  |
| 2   | 235    |         | 14.8493 | 0   | 73  |
| 3   | 231    | 21.72   | 22.1239 | 0   | 73  |
| 4   | 238    | 29.9775 | 27.7861 | 0   | 76  |
| 5   | 224    | 37.6275 | 31.8698 | 0   | 76  |
| 6   | 231    | 42.845  | 33.0541 | 0   | 80  |
| 7   | 223    | 43.55   | 33.9369 | 0   | 83  |
| 8   | 234    | 44.0675 | 34.5201 | 0   | 83  |
| 9   | 231    | 49.2975 | 34.3065 | 0   | 83  |
| 10  | 249    | 47.075  | 36.4106 | 0   | 93  |
| 11  | 222    | 52.7925 | 36.2826 | 0   | 97  |
| 12  | 248    | 51.0725 | 37.2598 | 0   | 97  |
| 13  | 234    | 54.01   | 37.4614 | 0   | 97  |
| 14  | 229    | 59.615  | 37.7894 | 0   | 97  |
| 15  | 228    | 63.3    | 39.8205 | 0   | 97  |
| 16  | 220    | 64.605  | 40.3962 | 0   | 97  |
| 17  | 236    | 62.545  | 40.5607 | 0   | 97  |
| 18  | 233    | 67.99   | 38.9033 | 0   | 97  |
| 19  | 236    | 66.4025 | 39.6574 | 0   | 97  |
| 20  | 221    | 69.785  | 38.7117 | 0   | 97  |
| 21  | 244    | 65.705  | 39.0957 | 0   | 97  |
| 22  | 230    | 70.32   | 37.1206 | 0   | 97  |
| 23  | 241    | 67.3825 | 39.4028 | 0   | 97  |

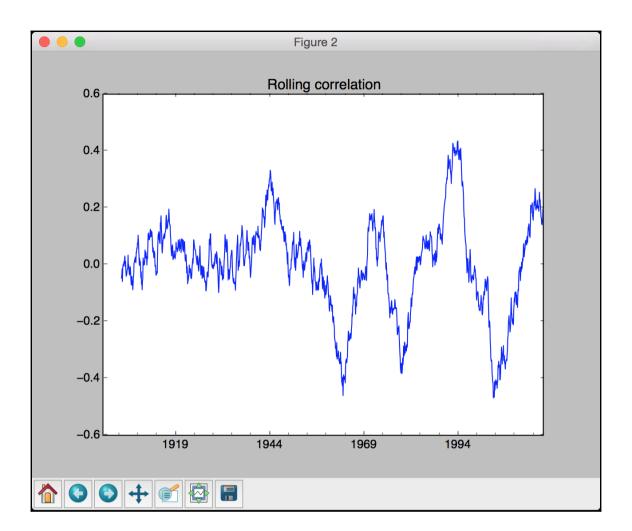

| 26 | 214 | 71.505  | 36.964  | 0 | 97 |
|----|-----|---------|---------|---|----|
| 27 | 246 | 72.72   | 37.1637 | 0 | 97 |
| 28 | 238 | 73.5975 | 36.5385 | 0 | 97 |
| 29 | 239 | 76.405  | 35.5696 | 0 | 97 |
| 30 | 246 | 78.6025 | 33.4281 | 0 | 97 |
| 31 | 240 | 74.83   | 36.5157 | 0 | 97 |
| 32 | 216 | 80.2625 | 32.6659 | 0 | 97 |
| 33 | 220 | 80.6425 | 33.0933 | 0 | 97 |
| 34 | 247 | 78.245  | 34.6022 | 0 | 97 |
| 35 | 241 | 81.22   | 32.1885 | 0 | 97 |
| 36 | 234 | 83.6375 | 29.0002 | 0 | 97 |
| 37 | 228 | 82.485  | 31.7354 | 0 | 97 |
| 38 | 219 | 83.4625 | 30.0592 | 0 | 97 |
| 39 | 212 | 88.64   | 24.2702 | 0 | 97 |
| 40 | 231 | 86.7275 | 27.0879 | 0 | 97 |
| 41 | 229 | 89.1825 | 23.8773 | 0 | 97 |
| 42 | 216 | 87.96   | 25.1649 | 0 | 97 |
| 43 | 218 | 86.85   | 27.1116 | 0 | 97 |
| 44 | 236 | 88.78   | 23.7278 | 0 | 97 |
| 45 | 225 | 89.115  | 23.4212 | 0 | 97 |
| 46 | 232 | 88.5425 | 24.187  | 0 | 97 |
| 47 | 245 | 87.7775 | 25.3909 | 0 | 97 |
| 48 | 231 | 87.78   | 26.3786 | 0 | 97 |
| 49 | 238 | 88.8525 | 24.5115 | 0 | 97 |
| 50 | 233 | 87.82   | 25.4164 | 1 | 97 |


# **Chapter 11: Probabilistic Reasoning for Sequential Data**







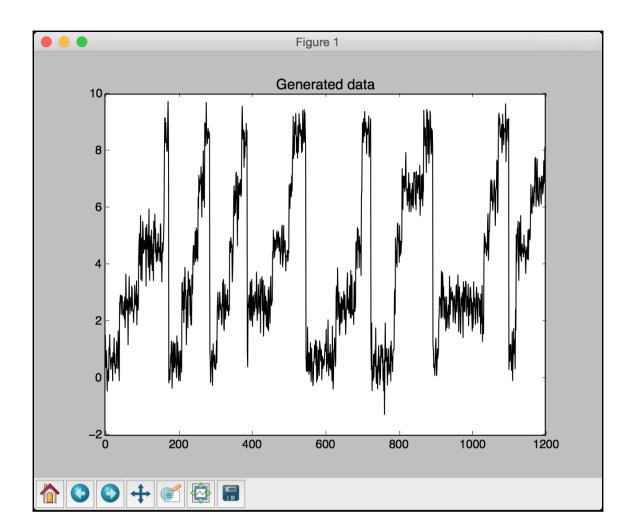







```
Maximum values for each dimension:
```

dim1 99.98
dim2 99.97
dtype: float64


### Minimum values for each dimension:

dim1 0.18
dim2 0.16
dtype: float64

#### Overall mean:

dim1 49.030541 dim2 50.983291 dtype: float64

```
Row-wise mean:
1900-01-31
             85.595
             75.310
1900-02-28
1900-03-31
             27.700
1900-04-30
             44.675
1900-05-31
             31.295
1900-06-30
             44.160
1900-07-31
             67.415
             56.160
1900-08-31
1900-09-30
             51.495
1900-10-31
             61.260
1900-11-30
             30.925
1900-12-31
             30.785
Freq: M, dtype: float64
Correlation coefficients:
         dim1
                  dim2
dim1 1.00000 0.00627
dim2
     0.00627 1.00000
```



