
Loading and Reading
This appendix covers a variety of topics extending those covered in Chapter 7,
Techniques for Creating a Multimedia Database. It includes in greater details the
performance tests discussed on tablespace fragment sizes. It covers multimedia table
creation statements and PL/SQL code for performing loads. Also detailed is how to
install and configure Apache 2.0 with the Mod PL/SQL gateway. The final section
reviews sizing methods that can be used to configure Oracle databases of various
sizes and hardware capabilities.

Locally managed tablespace's UNIFORM
extent size
The following testing results show how the block size and extent size can impact
performance.

Disclaimer: The tests results shown here were done locally and do
not represent any official results. They have not been independently
verified (the goal is to have this done with the release of part 2 of this
book). The results should be seen as a guide. A database administrator
reviewing these results should confirm the same behavior at their own
site before attempting to embark on large-scale projects using these
results as a proof.

The scripts used in this testing procedure are found at the end of this section. The test
involved creating a tablespace with varying BLOCKSIZE and LOCAL UNIFORM SIZE
using the command:

CREATE TABLESPACE tbls_name BLOCKSIZE 8192/16384 EXTENT MANAGEMENT
LOCAL UNIFORM SIZE xx segment space management auto datafile
'directory/datafile' size 6G reuse;

E

Loading and Reading

[2]

67 TIF images of various sizes between 10 MB and 90 MB are loaded in (no
processing at all), totaling in size of approximately 3.0 GB. Times are taken for the
load to run. A read test is then done where each BLOB is read in chunks of 32 KB and
the size in bytes calculated. This ensures the database has to perform a complete full
scan of the BLOB. As the BLOB is not cached, it is read in from disk. The test was run
three times with the best result used as optimal. For an 8 KB block size, the minimum
extent size is 128 KB, whereas for 16 KB block size, it's 256 KB. This is because
segment space management auto was used and requires a minimum number of
extents to be created.

The following table lists the testing results comparing an 8-KB block size with a 16-
KB block size for loading in digital images:

LOCAL UNIFORM
SIZE

BLOCKSIZE 8192 BLOCKSIZE 16384

Load Extents Read Load Extents Read

128 KB 22.08
min

27,241 3.53 min n/a n/a n/a

256 KB 16.13
min

12,831 3.19 min 9.50 min 13,179 4.01
min

512 KB 7.37 min 6,309 3.16 min 7.17 min 6,366 3.17
min

1 MB 5.45 min 3,129 3.59 min 4.29 min 3,130 4.14
min

5 MB 4.05 min 622 3.34 min 4.52 min 618 3.52
min

10 MB 3.55 min 311 2.43 min 4.50 min 309 1.39
min

100 MB 3.35 min 32 1.37 min 3.49 min 31 1.38
min

1 GB 3.41 min 4 1.36 min 3.37 min 4 1.35
min

The results raise some interesting issues. There is obviously a sweet spot around
the 10 to 50 MB mark for extent size. Once it has reached the database, block size
becomes immaterial, and this is due to the number of extents dropping to under
800. The test results clearly show that an extent size under 1 MB in size will result
in dramatically slower load times as well as slower read times.

Appendix E

[3]

The following graph plots the load results shown in the previous table:

The following graph plots the read results shown in the previous table:

Loading and Reading

[4]

The following graph plots the extent usage results shown in the previous table:

The recommendation is, if the decision is made to use an 8 KB block size, the extent
size for the tablespace should be a minimum of 10 MB. Tablespace storing large
volumes of storage should use a large extent size with the aim of keeping the number
of extents below 1,000. Using a 16 KB block size will not immediately improve
performance.

Test Server Specifications: The test server used was deliberately
designed to be the one which is mid-range using standard off the
shelf components. Servers with a higher specification are likely to
get faster results. The goal of the testing wasn't to determine the
best performance capabilities, but rather to compare features and
see which database capabilities work best with multimedia.
Operating system: Windows 2008R2
Oracle Database Version: 11.2.0.2 – 64 Bit
DB cache size: 300 MB
PGA size: 300 MB
Java Pool: 300 MB
Shared Pool: 300 MB
CPUs: 1 x Intel Core i7-2600 CU @ 3.40 Ghtz

Appendix E

[5]

If there is some confusion about why the number of extents is approximately the
same between the 8 KB and 16-KB block size, when one size is double the size of the
other, keep in mind that the extent size is a fixed size which is configured when the
tablespace is created. Using the 1 GB uniform extent size, even though both 8 KB and
16 KB have four extents, 8 KB requires 524,288 blocks to achieve it while 16 KB only
requires near half that at 262,144 blocks.

The hypothesis test case is that the sweet spot for image loading is about 10 to 50
MB of uniform extent size based on the notion that the number of extents should be
no more than about 800. If this hypothesis holds true, then increasing the volume
of data by 100 times should show that the 10 to 50 MB of sweet spot now becomes a
choke point, and the ideal extent size becomes 1 to 5 GB, with no real improvement if
the extent size increases beyond this. An alternate view is that the processing based
on extents is an approximate fixed length of time and is exacerbated by the smaller
volume size. As the data volume increases, this size will remain static and for very
large volumes prove to be negligible.

In the next test, as covered in the following table, the volume of data processed
is increased by 100 fold. Some basic tuning has been done on the database to
improve load times (ensure redo is on a separate I/O channel and larger redo log
sizes). The following table shows the load and read times when processing nearly
300 GB of images:

LOCAL
UNIFORM
SIZE

BLOCK SIZE 8192 BLOCKSIZE 16384

Load Extents Read Load Extents Read

256 KB 278.40 min 1,228,477 74.56 min 245.08 min 1265633 68.35 min

50 MB 76.53 min 5,972 64.11 min 76.48 min 5920 62.35 min

1 GB 81.36 min 292 68.56 min 77.03 min 290 62.52 min

5 GB 89.23 min 59 80.40 min 84.37 min 59 77.52 min

10 GB 101.39 min 31 77.47 min 87.30 min 30 77.53 min

Loading and Reading

[6]

The following graph plots the load results of the previous table:

The following graph plots the read results of the previous table:

In comparison to the smaller loads, extending the size by 100 has shown some
interesting storage issues. As expected, the smaller extent size impacted the load
time; it did not impact the read time. The database is happily navigating the bitmap
header and retrieving the blocks in good time.

Appendix E

[7]

The extent size sweet spot is still being seen with loads. A size of from 100 MB to
under 1 GB is optimal; compared to the first test with a smaller load size, where the
optimal extent size was around 10 MB.

