

Lesson 01: Introduction to Natural Language Processing

Figure 1.1: Natural language processing

Figure 1.2: Venn diagram for natural language processing

Fig 1.3: Artificial intelligence and some of its subfields

Figure 1.4: Application areas of natural language processing

the cities i like most in india are mumbai, bangalore, dharamsala and allahabad.

Figure 1.5: Output for lowercasing with mixed casing in a sentence

Figure 1.6: Output for lowercasing with mixed casing of words

With Noise	Without Noise
sleepy	
sleepy!!	
#sleepy	sleepy
>>>>sleepy>>>	
<a>sleepy	

	['sleepy',	'sleepy',	'sleepy',	'sleepy',	'sleepy']	
--	------------	-----------	-----------	-----------	-----------	--

Figure 1.8: Output for noise removal

Raw form	Canonical form
Spaghetti	
Spagetti	
Spageti	Spaghetti
Spaghetty	
Spagetty	

Figure 1.9: Canonical form for incorrect spellings

Raw form	Canonical form
brb	be right back

Figure 1.10: Canonical form for abbreviations

Before stemming	After stemming
Annoying	
Annoyed	Annoy
Annoys	

Figure 1.11: Output for stemming

Figure 1.12: Output of stemming

	raw word	lemmatized
0	troubling	trouble
1	troubled	trouble
2	troubles	trouble
3	trouble	trouble


```
['hi', '!', 'my', 'name', 'is', 'john', '.']
```

Figure 1.14: Output for the tokenization of words

```
['hi!', 'my name is john.']
```

Figure 1.15: Output for tokenizing sentences

```
['weather', 'really', 'hot', 'want', 'go', 'swim']
```

Figure 1.16: Output after removing stopwords

Figure 1.17: Example for word embeddings

Fig 1.18: The CBOW algorithm

Fig 1.19: The skip-gram algorithm

```
this is the summary of the model:
Word2Vec(vocab=12, size=100, alpha=0.025)
```

Figure 1.20: Output for model summary

```
this is the vocabulary for our corpus:
['Ariana', 'Grande', 'is', 'a', 'singer', 'She', 'has', 'been', 'for', 'many', 'years', 'great']
```

Figure 1.21: Output for the vocabulary of the corpus

the vector for the word singer:
[3.9150659e-03 2.6659777e-03 1.0298982e-03 -2.7156321e-03
1.9977870e-03 3.1204436e-03 1.2055682e-04 1.0450699e-03
-6.4308796e-04 3.0822519e-03 2.1972554e-03 5.1480172e-05
-3.7099270e-03 3.9439583e-03 6.8276987e-04 7.7137066e-04
2.3698520e-03 -7.8547641e-04 6.0383842e-04 4.6370425e-03
-1.6786088e-03 1.7417425e-03 2.4216413e-03 3.6545738e-03
-1.9871239e-03 2.9489421e-03 -1.2810023e-03 -4.9174053e-04
-3.9743204e-03 -2.7023794e-03 -3.0541950e-04 -1.5724347e-03
-2.1029566e-03 -2.1624754e-03 2.1620055e-04 -1.4000515e-03
-4.0824865e-03 4.6588355e-04 3.5028579e-03 4.8283348e-03
-2.8737928e-03 -4.5569306e-03 -7.6568732e-04 -3.3311991e-03
3.5790715e-03 4.2424244e-03 3.3478225e-03 -7.4140396e-04
1.0030111e-03 -5.2394503e-04 5.8383477e-04 -4.8430995e-03
2.6972082e-03 -4.8002079e-03 -2.3011414e-03 8.0388715e-04
3.1952575e-05 -8.1621204e-04 -3.8127291e-03 -6.7428290e-04
-1.7713077e-03 -3.0159748e-03 1.7178850e-03 -1.9258332e-03
-2.4637436e-03 3.3779652e-03 2.7676420e-03 1.8853768e-03
-2.4718521e-03 -1.9754141e-03 2.6104036e-03 -2.1335895e-03
2.4405334e-03 -3.2013952e-04 3.9961869e-03 4.0419102e-03
2.0586823e-03 4.9897884e-03 4.5599132e-03 -1.0976522e-03
1.5563263e-03 3.9063310e-03 -2.9308300e-03 -4.8254002e-03
-8.7642738e-06 3.9748671e-03 5.2895391e-04 6.3330121e-04
-1.2614765e-03 -8.5018738e-04 3.7659388e-03 3.0237564e-03
4.5014662e-03 4.3258793e-03 -4.2659100e-03 4.9081761e-03
-3.9214552e-03 -2.4262110e-03 -8.1192164e-05 -4.1112076e-03]