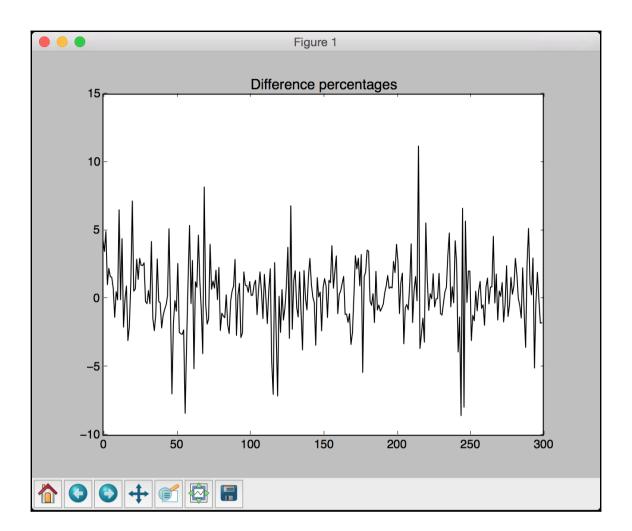
```
Training the Hidden Markov Model...
Means and variances:
Hidden state 1
Mean = 4.6
Variance = 0.25
Hidden state 2
Mean = 6.59
Variance = 0.25
Hidden state 3
Mean = 0.6
Variance = 0.25
Hidden state 4
Mean = 8.6
Variance = 0.26
Hidden state 5
Mean = 2.6
Variance = 0.26
```

```
Training the CRF model...
Accuracy score = 77.93%
Original = rojections
Predicted = rojectiong
Original = uff
Predicted = ufr
Original = kiing
Predicted = kiing
Original = ecompress
Predicted = ecomertig
Original = uzz
Predicted = vex
Original = poiling
Predicted = aciting
```

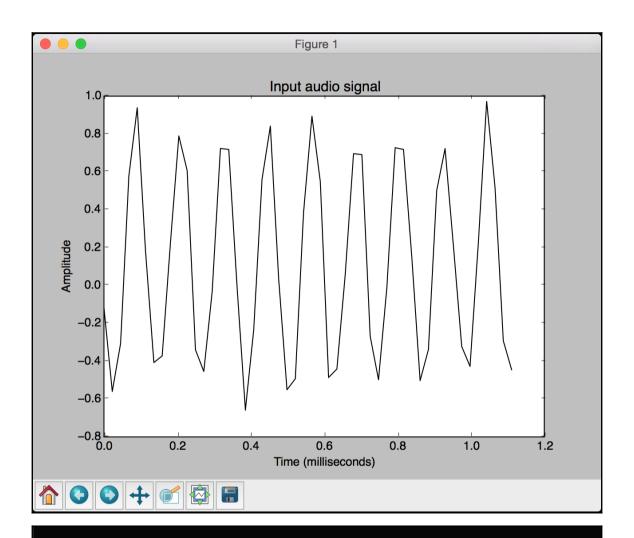
```
Original = abulously
Predicted = abuloualy
```

Original = ormalization Predicted = ormalisation

Original = ake Predicted = aka


Original = afeteria Predicted = ateteria

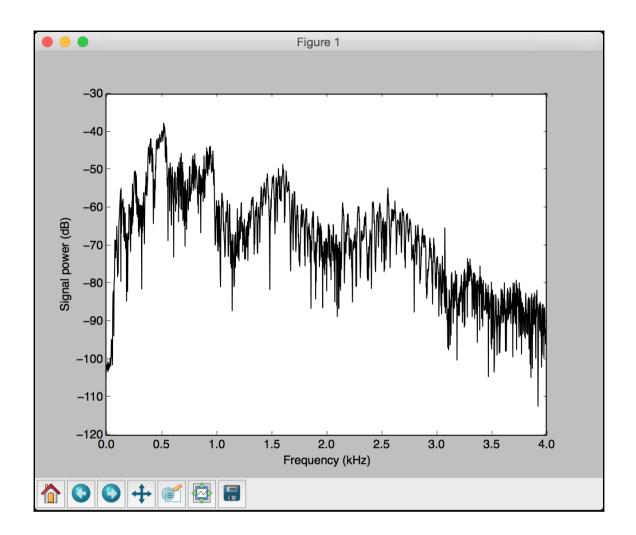
Original = obble Predicted = obble

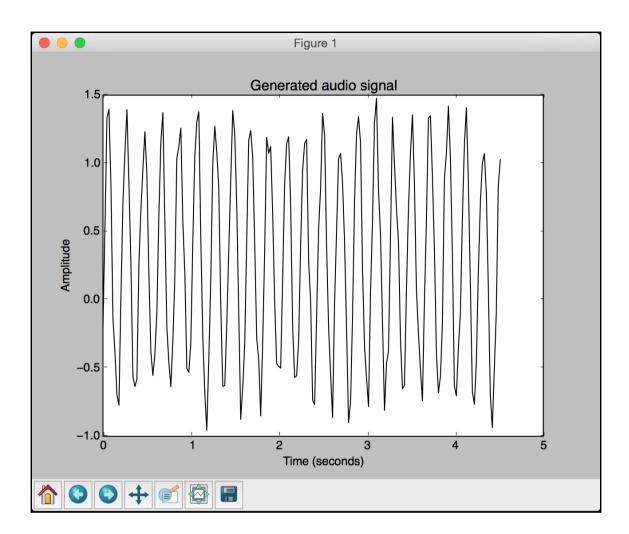

Original = hadow Predicted = habow

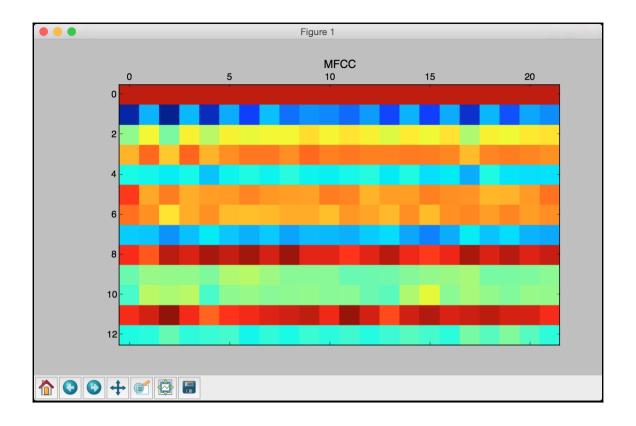
Original = ndustrialized Predicted = ndusqrialyled