The astute reader would notice that for a larger extent size, from 5 GB onwards, the
read time actually increased by a little amount. This effect was not seen in the initial
test, though a read bump was seen at around the 1 MB to 5 MB mark in it. Repeated
tests confirmed the bump.

In an attempt to understand why this was happening, an additional test was
done to see what would happen if automatic segment space was set to manual.
The disadvantage with this test (as covered in the code section at the end of the
chapter) is that SECUREFILE option only works when segment space management is
automatic, resulting in the test having to use the older BASICFILE option for creating
LOBs.

The tablespace for storing the BASICFILE option was created as follows:

CREATE TABLESPACE tbls_name BLOCKSIZE 16384 EXTENT MANAGEMENT LOCAL
UNIFORM SIZE xx segment space management manual datafile 'directory/
datafile' size 6G reuse;

The load results were as follows:

Write 300 GB

LOCAL UNIFORM
SIZE

SECUREFILE BASICFILE

Block Size 8192 16384 16384

Space Manage Auto Auto Manual

256 KB 278.4 245.8 182.57

1 MB 113.13 120.16 135.09

10 MB 81.38 78.52 79.24

50 MB 76.53 76.48 80.1

1 GB 81.36 77.03 82.05

5 GB 89.23 80.4 77.01

10 GB 101.39 87.3 74.15

Loading and Reading

[8]

The following graph plots the load results of the previous table:

The following table details the results of performing reads of the data:

Read 300 GB

LOCAL UNIFORM
SIZE

SECUREFILE BASICFILE

Block size 8192 16384 16384

Space manage Auto Auto Manual

256 K 77.56 68.35 499.18

1 M 68.43 68.22 362.12

10 M 70.48 69.19 75.19

50 M 64.11 62.35 70.45

1 G 68.56 62.52 63.52

5 G 80.4 77.52 62.17

10 G 77.47 77.53 62.09

Appendix E

[9]

The following graph plots the read results of the previous table:

There was a marked difference in performance for BASICFILES when the extent size
was small, showing how much more consistent and faster SECUREFILES is. For the
data load size, the previous graph shows that a 100 MB extents size using a 16 KB
block size is optimal for SECUREFILES.

As a comparison test, the statement using EXTENT MANAGEMENT LOCAL
AUTOALLOCATE was done on a block size of 16,384, with the following results:

WRITE: 72.46
READ: 61.41

The previous results show that the AUTOALLOCATE clause is more efficient than using
a UNIFORM EXTENT size.

Loading and Reading

[10]

An additional test was done to load in 300 GB, but this time choosing the optimal
extent size derived from the previous tests. This involved loading in 6 x 50 GB
images using dbmslob.loadfromfile, which is a supplied PL/SQL Package
command. The results showed that the AUTOALLOCATE clause proved very efficient
and slightly ahead of the 100 MB extent size. Though BASICFILES performed well
with a large extent, its restrictions and scalability as well its impending de-support,
rule out its usage. Refer to the following table:

Securefile Basicfile

Autoallocate 100 MB
Extent

100 MB
Extent

1 GB
Extent

10 GB
Extent

50 GB
Extent

Load (Write) 71.51 72.18 81.16 67.14 67.42 72.08

Read 63.17 64.08 68.38 63.56 64.18 66.41

A final comparison test was done to determine how efficient the DEDUPLICATE
option is. This option checks to see if the same image will be loaded in twice and, if
so, only stores it once. As covered in Chapter 7, Techniques for Creating a Multimedia
Database, the goal with this option is to save on storage. There is no expectation
of improvement in load or read times. As it is reloading in 100 times, the same 67
set of images that only consumed 3 GB of storage, the total storage used should be
very close to the storage consumed in the first test. Time will be required to load the
image in, but savings in time will be gained, because no writes will be needed to
store it, using tablespace creation parameters of:

BLOCKSIZE 16384 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 100 M

The load time was of 87 minutes and the read time was of 63 minutes. The storage
was dramatically reduced indicating that the DEDUPLICATE option works:

select blocks,extents,(bytes/1024)/1000 "Mb"
from user_segments
where segment_name = 'L_TEST_LOAD';

 BLOCKS EXTENTS Mb
---------- ---------- ----------
 198400 31 3174.4

Normally, when the results don't meet expectations, it either means that the test is
wrong, the hypothesis is wrong, or there is something invalid about the database
and further testing using different extent sizes is required.

Appendix E

[11]

Code used for test load and reading
The following section covers methods for creating multimedia tablespaces and
creating objects based on Oracle multimedia types.

Tablespaces
The following code snippet shows an example for creating a locally managed
tablespace, with the automatic space management enabled (tables were created
using the SECUREFILE option):

CREATE TABLESPACE tbls_name BLOCKSIZE 16384 EXTENT MANAGEMENT LOCAL
UNIFORM SIZE 5G segment space management auto datafile 'directory/
datafile' size 50G;
alter tablespace tbls_name add datafile 'directory/datafile' size 50G;

When the block size was reduced from 16,384 to 8,192, the following error occurred:

ORA-01144: File size (6553600 blocks) exceeds maximum of 4194303
blocks

The first solution was to create the physical file size at 25 GB and not 50 GB.

The second solution involves using the BIGFILE option in tablespace creation:

CREATE BIGFILE TABLESPACE tbls_name BLOCKSIZE 8192 EXTENT MANAGEMENT
LOCAL UNIFORM SIZE 10G segment space management auto datafile
'directory/datafile' size 50G;

The limitation with BIGFILE is that it can only contain one datafile, which means it
can only reside on one disk system. If the storage exceeds the size of the datafile, it
can be increased in size using the following query:

alter database datafile 'directory/datafile' resize 100G;

The following code shows an example for creating a tablespace with the space
management set at manual. Only tables created using the BASICFILE option can be
made using this structure. 400 GB of storage was added in 50 GB sets of datafiles.