Figure 1.22: Vector for the word 'singer'

```
[('has', 0.13253481686115265),
('been', 0.12117968499660492),
('for', 0.10510198771953583),
('singer', 0.08586522936820984),
('a', 0.08413773775100708),
('She', 0.08044794946908951)]
```

Figure 1.23: Word vectors similar to the word 'great'

[('for', 0.17918002605438232), ('been', 0.12124449759721756), ('great', 0.08586522936820984), ('is', 0.0768381804227829), ('a', 0.03302524611353874), ('Ariana', 0.02957470342516899)]


```
[('woman', 0.7866706012658177),
('young', 0.7787864197368234),
('spider', 0.7728204994207245),
('girl', 0.7642560909647501)]
```

Figure 1.25: Output of word embeddings for 'man'

```
[('elizabeth', 0.9290495990532598),
('victoria', 0.8600464526851297),
('mary', 0.8089403382412337),
('anne', 0.7667713770457262),
('scotland', 0.6942531928211478),
('catherine', 0.6910265819525973),
('consort', 0.6906798004149294),
('tudor', 0.6686379422061477),
('isabella', 0.6666968276614551)]
```

Figure 1.26: Output of word embeddings for 'queen'

```
[('woman', 0.6842043995857239),
('girl', 0.5943484306335449),
('creature', 0.5780946612358093),
('boy', 0.5204570293426514),
('person', 0.5135789513587952),
('stranger', 0.506704568862915),
('stranger', 0.506704568862915),
('beast', 0.504448652267456),
('god', 0.5037523508071899),
('evil', 0.4990573525428772),
('thief', 0.4973783493041992)]
```

Figure 1.27: Output for similar word embeddings

```
[('mother', 0.7770676612854004),
('grandmother', 0.7024110555648804),
('wife', 0.6916966438293457)]
```

Figure 1.28: Output for top three words for 'x'

Lesson 02: Applications of Natural Language Processing

Fig 2.1: Supervised learning

Number	Tag	Description
1	CC	Coordinating conjunction
2	CD	Cardinal number
3	DT	Determiner
4	EX	Existential there
5	FW	Foreign word
6	IN	Preposition or subordinating conjunction
7	JJ	Adjective
8	JJR	Adjective, comparative
9	JJS	Adjective, superlative
10	LS	List item marker
11	MD	Modal
12	NN	Noun, singular or mass
13	NNS	Noun, plural
14	NNP	Proper noun, singular
15	NNPS	Proper noun, plural
16	PDT	Predeterminer
17	POS	Possessive ending
18	PRP	Personal pronoun
19	PRP\$	Possessive pronoun
20	RB	Adverb
21	RBR	Adverb, comparative
22	RBS	Adverb, superlative
23	RP	Particle
24	SYM	Symbol
25	ТО	То
26	UH	Interjection
27	VB	Verb, base form
28	VBD	Verb, past tense
29	VBG	Verb, gerund or present participle
30	VBN	Verb, past participle
31	VBP	Verb, non-3rd person singular present
32	VBZ	Verb, 3rd person singular present
33	WDT	Wh-determiner
34	WP	Wh-pronoun
35	WP\$	Possessive wh-pronoun
36	WRB	Wh-adverb

Figure	2.2:	POS	tags	with	descriptions
--------	------	-----	------	------	--------------

Fig 2.3: Tagged output

NN: noun, common, singular or mass common-carrier cabbage knuckle-duster Casino afghan shed thermostat investment slide humour falloff slick wind hyena override subhumanity machinist ...

Fig 2.4: Noun details

[('and', 'CC'),
('so', 'RB'),
('i', 'JJ'),
('said', 'VBD'),
('im', 'NN'),
('going', 'VBG'),
('to', 'TO'),
('play', 'VB'),
('the', 'DT'),
('piano', 'NN'),
('for', 'IN'),
('the', 'DT'),
('play', 'NN'),
('tonight', 'NN')]

Fig 2.5: Tagged output

Figure 2.6: Output for POS tags

Figure 2.7: Parse tree.

Figure 2.8: Output for chunking.

Figure 2.10: Output for chinking

Training completed Accuracy: 0.8959505061867267

Figure 2.11: Expected accuracy score.