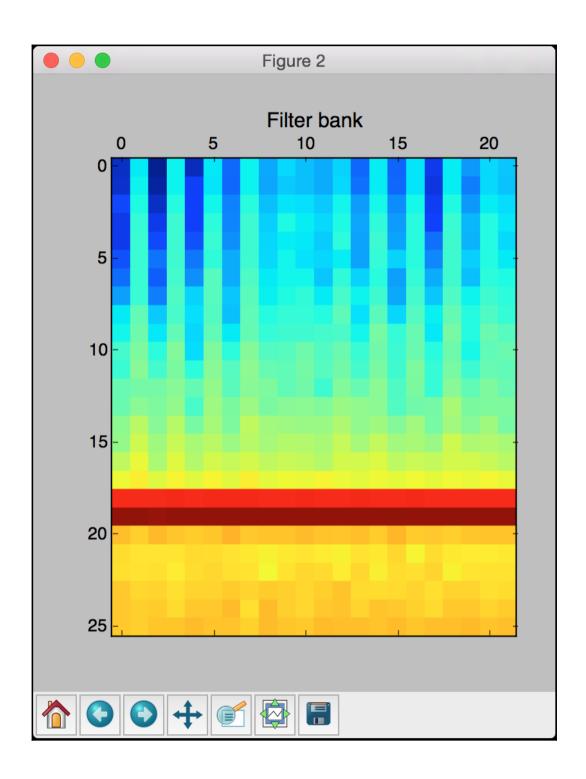
Original = ympathetically Predicted = ympnshetically




## **Chapter 12: Building A Speech Recognizer**





Signal shape: (132300,)


Datatype: int16

Signal duration: 3.0 seconds









```
MFCC:
Number of windows = 22
Length of each feature = 13

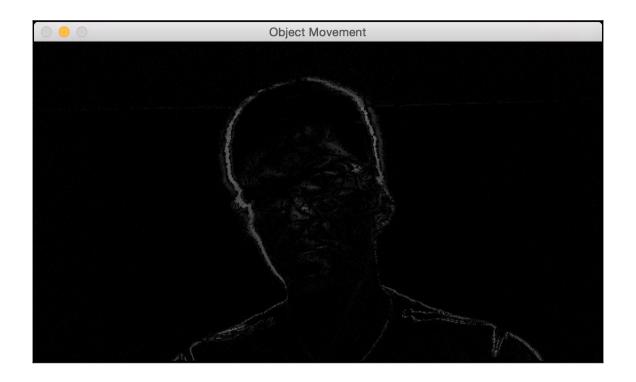
Filter bank:
Number of windows = 22
```