CREATE TABLESPACE tbls_name BLOCKSIZE 16384 EXTENT MANAGEMENT LOCAL
UNIFORM SIZE 1G segment space management manual datafile 'directory/
datafile' size 50G;
alter tablespace tbls_name add datafile 'directory/datafile' size 50G;

Trying to create a table using the SECUREFILE option in a tablespace with manual
storage management will result in the following error:

ORA-43853: SECUREFILE lobs cannot be used in non-ASSM tablespace

Loading and Reading

[12]

Tables
The following is the table creation statement used in the load tests:

create table test_load
 (
 pk number(16),
 vimg ORDSYS.ORDIMAGE,
 stl timestamp,
 edl timestamp
)
tablespace tbls_name_relational_data pctfree 0 storage
(pctincrease 0 maxextents unlimited)
 LOB (vimg.source.localdata) STORE AS SECUREFILE l_test_load
 (TABLESPACE tbls_name disable storage in row
 RETENTION AUTO
 NOCOMPRESS
 KEEP_DUPLICATES
 STORAGE (MAXEXTENTS UNLIMITED PCTINCREASE 0)
 NOCACHE LOGGING);

For the test, where automatic space management was disabled, the table was created
using BASICFILE with the following storage definition:

create table test_load
 (
 pk number(16),
 vimg ORDSYS.ORDIMAGE,
 stl timestamp,
 edl timestamp
)
tablespace PICTION_MED_1 pctfree 0 storage(pctincrease 0 maxextents
unlimited)
 LOB (vimg.source.localdata) STORE AS BASICFILE l_test_load
 (TABLESPACE PICTION_IMG_2 disable storage in row
 STORAGE (MAXEXTENTS UNLIMITED PCTINCREASE 0)
 CHUNK 16384
 NOCACHE LOGGING);

Procedures
The following procedure is used to load an image located on the filesystem into the
database. The procedure takes in the physical filename as input. It's assumed that all
images are located in one physical directory.

create or replace procedure ldimg(fname varchar2)
as

Appendix E

[13]

 cursor c1(vpk integer) is
 select * from test_load where pk = vpk for update;

 srec test_load%ROWTYPE;
 ctx RAW(4000) := NULL;

begin
 select s_object.nextval into srec.pk from dual;
 srec.stl := systimestamp;
 srec.vimg := ordsys.ordimage.init();
 insert into test_load values srec;
 commit;
 open c1(srec.pk);
 fetch c1 into srec;
 close c1;
 srec.vimg.setSource('FILE', 'LOADING_DIR', fname);
 srec.vimg.import(ctx);
 srec.edl := systimestamp;
 update test_load set row = srec where pk = srec.pk;
 commit;
 update test_load set edl = systimestamp where pk = srec.pk;
 commit;
end ldimg;
/

The following is an example of code used to load a set of images in calculating the
total time the load took. In this example, only five images are shown, but all tests
used a base of 67 images:

truncate table test_load;
declare
 st timestamp;
 ed timestamp;
begin
 st := systimestamp;
ldimg('myimage1.tif');
ldimg('myimage2.tif');
ldimg('myimage3.tif');
ldimg('myimage4.tif');
ldimg('myimage5.tif');
 ed := systimestamp;
 dbms_output.put_line('Start = ' || st);
 dbms_output.put_line('End = ' || ed);
 dbms_output.put_line('Diff = ' || (ed - st));
end;
/

Loading and Reading

[14]

To load in 300 GB of image data, the 67 images were repeatedly reloaded in just by
enclosing the ldimg procedures in a for loop.

Optimizer statistics were immediately calculated once the routine finished its run.

The following is a simple routine for reading in and processing all the data in a table
and ensuring every BLOB is read in. It's designed to see how long it takes to read all
binary data in. For checking purposes, it returns the time to run and the total size
processed.

declare
 v_count integer;
 v_int integer;
 r_buffer raw(32767);
 sz integer;
 st timestamp;
 ed timestamp;
begin
 st := systimestamp;
 sz := 0;
 for c1rec in (select * from test_load) loop
 v_count := 0;
 v_int := 32767;
 loop
 begin
 dbms_lob.read(c1rec.vimg.source.localdata,v_int,(v_
count*32767)+1,r_buffer);
 v_count := v_count + 1;
 sz := sz + nvl(utl_raw.length(r_buffer),0);
 exception when others then exit;
 end;
 end loop;
 end loop;
 ed := systimestamp;
 dbms_output.put_line('Start = ' || st);
 dbms_output.put_line('End = ' || ed);
 dbms_output.put_line('Diff = ' || (ed - st));
 dbms_output.put_line('Tot = ' || sz);
end;
/

Appendix E

[15]

Manually configuring access to a BFILE
The following anonymous block shows how to manually set and define a BFILE,
enabling Multimedia to reference an image located on a filesystem. When used, the
BLOB will be ignored:

declare
 cursor c1 is select vimg from test_load where pk = 1 for update;
 drec ORDSYS.ORDIMAGE;
begin
 insert into test_load(pk,vimg)
 values(1,ordsys.ordimage.init());
 commit;
 open c1; fetch c1 into drec; close c1;
 drec.source.srclocation := 'LOADING_DIR';
 drec.source.srcname := 'myimg.tif';
 drec.source.srctype := 'file';
 drec.source.local := 0;
 drec.setproperties;
 dbms_output.put_line('Width x Height = ' || drec.width || 'x' ||
drec.height);
 dbms_output.put_line('Length = ' || drec.contentlength);
 dbms_output.put_line('Mimetype = ' || drec.mimetype);
end;
/

The output produced is as follows:

Width x Height = 2809x4176
Length = 35216308
Mimetype = image/tiff

Note that if drec.source.local is set to a value of 1, then an error is returned:

ERROR at line 1:
ORA-29400: data cartridge error
IMG-00701: unable to set the properties of an empty image
ORA-06512: at "ORDSYS.ORDIMG_PKG", line 1149
ORA-06512: at "ORDSYS.ORDIMAGE", line 220
ORA-06512: at line 12

This is because Oracle Multimedia is looking for the data in the BLOB column
(source.localdata), and there is no data there. Using a value of 0 forces
Multimedia to use the BFILE structure to locate the external file.

Loading and Reading

[16]

Loading in an image from a HTTP
location
The following section provides an example of PL/SQL code which could be used
to load in digital images from the filesystem.

declare
 cursor c1 is select vimg from test_load where pk = 1 for update;
 drec ORDSYS.ORDIMAGE;
 ctx raw(4000);
begin
 insert into test_load2(pk,vimg) values(1,ordsys.ordimage.init());
 commit;
 open c1; fetch c1 into drec; close c1;
 drec.importfrom(ctx, 'http', 'www.mysite.com',
 'icons/images/admin/loader.png');
 drec.setproperties;
 dbms_output.put_line('Width x Height = ' || drec.width ||
 'x' || drec.height);
 dbms_output.put_line('Length = ' || drec.contentlength);
 dbms_output.put_line('Mimetype = ' || drec.mimetype);
 dbms_output.put_line('srctype - local = ' ||
 drec.source.srctype || ' - ' || drec.source.local);
end;
/

The code when executed produced the following:

Width x Height = 16x16
Length = 770
Mimetype = image/png
srctype - local = http – 1

Consider the following error code:

ORA-24247: network access denied by access control list (ACL)

If the previous error is returned, then it means that the schema has not been
configured to use TCP to reference outside data sources. See the next section for how
to do this.