Figure 2.12: Example for named entity recognition

Figure 2.13: Output for named entity recognition with POS tags

Figure 2.14: Output with named entities

PERSON	People, including fictional.
NORP	Nationalities or religious or political groups.
FAC	Buildings, airports, highways, bridges, etc.
ORG	Companies, agencies, institutions, etc.
GPE	Countries, cities, states.
LOC	Non-GPE locations, mountain ranges, bodies of water.
PRODUCT	Objects, vehicles, foods, etc. (Not services.)
EVENT	Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART	Titles of books, songs, etc.
LAW	Named documents made into laws.
LANGUAGE	Any named language.
DATE	Absolute or relative dates or periods.
TIME	Times smaller than a day.
PERCENT	Percentage, including "%".
MONEY	Monetary values, including unit.
QUANTITY	Measurements, as of weight or distance.
ORDINAL	"first", "second", etc.
CARDINAL	Numerals that do not fall under another type.
	1

Figure 2.15: Categories of spaCy

Figure 2.16: Output for named entity

Shubhangi Hora PERSON	
the Taj Mahal WORK_OF_ART	
SpiceJet ORG	
Pune GPE	

Figure 2.17: Output for named entity recognition with spaCy.

```
(S
 (PERSON Rudolph/NNP)
 (GPE Agnew/NNP)
 ,/,
 55/CD
 years/NNS
 old/JJ
 and/CC
 former/JJ
 chairman/NN
 of/IN
 (ORGANIZATION Consolidated/NNP Gold/NNP Fields/NNP)
 PLC/NNP
 ,/,
 was/VBD
 named/VBN
 *-1/-NONE-
 a/DT
 nonexecutive/JJ
 director/NN
 of/IN
 this/DT
 (GPE British/JJ)
 industrial/JJ
 conglomerate/NN
 ./.)
```

Figure 2.18: Expected output for NER on tagged corpus

Lesson 03: Introduction to Neural Networks

Fig 3.1: Deep Learning as a subfield of Machine Learning

Fig 3.2: Neural Networks as a part of the Deep Learning Approach

Hidden Layers

Fig 3.3: A Neural Network with 2 Hidden Layers

Fig 3.4: The Weighted Connections of a Neural Network

$$f(x) = \frac{1}{1 + e^{-x}}$$

Figure 3.5: Expression for sigmoid function

Figure 3.6: Aspects of a deep learning model that impact the output

$$y = c + mx$$

Number of Bedrooms (Input Feature)	Selling Price (Target Output)
1	\$10, 000
3	\$46, 000
4	\$98, 000
3	\$49, 000

Figure 3.7: Expression for linear regression

Fig 3.8: Sample Dataset for Linear Regression

$$MSE = \frac{1}{n} \sum_{i}^{n} (y_i - f(x_i))^2$$

$$Log \ Loss = -\frac{1}{N} \sum_{i=1}^{N} y_i \left(\log \left(p(y_i) \right) + (1 - y_i) \right) \left(\log \left(1 - p(y_i) \right) \right)$$

Fig 3.11: Updating Parameters

$$f(w,b) = \frac{1}{n} \sum_{i}^{n} (y_i - f(wx_i + b))^2$$

$$f'(w,b) = \begin{bmatrix} \frac{df}{dw} \\ \frac{df}{db} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum -2x_i(y_i - (wx_i + b)) \\ \frac{1}{N} \sum -2x_i(y_i - (wx_i + b)) \end{bmatrix}$$

Figure 3.13: Expression of gradient with partial derivaive of loss function

$$w = w - \left(\frac{df/_{dw}}{N}\right) * \alpha$$

Figure 3.14: Expression for learning rate multipled with gradient

$$b = b - \left(\frac{df}{db}}{N}\right) * \alpha$$

Figure 3.17: Expression for backpropagation function

Layer (type)	Output Shape	Param #	
dense_1 (Dense)	(None, 500)	28500	
dense_2 (Dense)	(None, 1)	501	
Total params: 29,001 Trainable params: 29,001 Non-trainable params: 0			

Figure 3.18: Model summary

10/10 [=====] - 0s 135us/step Accuracy: 0.8999999761581421

Figure 3.19: Expected accuracy score

20/20 [======] - 0s 160us/step Accuracy: 1.0 [1.192093321833454e-07, 1.0]