Length of each feature = 26

Original: apple Predicted: apple

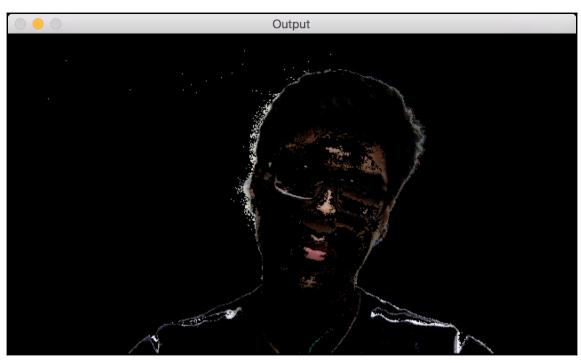
Original: banana Predicted: banana

Original: kiwi Predicted: kiwi

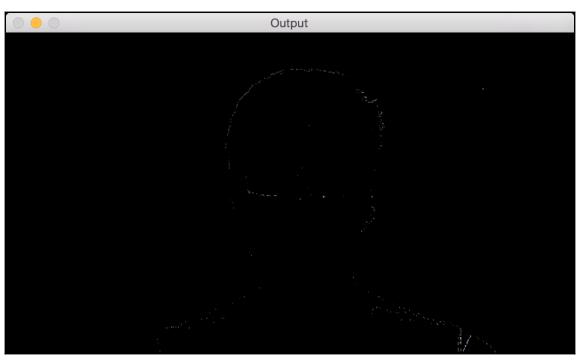

Original: lime Predicted: lime

Original: orange Predicted: orange

Original: peach Predicted: peach


Original: pineapple Predicted: pineapple


## **Chapter 13: Object Detection and Tracking**

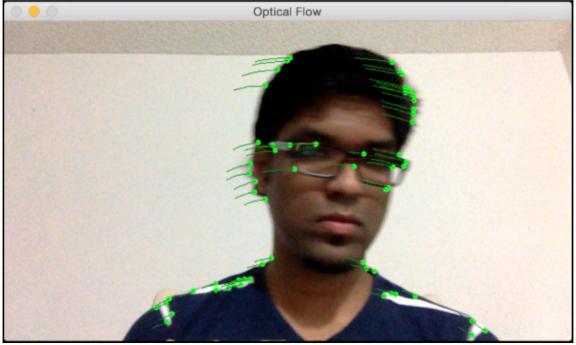


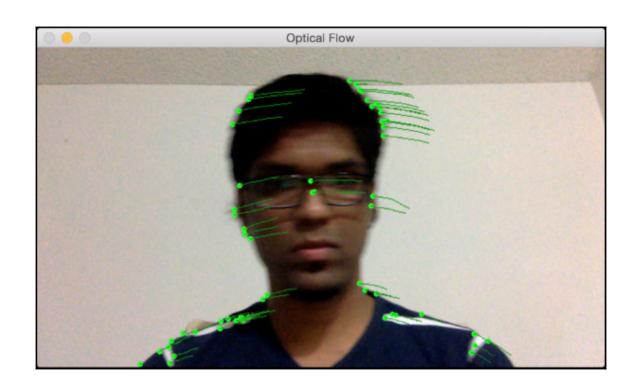




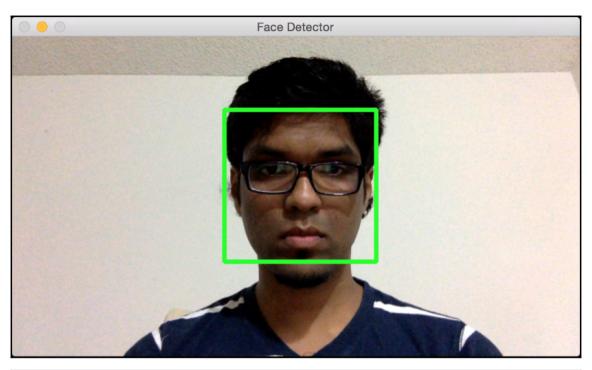


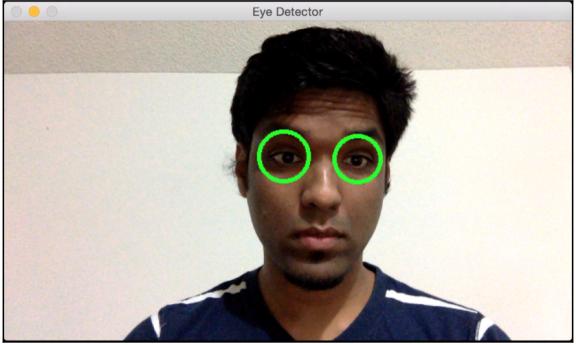


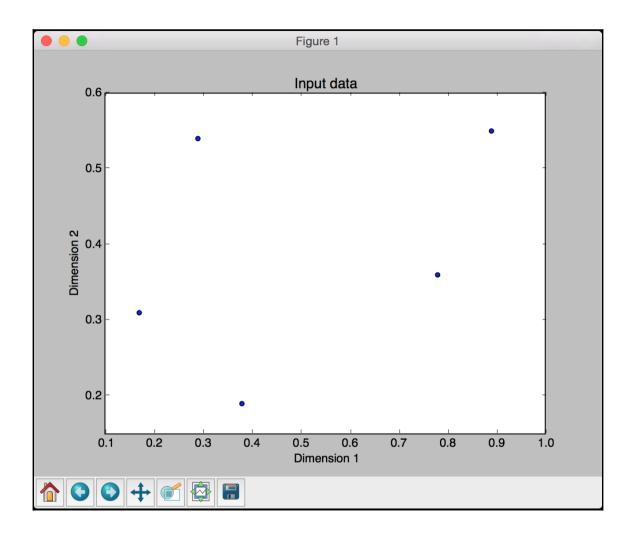



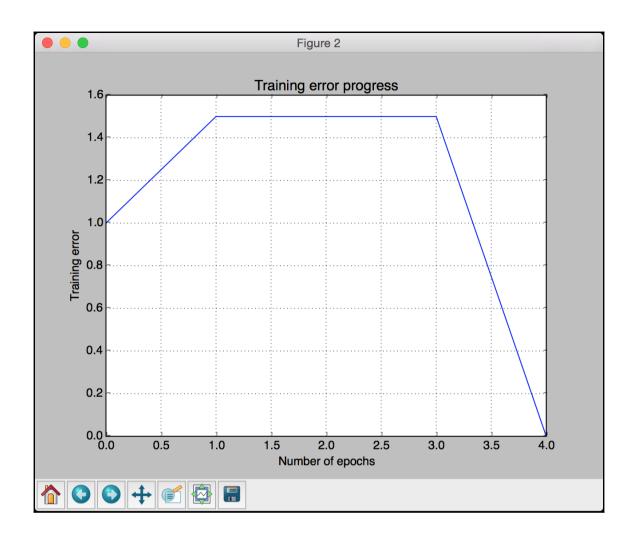


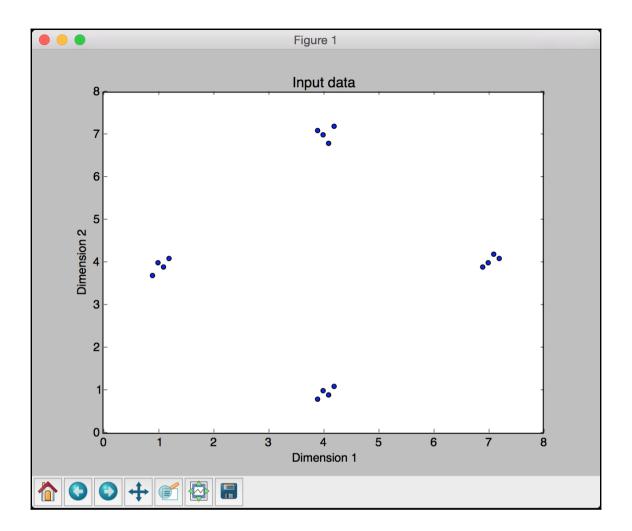



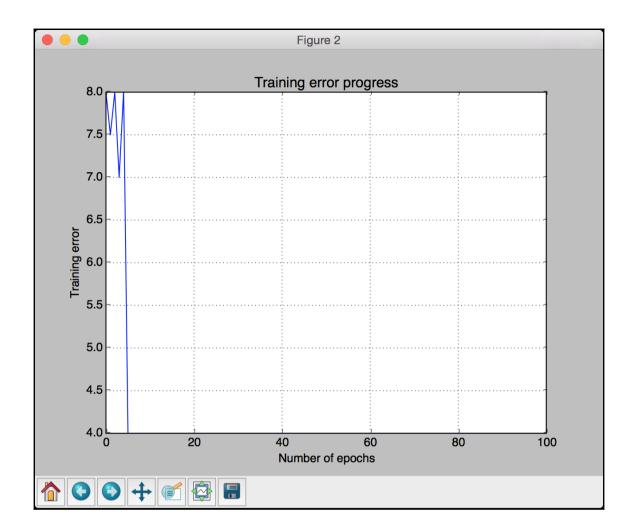






## **Chapter 14: Artificial Neural Networks**









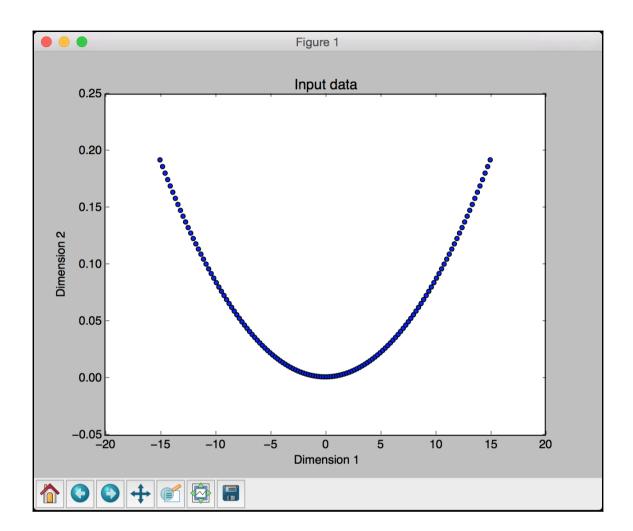
```
Epoch: 20; Error: 4.0;

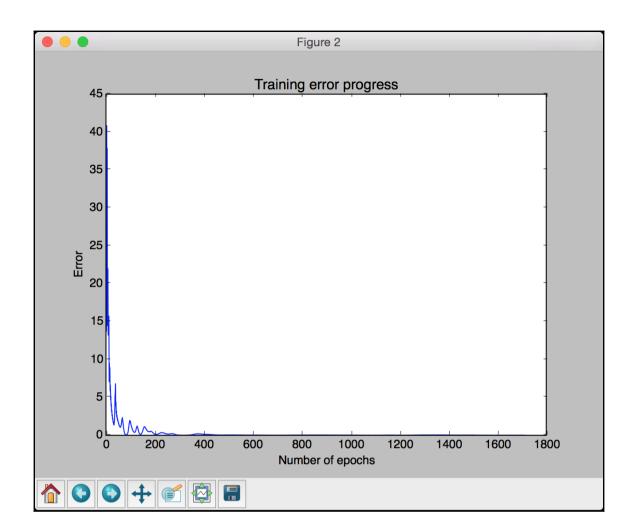
Epoch: 40; Error: 4.0;

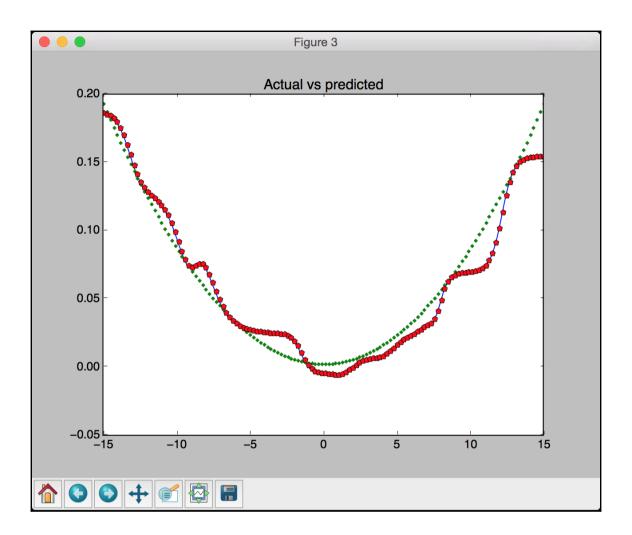