Rather than loading the image, it can still be referenced externally similar to BFILE.
The following shows how this can be manually done (the image is not loaded into
BLOB but is just referenced instead):

declare
 cursor c1 is select vimg from test_load where pk = 1 for update;

Appendix E

[17]

 drec ORDSYS.ORDIMAGE;
begin
 insert into test_load(pk,vimg)
 values(1,ordsys.ordimage.init());
 commit;
 open c1; fetch c1 into drec; close c1;
 drec.source.srclocation := 'www.xor.com.au';
 drec.source.srcname := 'icons/mimsy/nstmnu/loader.png';
 drec.source.srctype := 'http';
 drec.source.local := 0;
 drec.setproperties;
 dbms_output.put_line('Width x Height = ' || drec.width || 'x' ||
drec.height);
 dbms_output.put_line('Length = ' || drec.contentlength);
 dbms_output.put_line('Mimetype = ' || drec.mimetype);
end;
/

The output produced is as follows:

Width x Height = 16x16
Length = 770
Mimetype = image/png

Example configuration for network
security
The following code shows how to configure a schema to access an external TCP/IP
location on any port. The schema name is WEBSYS, and this should be run as SYS:

BEGIN
 -- required for Oracle11 to access network
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'networkaccess.xml',
 description => 'Network permissions for *',
 principal => 'WEBSYS',
 is_grant => TRUE,
 privilege => 'connect');
END;
/
commit;

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL(

Loading and Reading

[18]

 acl => 'networkaccess.xml',
 host => '*');
END;
/
commit;

exec DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE('networkaccess.
xml','WEBSYS', TRUE, 'resolve');
commit;

SELECT DECODE(DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE(
'networkaccess.xml', 'WEBSYS', 'resolve'), 1, 'GRANTED', 0, 'DENIED',
NULL) PRIVILEGE FROM DUAL;

How to install Apache 2.0
The HTTP server can be found at the Oracle software download site at http://
www.oracle.com/technetwork/database/enterprise-edition/downloads/
index.html under the header of Oracle Fusion Middleware Web Tier Utilities
11g, Windows Download Option:, or Solaris Download Option:.

As the installation is Java based, it is identical for both the Windows and Unix versions.

For those not familiar with the installation and only want to install the HTTP server,
the entire installation process can be daunting. In this case, as only the HTTP server
is required, the installation, if not done properly, can result in a large amount of
redundant software being installed. The screen shots that follow show a safe
method for ensuring that only the HTTP server is installed.

When installing, keep in mind that the installation has to go into its own Oracle
kernel. So, the install must be treated like an Oracle Database install. This is different
to Apache 1.3 where the install was part of the same kernel as the database.

The following installation will attempt to follow the default installation as closely as
possible. These are the subsequent configuration steps for DAD, which can be shown
using the default installation options.

For Windows, the assumption is that Oracle is installed in a location, such as
c:\oracle\ora11gR2.

For Unix, the assumption is that Oracle is installed in a location, such as
/u01/oracle/ora11gR2.

The goal in both cases is to install Apache2 into a similar directory structure.

For Windows, it will be c:\oracle\apache2.

Appendix E

[19]

For Unix, it will be /u01/oracle/apache2.

For Unix, it is suggested to avoid errors and to make it easier to debug issues; all
directory names are lowercase, because Unix is case-sensitive.

Step 1 – download and unzip software
Using the steps mentioned earlier, download the Oracle software to a temporary
location and unzip (unpack) the file. There will be two main sub directories created:
Disk1 and Disk2. Navigate to Disk1 and run the setup file.

Step 2 – choose the installation and configure
option
For novice administrators, it's best to choose Install and Configure. This will ensure
the default installation and ports are all set up. For the HTTP server, the standard
port setup is initially a good value to use.

Loading and Reading

[20]

Step 3 – prerequisite checks
The installer will validate the server and ensure the server is correctly configured.
The configuration checks differ between Windows, Linux, and Solaris.

Step 5 – home locations
As covered earlier, choose the Oracle home location for the software.

Step 6 – just install the HTTP server
Make sure the checkbox for the Oracle HTTP Server is chosen. Uncheck the other
two boxes.

Appendix E

[21]

Step 7 – component details
Refer to the following screenshot:

For windows, the directory for the main components and configuration files will be
found at C:\oracle\apache2\Oracle_WT1\instances\instance1. The default
values on the screen at this time are okay.

Step 8 – configuring autoport
The default ports on a first installation are okay. Most of the ports are for Webcache.

Step 9 – let the installer run
The next screen confirms the configuration options and performs the installation. The
installation references OHS, which stands for Oracle HTTP Server. It also references
OPMN, which stands for Oracle Process Manager and Notification Server. This is a
command-line interface, enabling the administrator to start, stop, and manage the
HTTP server.

Loading and Reading

[22]

Step 10 – post run
The HTTP server will be left running after the installation. It is listening on Port 7777.
In Windows, the administrator can change the configuration file (httpd.conf) and
change the port to the default HTTP port of 80. On Unix, only the root account can
start the HTTP server when it has been modified to listen on Port 80.

Modifications made to the file require a complete restart of the HTTP server (covered
later). Syntax errors or bad physical locations in the file can result in the HTTP server
failing to restart.

Oracle multimedia column definitions
The following table details the column attributes within the Oracle ORDSOURCE type,
which is located in the ORDSYS schema. This type is nested and referenced by the
types detailed later in this section:

ORDSYS.ORDSOURCE

localdata BLOB/CLOB/
BFILE

This is the column that stores the multimedia
data. Its storage definition can be referenced using
column_name.SOURCE.LOCALDATA.

srctype varchar2
(4000)

This is the column the BLOB is originated from.
Values include file, meaning it came from the
filesystem and http, meaning it was loaded from a
http location.

srclocation varchar2
(4000)

If the srctype is file, then the location contains the
Oracle Directory name. It can also be used to contain
the physical location. For a srctype of http, this
contains the HTTP server.

srcname varchar2
(4000)

If the srctype is file, then this column contains the
physical filename. As an Oracle Directory can refer
to at physical location, this srcname can include
subdirectories and the filename.
It can also be used to contain the physical location.
For a srctype of http, this contains the object name.

updatetime date This is the column that stores date and time when the
object was created or modified.

local number If the value is 0, it means the object originated
externally, otherwise a value of 1 indicates the data
is local (see next table for examples as to how these
values look based on load method).

Appendix E

[23]

An example of the generated values for srctype and local:

Load method source.srctype source.local

Physical file is loaded in from filesystem. file 1

BFILE structure is used to point to the file
residing in the filesystem; file is not to be
loaded in. Example code at the end of this
chapter covers a manual method of BFILE
configuration.

file 0

BLOB is located in a HTTP location. Example
code is included at the end of this chapter
showing how to reference an external site.

http 1

Image is referenced using HTTP location and
is not stored in the database. Example code
showing how to use this is included at the
end of this chapter.

http 0

The following table details the column attributes within the Oracle ORDIMAGE type,
which is located in the ORDSYS schema. This type is used for storing digital photos.
Refer to the following table:

ORDSYS.ORDIMAGE

source ORDSYS.ORDSOURCE Column definitions are
covered in Chapter 2,
Understanding Digital Objects.

height number (38)

width number (38)

contentlength number (38)

fileformat varchar2 (4000)

contentformat varchar2 (4000)

compressionformat varchar2 (4000)

mimetype varchar2 (4000)

Loading and Reading

[24]

The following table details the column attributes within the Oracle ORDAUDIO
type, which is located in the ORDSYS schema. This type is used for storing audio
digital images.

ORDSYS.ORDAUDIO

source ORDSYS.ORDSOURCE Column definitions are
covered in Chapter 2,
Understanding Digital Objects.

description varchar2 (4000)

format varchar2 (31)

mimetype varchar2 (4000)

comments CLOB

encoding varchar2 (256)

numberofchannels number (38)

samplingrate number (38)

samplesize number (38)

compressiontype varchar2 (4000)

audioduration number (38)

The following table details the column attributes within the Oracle ORDVIDEO type,
which is located in the ORDSYS schema. This type is used for storing video digital
images.

ORDSYS.ORDVIDEO

source ORDSYS.ORDSOURCE Column definitions are
covered in Chapter 2,
Understanding Digital Objects.

description varchar2 (4000)

format varchar2 (31)

mimetype varchar2 (4000)

comments CLOB

width number (38)

height number (38)

frameresolution number (38)

framerate number (38)

videoduration number (38)

numberofframes number (38)

compressiontype varchar2 (4000)

numberofcolors number (38)

bitrate number (38)

Appendix E

[25]

The following table details the column attributes within the Oracle ORDDOC type, which
is located in the ORDSYS schema. This type is used for storing digital documents.

ORDSYS.ORDDOC

source ORDSYS.ORDSOURCE Column definitions are
covered in Chapter 2,
Understanding Digital Objects.

format varchar2 (80)

mimetype varchar2 (80)

contentlength number (38)

Comments CLOB

DADS.CONF parameters
The following table describes some of the parameters that can be specified in the
dads.conf file:

Parameter Definition

PlsqlDatabaseUsername The Oracle username Apache has to connect
to in the database. Note that a username and
password does not have to be provided. If
omitted, then the database resorts to digest
authentication. It will prompt the user to enter
in a username and password when they first
access the site. This username and password is
validated directly against the database and must
exactly match a schema and its password in the
database. Once matched, the user will continue
to use that connection. The connection is still
stateless.

PlsqlDatabasePassword This is the unencrypted password of the schema.
As discussed earlier, a perl program has to be
run to encrypt it.

Loading and Reading

[26]

Parameter Definition

PlsqlDatabaseConnectString This can refer to the TNS entry in the tnsnames.
ora file as can be found in this kernel. This
contains information about the physical location
of the database, the port number it's listening
on, and the database SID to connect to. In
Oracle11, shorthand syntax can be used to bypass
the need for the TNS entry. In this example,
Apache accesses the database locally that has
sid: orcl PlsqlDatabaseConnectString
127.0.0.1:1521:orcl.

PlsqlAuthenticationMode This refers to how Oracle is to manage
connections to the database. The values it
includes are basic, which is the standard method
for access. No specific security program is
called. Security is left up to application.
SingleSignOn, which is used by the Oracle
Single Sign On module PerPackageOwa,
which enables a specialized function to be called
to validate security before the call is made.
GlobalOwa is similar to the CustomOWA one.
Again it's for enabling an intercept security
PL/SQL function to be called to validate the
person making the call. CustomOwa is similar to
GlobalOwa except the security function can be
user-defined and not the one provided by Oracle.

PlsqlDefaultPage This is a PL/SQL program to be called when
no program is specified. For example, if the url
is http://localhost/mydad, then Oracle,
behind the scenes, appends this value to the url.

PlsqlDocumentTablename This is an Oracle table used to store a file that is
pushed up from the browser to the server. The
table can be of any name, but it must contain
a fixed set of columns with predefined names.
In addition to just referencing the tablename, it
can be referenced as schema.name, in which
case the user has access to the table in another
schema.

Appendix E

[27]

Parameter Definition

PlsqlSessionStateManagement StatelessWithResetPackageState
(default) causes Oracle to call dbms_session.
reset_package at the end of of each call.
StatelessWithFastRestPackageState
causes Oracle to call dbms_session.
modify_package_state (dbms_session.
reinitialize) at the end of each call.
StatelessWithPreservePackageState
causes Oracle to call htp.init at the end of the
call. This maintains session variables and state
but should be used with caution.

PlsqlFetchBufferSize Its default value is 128. It indicates the number
of rows to be retrieved on each database call. A
larger value will use more memory, use less calls,
but result in a longer delay before users see the
HTTP data coming back. The default is sufficient
in most cases, and adjusting it does not impact
the performance of retrieving multimedia objects.

PlsqlMaxParameters This is the number of parameters that can
be passed down in one call. The limit can be
reached if there is a HTML form with a very
large number of variables in it (there could be a
page with 5,000 check boxes on it). Though rarely
exceeded, complex HTML forms might result in
it being exceeded, especially if the form includes
a lot of hidden values.