Epoch: 60; Error: 4.0;

Epoch: 80; Error: 4.0;

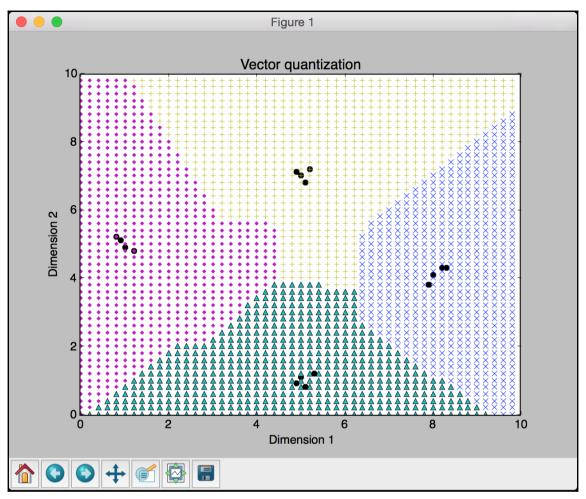
Epoch: 100; Error: 4.0;


The maximum number of train epochs is reached

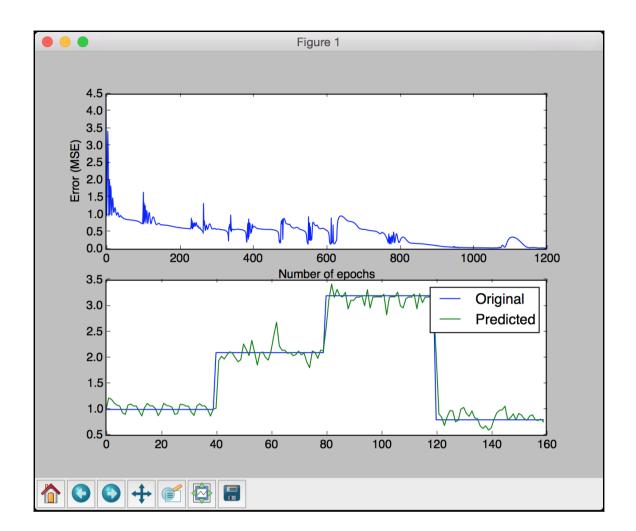

Test results:

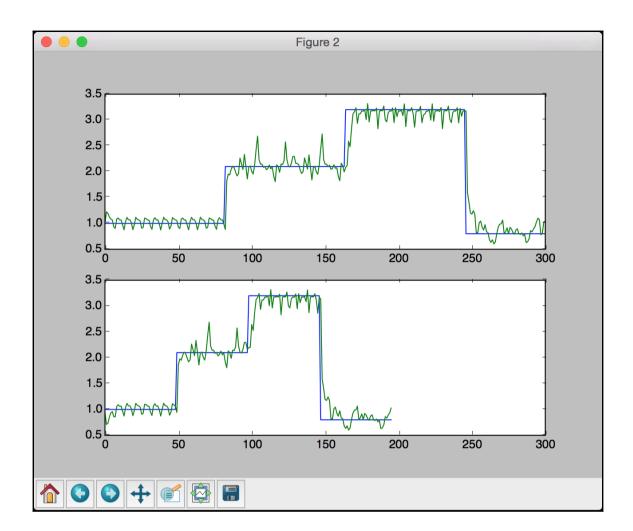

[0.4, 4.3] --> [ 0.  0.]

[4.4, 0.6] --> [ 1.  0.]


[4.7, 8.1] --> [ 1.  1.]
```






```
Epoch: 100; Error: 1.9247718251621995;
Epoch: 200; Error: 0.15723294798079526;
Epoch: 300; Error: 0.021680213116912858;
Epoch: 400; Error: 0.1381761995539017;
Epoch: 500; Error: 0.04392553381948737;
Epoch: 600; Error: 0.02975401597014979;
Epoch: 700; Error: 0.014228560930227126;
Epoch: 800; Error: 0.03460207842970052;
Epoch: 900; Error: 0.035934053149433196;
Epoch: 1000; Error: 0.025833284445815966;
Epoch: 1100; Error: 0.013672412879982398;
Epoch: 1200; Error: 0.01776586425692384;
Epoch: 1300; Error: 0.04310242610384976;
Epoch: 1400; Error: 0.03799681296096611;
Epoch: 1500; Error: 0.02467030041520845;
Epoch: 1600; Error: 0.010094873168855236;
Epoch: 1700; Error: 0.01210866043021068;
The goal of learning is reached
```



```
Epoch: 100; Error: 0.0;
Epoch: 200; Error: 0.0;
Epoch: 300; Error: 0.0;
Epoch: 400; Error: 0.0;
Epoch: 500; Error: 0.0;
The maximum number of train epochs is reached
```





```
Epoch: 100; Error: 0.7378753203612153;

Epoch: 200; Error: 0.6276459886666788;

Epoch: 300; Error: 0.586316536629095;

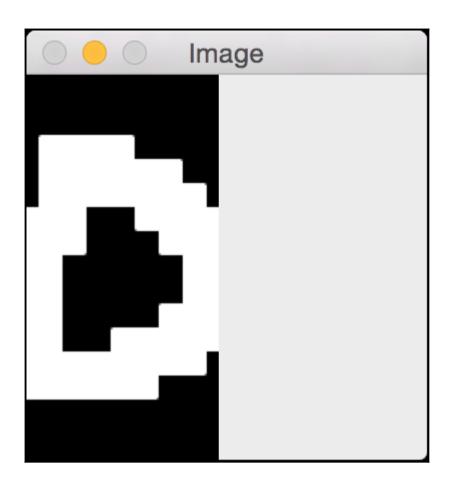
Epoch: 400; Error: 0.7246461052491963;

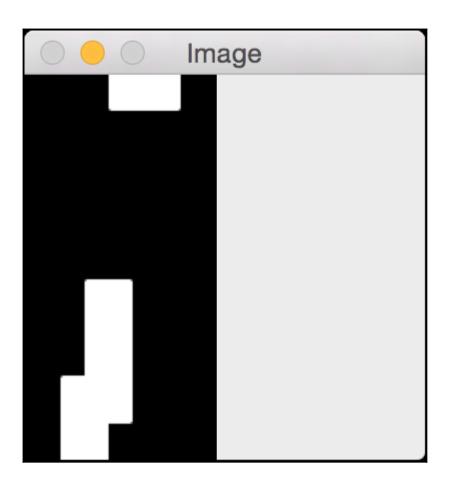
Epoch: 500; Error: 0.7244266943409208;

Epoch: 600; Error: 0.5650581389122635;

Epoch: 700; Error: 0.5798180931911314;

Epoch: 800; Error: 0.19557566610789826;


Epoch: 900; Error: 0.10837074465396046;


Epoch: 1000; Error: 0.04330852391940663;

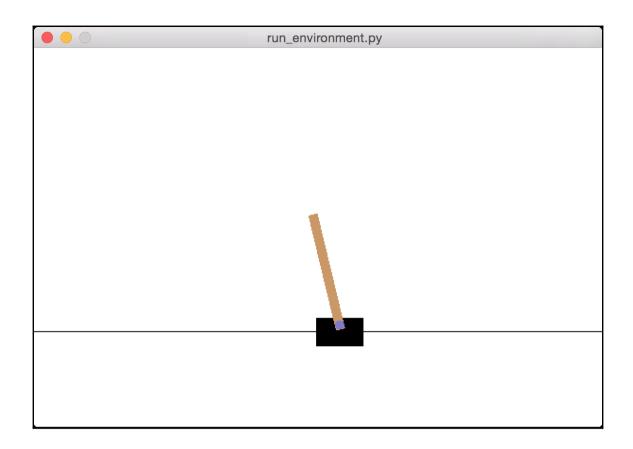
Epoch: 1100; Error: 0.3073835343028226;

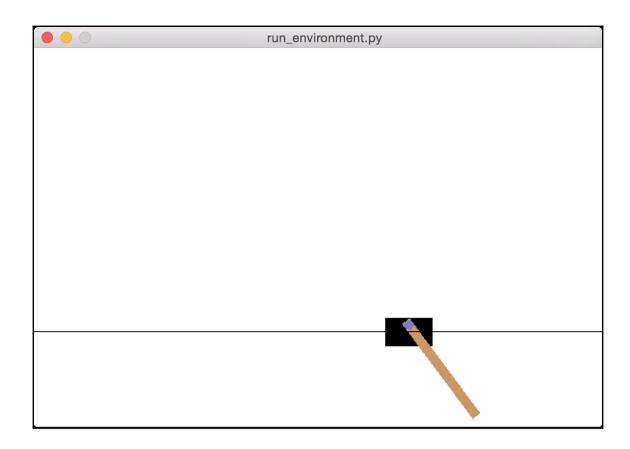
Epoch: 1200; Error: 0.034685278416163604;

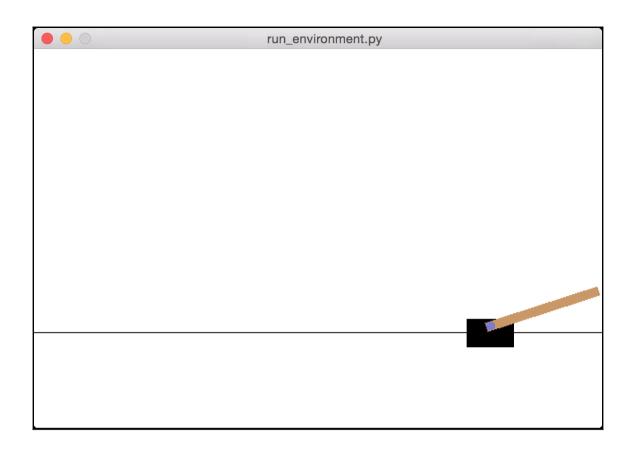
The maximum number of train epochs is reached
```