Resetting the session after each call
The parameter, PlsqlSessionStateManagement, controls what happens to the
session connected to the database when the PL/SQL call is finished. This is an
important security consideration and is designed to ensure that one session cannot
access another session's data. An equivalent analogy is the one regarding how an
operating system maintains a virtual private state for each process.

Loading and Reading

[28]

The following table shows details regarding what each of the routines does, as
mentioned earlier:

PL/SQL Reset Call What happens in the call?

dbms_session.reset_package This call frees all the memory used by the PL/SQL
packages. It closes any cached cursors and ensures
all package variables are reset.

dbms_session.modify_
package_state

This call supports two calls, one of which
reinitializes as covered later. This call is designed
to run very quickly when freeing memory.

dbms_session.reinitialize This call returns the flag value of 2, indicating that
packages are to be reinitialized without causing
them to be freed from memory; cursors are closed,
but not released if in cache; session memory for
types and stored procedures is not freed.

htp.init When Mod PL/SQL is running and when the
htp package is used, the HTML returned to the
user is stored in a global array. When the call is
completed, the array is converted to the correct
language setting and returned to the user. The
htp.init call simply empties the array. This
frees memory and ensures that the next call
starts with an empty array and cannot access the
contents of the previous call.

Now let's have a look at the additional Apache configuration values. In the dads.
conf file, the following Apache values were included:

 SetHandler pls_handler
 Order deny,allow
 Allow from all

Useful opmnctl commands
opmnctl is a line mode tool used to start, stop, and manage the Oracle HTTP
server. It can be run from Windows DOS and any Unix shell, provided the
environment variables are correctly configured. In Windows, the command is
a .bat file, and in Unix, it's a shell script that configures environment variables
before calling a perl program.

It's used behind the scenes to manage the Window Service using this command:

c:\oracle\apache2\opmn\bin\opmn.exe -S -I c:\
oracle\apache2\instances\instance1

Appendix E

[29]

The basic commands are as follows:

• This command enables all processes for the HTTP server to start:
opmnctl startall

• This command stops the HTTP server and all processes:
opmnctl stopall

• This command starts the HTTP server process only:
opmnctl startproc ias-component=HTTP_Server

• This command stops the HTTP server process only. This command is useful
for quickly stopping/starting the HTTP server when the httpd.conf file has
been modified:
opmnctl stopproc ias-component=HTTP_Server

• Alternatively, this command can achieve the same action but is much quicker:
opmnctl restartproc ias-component=HTTP_Server

Server configuration
For database administrators, who have not worked with unstructured data or
multimedia, a common question is "how should the database best be set up to
manage this data?" The following sections cover a variety of different scenarios and
give starting suggestions for how best to configure the database files and startup
parameters. Although automatic memory management can be enabled, when
working with multimedia and the fluctuating memory requirements used by it,
a database administrator is in a better position if they manually tune the memory.
With Oracle 10, Oracle introduced Automatic Storage Management (ASM). This
option can be used but involves a different approach compared to the scenarios
raised earlier. These scenarios all assume that the administrator has made the
business decision not to use ASM.

Using server with only one disk and 1 GB
of memory
The operating system, database kernel (software), and all database files are stored on
the one disk.

Loading and Reading

[30]

In this environment, full transactional recovery in the event of media failure is not
possible. If the disk storing the environment is lost, everything is lost. Depending
on the storage device, some do not always fail immediately; in which case,
some safeguards can be put in place in case the media starts failing but doesn't
completely fail.

Backups, such as offline backups can be performed, but it's also possible to set up
archiving to enable online backups. RMAN should be used to perform the backups.
Even though the archives are kept on the same disk as the media, they could still
prove to be useful if there is a partial disk failure. One can restore to a new disk from
the backup, and hopefully, roll forward through as many archives as have survived.
A good strategy might be to mirror the redo logs; just in case on disk partial failure,
if a redo log is corrupted, hopefully the mirror will not be. Archiving can be enabled
to achieve the same result.

If the server environment is housed within a virtualization, then snapshots can be
taken. Though the snapshot will be stored on the same disk as the virtualization
and not useful in the case of media failure, a snapshot can be used to roll back the
entire environment in case of user error. This might eliminate the need to enable
database flashback.

If there is a choice of the one storage medium that can be used, then consideration
might be given to using a Solid State Disk (SSD), provided one monitors it for usage
and catastrophic failure. If the database is not heavily used and is mainly for image
delivery, then the disk writes will be kept low, enabling a longer life for the SSD.

Disk Usage

Disk #1 Operating system, Oracle kernel, SYSTEM tab

Disk #1 UNDO, redo logs

Disk #1 Redo logs (mirrored), archives

Disk #1 Application tablespaces

The following are init.ora parameters (also referred to as the spfile) that are a good
starting point for configuring memory given the constraint of 1 GB total. The figures
do not add up exactly to 1 GB, and the database administrator can adjust some of
these parameters until the maximum is reached.

Appendix E

[31]

The following table details the Oracle database memory settings for 1 GB:

Memory 1 GB
db_cache_size 400 MB
java_pool_size 256 MB
pga_aggregate_target 128 MB
shared_pool_size 128 MB
large_pool_size 50 MB – if rman is used, 0 MB – if rman

is not used (add 50 MB to db_cache_
size)

Using server with two disks and 2 GB of
memory
When looking at disk storage and balancing, the database administrator has three
questions to answer:

• What happens if a disk fails?
In this case, review what happens when each disk fails and what can keep
running.

• How do I balance I/O load between the disks to ensure there are no
bottlenecks?

• How do I ensure the storage on the disks is used optimally?

With two disks, there are a number of configuration scenarios the administrator will
investigate:

• Mirror the disks (Raid 1): This seems like the ideal solution, as it ensures
high availability. If one disk fails, the database keeps running. Raid 1
ensures a high throughput for I/O. The first two questions raised earlier are
satisfied. The downside is the third question. The total storage available is
half, compared to if the disks were not mirrored. Therefore, if storage is at a
premium, then this might not be the best solution. This solution also assumes
that the hardware supports Raid.

Loading and Reading

[32]

• High availability configuration: As shown in the next table, the first
disk is used to store the database and operating system files. The second
disk contains sufficient information for full recovery. This solution might
be required if the hardware does not support Raid 1. It is not as good as
mirroring as in the event of disk failure, the whole site could fail (if the disk
containing the operating system fails). Though the redo logs are mirrored
and backups are kept on the second disk, ensuring no data is lost in case
the first disk fails, the second disk is not fully utilized. It also doesn't ensure
that there is efficient load I/O balancing, as all the work is done on the first
disk. If the second disk fails, then the database will keep running until all
the redo logs fill and the archiver puts the database in a hold state. The TEMP
tablespace can be placed on the second disk. In the event of failure, it doesn't
matter if it's lost, as it can be recreated.