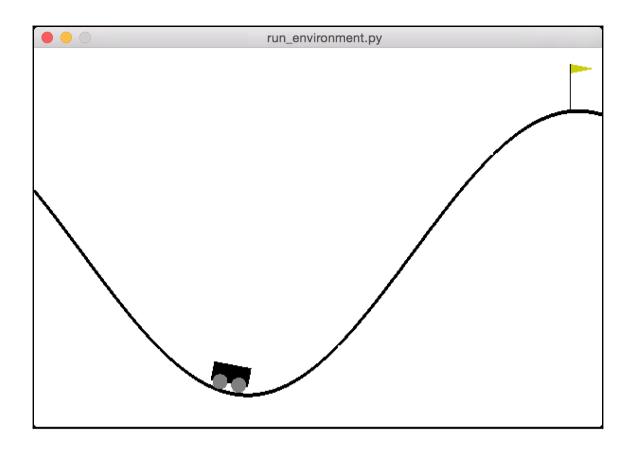


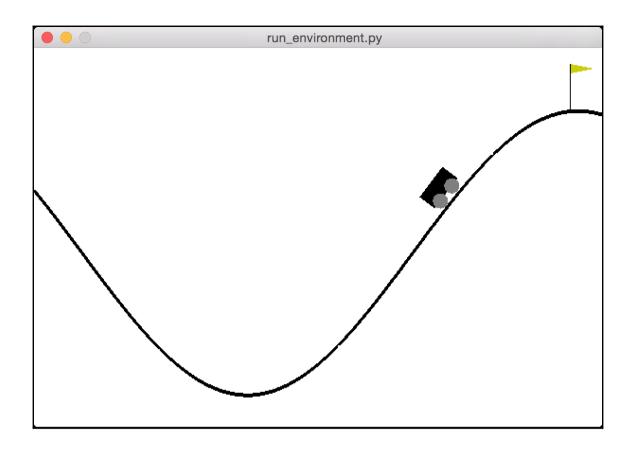


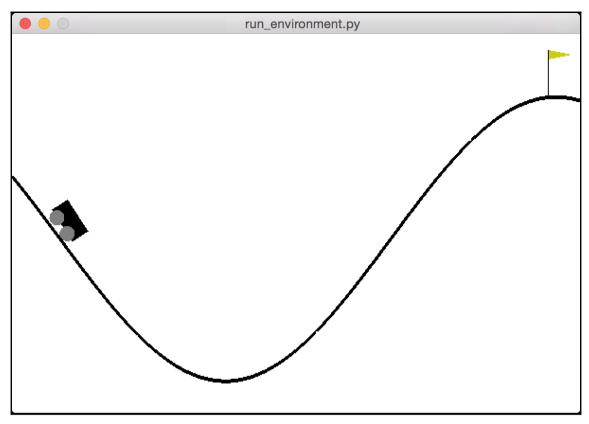


```
Epoch: 100; Error: 80.75182001223291;
Epoch: 200; Error: 49.823887961230206;
Epoch: 300; Error: 26.624261963923217;
Epoch: 400: Error: 31.131906412329677:
Epoch: 500; Error: 30.589610928772494;
Epoch: 600; Error: 23.129959531324324;
Epoch: 700; Error: 15.561849160600984;
Epoch: 800; Error: 9.52433563455828;
Epoch: 900; Error: 1.4032941634688987;
Epoch: 1000; Error: 1.1584148924740179;
Epoch: 1100; Error: 0.844934060039839;
Epoch: 1200; Error: 0.646187646028962;
Epoch: 1300; Error: 0.48881681329304894;
Epoch: 1400; Error: 0.4005475591737743;
Epoch: 1500; Error: 0.34145887283532067;
Epoch: 1600; Error: 0.29871068426249625;
Epoch: 1700; Error: 0.2657577763744411;
Epoch: 1800; Error: 0.23921810237252988;
Epoch: 1900; Error: 0.2172060084455509;
Epoch: 2000; Error: 0.19856823374761018;
Epoch: 2100; Error: 0.18253521958793384;
Epoch: 2200; Error: 0.16855895648078095;
```

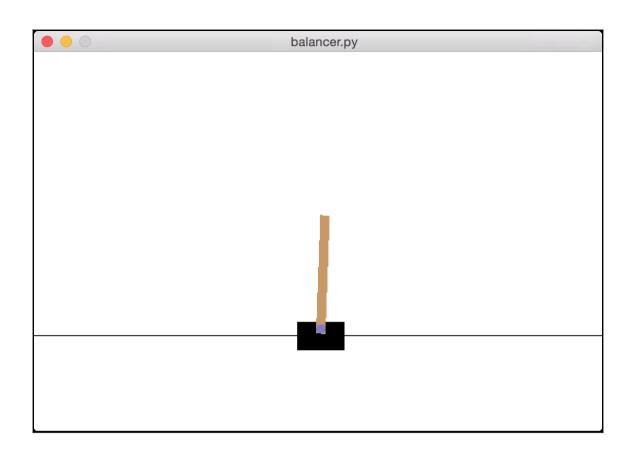

```
Epoch: 9500; Error: 0.032460181065798295;
Epoch: 9600; Error: 0.027044816600106478;
Epoch: 9700; Error: 0.022026328910164213;
Epoch: 9800; Error: 0.018353324233938713;
Epoch: 9900; Error: 0.01578969259136868;
Epoch: 10000; Error: 0.014064205770213847;
The maximum number of train epochs is reached
Testing on unknown data:
Original: o
Predicted: o
Original: m
Predicted: n
Original: m
Predicted: m
Original: a
Predicted: d
Original: n
```

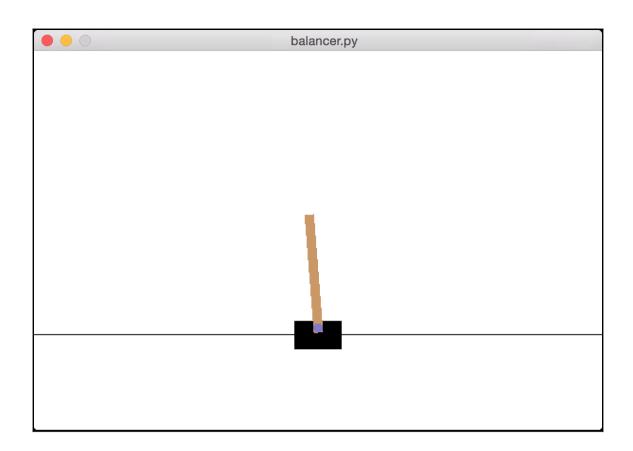

Predicted: n


### **Chapter 15: Reinforcement Learning**



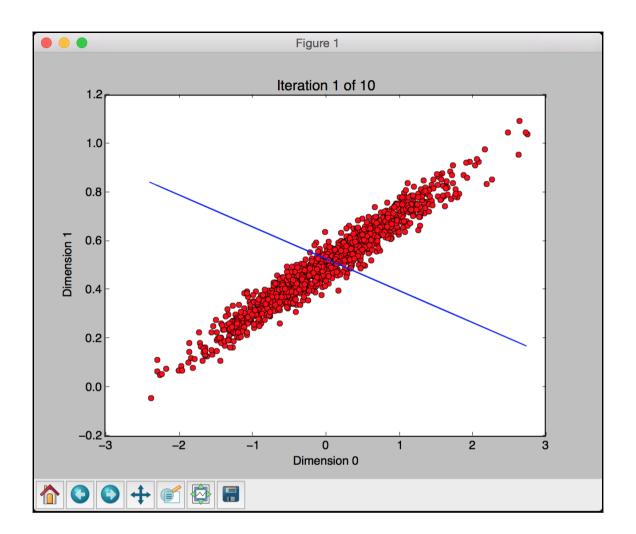



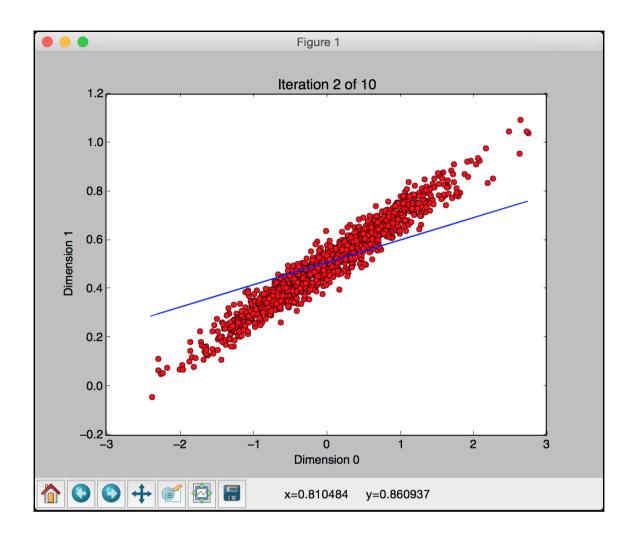



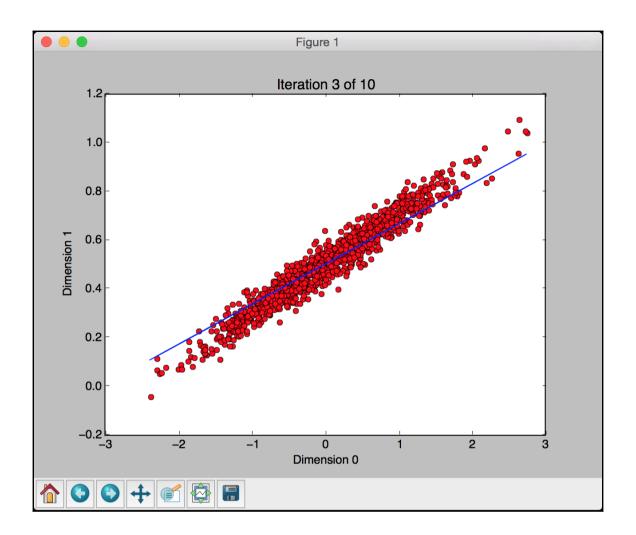


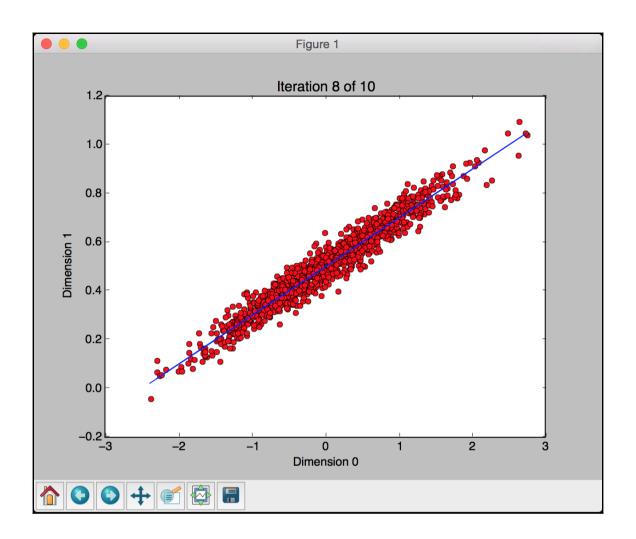






```
0.01704777
                                       0.02868271]
              0.03379922 -0.01628054
[ 0.01772375 -0.16108552 -0.01570689
                                       0.31618481]
Γ 0.01450204 0.03425659 -0.00938319
                                       0.018590147
Γ 0.01518717 -0.16072954 -0.00901139
                                       0.308297857
Γ 0.01197258 -0.35572194 -0.00284543
                                       0.598125267
Γ 0.00485814 -0.16056029
                           0.00911707
                                       0.304547427
Γ 0.00164694 -0.35581098
                           0.01520802
                                       0.600091657
Γ-0.00546928 -0.16090505
                           0.02720986
                                       0.312237567
                                       0.61337594]
[-0.00868738 -0.35640386
                           0.03345461
[-0.01581546 - 0.55197696]
                           0.04572213
                                       0.91640525]
             -0.3575021
                           0.06405023
                                       0.638435447
Γ-0.026855
[-0.03400504 -0.16332896
                           0.07681894
                                       0.366590877
[-0.03727162 -0.3594537
                           0.08415076
                                       0.68247294]
[-0.04446069 -0.5556372
                           0.09780022
                                       1.00041801]
[-0.05557344 -0.75192055
                           0.11780858
                                       1.322143527
\Gamma-0.07061185 -0.55846765
                           0.14425145
                                       1.068531197
\Gamma-0.0817812 -0.36551752
                           0.16562207
                                       0.824375027
[-0.08909155 -0.56247052
                           0.18210957
                                       1.164232447
Γ-0.10034096 -0.75943464
                           0.20539422
                                       1.50803784]
Episode finished after 19 timesteps
```


# **Chapter 16 : Deep Learning with Convolutional Neural Networks**











#### ITERATION 1 W = -0.130961 b = 0.53005 loss = 0.0760343

#### ITERATION 2 W = 0.0917911 b = 0.508959 loss = 0.00960302

#### ITERATION 3 W = 0.164665 b = 0.502555 loss = 0.00250165

ITERATION 4 W = 0.188492 b = 0.500459 loss = 0.0017425

```
ITERATION 7
W = 0.199662
b = 0.499477
loss = 0.00165175
ITERATION 8
W = 0.199934
b = 0.499453
loss = 0.00165165
ITERATION 9
W = 0.200023
b = 0.499445
loss = 0.00165164
ITERATION 10
W = 0.200052
b = 0.499443
loss = 0.00165164
```

```
Extracting ./mnist_data/train-images-idx3-ubyte.gz
Extracting ./mnist_data/train-labels-idx1-ubyte.gz
Extracting ./mnist_data/t10k-images-idx3-ubyte.gz
Extracting ./mnist_data/t10k-labels-idx1-ubyte.gz
Accuracy = 0.921
```

```
Extracting ./mnist_data/train-images-idx3-ubyte.gz
Extracting ./mnist_data/train-labels-idx1-ubyte.gz
Extracting ./mnist_data/t10k-images-idx3-ubyte.gz
Extracting ./mnist_data/t10k-labels-idx1-ubyte.gz
Training the model....
Iteration 0 , Accuracy = 0.0533333
Iteration 50 , Accuracy = 0.813333
Iteration 100 , Accuracy = 0.8
Iteration 150 , Accuracy = 0.906667
Iteration 200 , Accuracy = 0.84
Iteration 250 , Accuracy = 0.92
Iteration 300 , Accuracy = 0.933333
Iteration 350 , Accuracy = 0.866667
Iteration 400 , Accuracy = 0.973333
Iteration 450 , Accuracy = 0.933333
Iteration 500 , Accuracy = 0.906667
Iteration 550 , Accuracy = 0.853333
Iteration 600 , Accuracy = 0.973333
Iteration 650 , Accuracy = 0.973333
Iteration 700 , Accuracy = 0.96
Iteration 750 , Accuracy = 0.933333
```

```
Iteration 2900 , Accuracy = 0.973333
Iteration 2950 , Accuracy = 1.0
Iteration 3000 , Accuracy = 0.973333
Iteration 3050 , Accuracy = 1.0
Iteration 3100 , Accuracy = 0.986667
Iteration 3150 , Accuracy = 1.0
Iteration 3200 . Accuracy = 1.0
Iteration 3250 , Accuracy = 1.0
Iteration 3300 , Accuracy = 1.0
Iteration 3350 , Accuracy = 1.0
Iteration 3400 , Accuracy = 0.986667
Iteration 3450 . Accuracy = 0.946667
Iteration 3500 , Accuracy = 0.973333
Iteration 3550 , Accuracy = 0.973333
Iteration 3600 , Accuracy = 1.0
Iteration 3650 , Accuracy = 0.986667
Iteration 3700 . Accuracy = 1.0
Iteration 3750 , Accuracy = 1.0
Iteration 3800 , Accuracy = 0.986667
Iteration 3850 , Accuracy = 0.986667
Iteration 3900 . Accuracy = 1.0
```