Disk Usage

Disk #1 Operating system, Oracle kernel, SYSTEM tab

Disk #1 UNDO, redo logs, control file

Disk #1 Application tablespaces

Disk #2 Redo logs (mirrored), archives, rman backup, control file

The administrator could go for a third solution and that involves manually balancing
the database between both disks. This setup can make full use of both disks and
allow the database to grow to its maximum possible size (satisfying the third
question). It also improves the chances of better I/O as both disks are being utilized.
By keeping backups on both disks, mirroring the redo logs across both disks,
and keeping the archives on both disks ensures that in the event of disk failure, it
becomes possible to fully restore the database. Any disk failure though will result
in the database not working:

Disk Usage

Disk #1 Operating system, SYSTEM tab

Disk #1 UNDO, redo logs, archives, control file

Disk #1 Application tablespaces, rman backup

Disk #2 Oracle kernel, application tablespaces, redo logs (mirrored),
archives, rman backup ,TEMP tablespace, control file

Appendix E

[33]

If backups are done ad hoc (weekly) and stored to a portable USB drive, then it
might be worthwhile for the administrator to disable archiving and configure a
large number of mirrored redo logs. In this case, the administrator needs to know
how many redo logs are consumed during a week and set the number and size
accordingly. If 80 GB of redo is done during the week, the administrator might create
10 x 10 GB redo logs. In the event of failure, there is sufficient information in the redo
logs to roll forward. It is risky, and the administrator is assuming that these redo
logs are not cycled during the week, because if they are, the database cannot be fully
recovered. This might be an acceptable risk for some business requirements.

So there is no ideal configuration with two disks; there are a number of options
available for configuration for the database administrator, which enables them to
satisfy business requirements.

The following table details the Oracle database memory settings for 3 GB:

Memory 2 GB
db_cache_size 1000 MB
java_pool_size 256 MB
pga_aggregate_target 256 MB
shared_pool_size 256 MB
large_pool_size 50 MB – if rman is used, 0 MB – if rman is

not used (add 50 MB to db_cache_size)

Using server with 3 disks and 4 GB of
memory
With three disks, the database administrator has more options to work with. They
can mirror the first two disks and use the third disk as a backup disk. The third disk
can also be used for maintenance and contain temporary files used by the operating
system or the Oracle Database (this includes trace files):

Disk Usage

Disk #1/2 Operating system, Oracle kernel, SYSTEM table

Disk #1/2 UNDO, redo logs, control file

Disk #1/2 Application tablespaces

Disk #3 Redo logs (mirrored), archives, rman backup, TEMP
tablespace, control file

Loading and Reading

[34]

If the hardware does not support Raid 1, then the administrator has to decide
which is more important, making maximum use of the available space, or being
in a position to quickly recover in the event of failure? If they need to make use of
all available space, then they distribute the database files across all three disks and
ensure that two disks contain mirrored redo logs, archives, and database backups.

Once configured, the database administrator should then review the whole setup
and ask the following questions:

• If this disk fails, what happens?
• What is lost?
• Can the application keep running?
• What is involved in restoring the database?

The following table details the Oracle database memory settings for 4 GB:

Memory 4 GB
db_cache_size 2300 MB
java_pool_size 256 MB
pga_aggregate_target 512 MB
shared_pool_size 512 MB
large_pool_size 100 MB – if rman is used, 0 MB – if rman is

not used (add 100 MB to db_cache_size)

Using server with one disk, a SAN, and 8 GB
of memory
This setup is more common today with the growth in popularity of SANs. The
database administrator is given access to a very large SAN, which has its own backup
and high availability options. This might involve being replicated to another site.

The problem the database administrator has is that they are unlikely going to be
given a disk to do backups. The key assumption is that the SAN is completely
reliable and doesn't fail.

This means that there is no requirement to perform online backups or do archiving.
This assumption can prove to be dangerous if the SAN is not designed to work with
Oracle. Its own block-level backups might result in the backup it performs of the
database being corrupted. So, in the event of failure and restoration, the database
administrator discovers they have a restored database, which can't be fully restored
because of internal corruption.

Appendix E

[35]

The SAN could be an I/O bottleneck, but this is specific to the SAN, so the
assumption to be made is that it performs well. In this case, the administrator should
put on the disk any files that can be recovered using other methods. This includes the
Oracle kernel, operating system, and TEMP tablespace. Anything else has to go on
the SAN to ensure it can be restored.

It's possible that the disk is not even backed up, or it might be a disk residing on a
virtualization and snapshots are performed on it, meaning its content and backup
might be out of sync with the SAN backup. It might be worthwhile to store mirrored
redo logs on the disk, just so in case of failure if the SAN can't restore fully, there
might be sufficient information in the redo logs to restore. It might be then more
effective to store a large amount of redo (such as 20 x 10 GB redo logs), ensuring
a greater time period range that can be recovered in the event of failure.

Disk Usage

Disk #1 Operating system, Oracle kernel

Disk #1 Mirrored redo Logs, control file, TEMP Tablespace

SAN Application tablespaces

SAN SYSTEM table, UNDO, redo logs, control file

The following table details the Oracle database memory settings for 8 GB:

Memory 8 GB
db_cache_size 5 GB
java_pool_size 512 MB
pga_aggregate_target 1 GB
shared_pool_size 800 MB
large_pool_size 100 MB – if rman is used, 0 MB – if rman is

not used (add 100 MB to db_cache_size)

Using server with a Raid structure and 16GB
of memory
In this scenario, the database administrator has a number of disks and has to
determine what the best Raid structure is to use to ensure high availability and
performance. As covered in the discussion on Raid structures, there are a number
of choices the administrator can make. If they do have choices in regards to
configuration, then it is going to be a balancing act between making optimal use
of storage and ensuring the best performance.

Loading and Reading

[36]

If the administrator has to configure an environment to store a large amount of
multimedia and ensure high availability, and if they can configure a Raid 1+0 to
store the operating system and database, this will ensure a high tolerance to failure
and optimal performance. If they configure the remaining disks for Raid 5 (or 6) for
storage of multimedia tablespaces, then they can achieve high reliability and efficient
use by storing this larger volume of data. The assumption is that the Raid 1+0 disk
system will be under 4 TB, enabling storage of all key data, but the Raid 5 system
might have to grow into the tens to hundreds of terabytes range.

Usually, in an environment such as this, backups are done to tape and the
requirements for recovery are configured for disaster recovery.

Disk Usage

Raid 1+0 Operating system, Oracle kernel

Raid 1+0 Database files, Application tablespaces

Raid 5/6 Multimedia tablespaces (using partitioning and most
are made read-only)

The following table details the Oracle database memory settings for 16 GB:

Memory 16 GB
db_cache_size 10 GB
java_pool_size 1 GB
pga_aggregate_target 2 GB
shared_pool_size 2 GB
large_pool_size 10 MB – if rman is used, 0 MB – if rman

is not used (add 100 MB to db_cache_
size)

Using server with local disks, Raid, a SAN and
32 GB of memory
In this environment, the database administrator has a lot of choice about the
placement of database files and operating system files; in which case, it's choosing
the right disk system for the right job. As a SAN could be configured behind the
scenes using Raid, the differences later assume the other capabilities a SAN can offer.

Appendix E

[37]

The following table highlights structures that can be targeted for each disk subsystem.

Disk Advantages

Local disks Each disk equates to one channel (when configured on the hardware
correctly). It is useful for storage of multimedia images (staging),
which are then loading into the database (in parallel if multiple disks
are used).
A local disk can also be used to store the TEMP tablespace (if heavily
utilized), as well as mirrored redo logs.

Raid 1+0 Its advantages are high reliability and performance. It's important for
storing the operating system and Oracle kernel, as in the event of disk
failure, there is no impact on the environment (though performance
might be impacted). It is useful for SYSTEM, UNDO, and relational
based application tablespaces.

Raid 5/6 Its advantage is reliable storage for large volumes of data, especially if
it's read-only.

SAN Its advantages are high reliability, large storage capabilities, off-site
mirroring, built-in backup. It is useful for multimedia tablespaces,
especially ones involving a lot of read/writes. It can also be used for
application tablespaces.

Solid State
Disk

By keeping writes to a minimum on the SSD will ensure its long-term
reliability.
Very high read/write speed. It is useful for short-term redo logs
storage (when doing a large volume ingest). When the operating
system and Oracle kernel are stored on it, it can provide very fast
restart times for the server. It is useful for storing the operating system
paging/swap file. It is useful for read-only (or minimal read/write)
tablespaces that are accessed frequently. This could be a tablespace
containing streaming video (though sizing and cost constraints would
likely limit this to the most popular video for streaming) or one
containing thumbnails or most popular accessed digital images.

The following table details the Oracle database memory settings for 32 GB:

Memory 32 GB
db_cache_size 17 GB
java_pool_size 2 GB
pga_aggregate_target 8 GB
shared_pool_size 4 GB
large_pool_size 100 MB – if rman is used, 0 MB – if rman is

not used (add 100 MB to db_cache_size)

Loading and Reading

[38]

Little and big endian
When digital images are stored, numbers are routinely used to represent values in
those images. This can be a pixel color or instructions for drawing a rectangle. In
documents, we are used to storing numbers in their character format. The number
1089 is stored using four characters with each character corresponding to one or
possibly more bytes. When storing a large number of values, this is not efficient for
storage, rather the numbers are stored using bits, where each bit is either a 1 or 0.
The number 5 can be represented as 101. When reading this value from the
right-hand side to the left right-hand side, the bit corresponds to an increasing
power of two. In this case, 101 is 22 + 20. The number 6 is 110 or 22 + 21.

A byte is composed of 8 bits which makes the largest number possible 255:

8 7 6 5 4 3 2 1 Bit
27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1 255

So, the value 255 can be stored in just one byte, where as if it was stored as
characters, it would take at least 3 bytes. Larger numbers are formed by combining
one or more bytes together. All numbers from 0 to 255 can be stored within 8 bits.

To make it easier to process and read, the binary values are converted into
hexadecimal. A hexadecimal number has a range from 0 to 15, where the numbers
10 and above are represented as the characters from A to F. The number 10 is A, 11 is
B, 12 is C, 13 is D, 14 is E, and 15 is F. The number 16 in decimal is 10 in Hex. So, the
byte is split in half and each of the four half values are converted into a hexadecimal
number. So, 255 becomes FF. A hexadecimal number is also represented using the
prefix 0x, so 255 in hexadecimal is 0xFF. The decimal number 5 is 0x05.

So, a large number might be represented as 5B 00 3A 00, which is stored in 4 bytes
or 32 bits. The CPU in most PCs is 32 bit, meaning the largest number they can store
in an address space is 32 bits in length. The address space is used to reference disk
location, memory location, file position (thus size), and registry values used for
calculation. Though larger values can be stored, programming languages do not
easily support them. A 64-bit CPU can store 64 bits or 8 bytes. With these CPUs now
becoming standard in computers, they allow for the larger creation of files, a massive
increase in the maximum memory that can be stored, and the ability to easily handle
large numbers and perform calculations on them.

Appendix E

[39]

The problem that has occurred is that different CPU manufacturers have adopted
different methods for how they read the binary values. As shown in the example
earlier, the implied direction is from the right-hand side to the left-hand side, but
when it comes to a value such as 5B 00, do you start with the 5B value first and
move to 00, or do you start with 00 and move to 5B?

There is no right or wrong answer. However, each chip manufacturer can use the
right-hand side to the left-hand side (most significant to least significant), which is
also called big endian. Alternatively, they can go from the left-hand side to the
right-hand side (least significant to most significant), which is also called little endian.

In the example of 5B 00, if little endian is used, it means that the right-side value or
00 is the most significant. Most significant means the largest value component. So, as
we are going up in powers of two, the right-hand value would be the largest or the
most significant; in which case, the number is 91.

In binary, the number is 0101 1011 0000 0000 (26 + 24 + 23 + 21 + 20 = 64 + 16 + 8
+ 2 + 1 = 91).

So, we start with the left-hand byte and extend the number going to the right-hand
side but still reading each individual bit from the right-hand side to the left-hand side.

For display we use 0101, which is 0x05 and 1011, which is 0x0B (23 + 21 + 20 = 8 + 3
+ 1 = 11 = Hex B).

If the number was stored in big endian, then it is read the opposite way. We take
the right-hand byte and extend the number going from the right-hand side to the
left-hand side:

214 + 212 + 211 + 29 + 28 = 16,384 + 4096 + 2048 + 512 + 256 = 23,296.