Figure 3.20: Accuracy score

Lesson 04: Foundations of Convolutional networks

Figure 4.1: Examples of spatial variance

Figure 4.2: Visualization of an image

253
170
127
154

Figure 4.3: Numerical representation of an image

Figure 4.4: Application of convolution and ReLU operations

Figure 4.5: Filter application to images

Figure 4.6: Image after applying ReLU function

Figure 4.8: Max pool

Figure 4.9: Regularization

Layer (type)	Output	Shape	Param #
conv2d_5 (Conv2D)	(None,	26, 26, 64)	640
conv2d_6 (Conv2D)	(None,	24, 24, 32)	18464
<pre>max_pooling2d_3 (MaxPooling2</pre>	(None,	12, 12, 32)	0
dropout_3 (Dropout)	(None,	12, 12, 32)	0
flatten_3 (Flatten)	(None,	4608)	0
dense_2 (Dense)	(None,	10)	46090
Total params: 65,194 Trainable params: 65,194 Non-trainable params: 0			

Figure 4.10: Model summary

$$softmax(y_i) = \frac{exp(y_i)}{\sum_{i=1}^{C} exp(y_i)} \text{ where } i = is \text{ the class } 0,1....9$$

Figure 4.12: Expression to calculate probability

$$H(y',y) = -\sum_{i}^{\square} y' log(softmax(y_i))$$

Figure 4.13: Expression to calculate loss

Figure 4.14: Cross-entropy loss vs. predicted probability

Probability			
Calculation of	Loss	Ontimization	
probabilities for each output class by using softmax function. Apply a loss function to quantify how well the probabilities predict the actual class, through the categorical cross entropy loss function		Update the weights by performing back propagation through gradient descent.	

Figure 4.15: Steps for task of classification

array([[0.,	1.,	0.,	0.],
[1.,	0.,	0.,	0.],
[0.,	0.,	0.,	1.],
[0.,	0.,	1.,	0.]])

Figure 4.16: Array output

Train on 60000 samples, validate on 10000 samples	
Epoch 1/12	
60000/60000 [======] - 209s 3ms/step - loss	s: 11.8406 - acc: 0.2646 - val_loss: 11.0491 - val_
acc: 0.3130	
Epoch 2/12	
60000/60000 [===========] - 197s 3ms/step - loss	s: 9.8795 - acc: 0.3867 - val_loss: 9.8567 - val_ac
c: 0.3884	
Epoch 3/12	
60000/60000 [===========] - 199s 3ms/step - loss	s: 9.8271 - acc: 0.3901 - val_loss: 9.7647 - val_ac
c: 0.3940	
Epoch 4/12	
60000/60000 [===========] - 227s 4ms/step - loss	s: 9.6686 - acc: 0.4000 - val_loss: 9.6117 - val_ac
c: 0.4033	

Figure 4.17: Training the model

Test loss: 6.17029175567627 Test accuracy: 0.6169

Figure 4.19: One-dimensional convolution

Figure 4.20: CNN with 6 convolutional and 3 fully connected layers

Test loss: 2.2279047027615064 Test accuracy: 0.43232413178984863

Figure 4.21: Accuracy score

Figure 4.22: Facial Recognition

Figure 4.23: Object detection

A puppy in a cup

A white puppy sitting on a sofa chair

A dog wearing sunglasses

Figure 4.25: Semantic segmentation

Figure 4.26: Sample architecture of semantic segmentation

Training Accuracy: 1.0000 Testing Accuracy: 0.8167

Figure 4.27: Accuracy scores

Lesson 05: Recurrent Neural Networks

Figure 5.1: TDNN structure

Figure 5.2: SimpleRNN structure

Figure 5.3: RNN structure

$$\bar{y}_t = F(\bar{x}_t, W)$$

Figure 5.4: Expression for the output of an RNN

$$\bar{y}_t = F(\bar{x}_t, \bar{x}_{t-1}, \bar{x}_{t-2}, \cdots, \bar{x}_{t-t_0}, W)$$

Figure 5.5: Expression for the output of an RNN at time t

Figure 5.6: Folded model of an RNN

Figure 5.7: Unfolding of an RNN

Figure 5.8: Unfolded RNN

Figure 5.9: Differences between FFNNs and RNNs

$$\overline{\mathbf{h}_{t}} = \overline{\mathbf{x}}_{t} \cdot \mathbf{w}_{x} \qquad \overline{\mathbf{s}}_{t} = \overline{\mathbf{x}}_{t} \cdot \mathbf{w}_{x} + \overline{\mathbf{s}}_{t-1} \cdot \mathbf{w}_{s} \qquad \overline{\mathbf{x}}_{t} \mathbf{w}_{x} + (\overline{\mathbf{x}}_{t-1} \mathbf{w}_{x}, \overline{\mathbf{S}}_{t-2} \mathbf{w}_{s}) \mathbf{w}_{s} \qquad \overline{\mathbf{y}}_{t} = \overline{\mathbf{h}}_{t} \cdot \mathbf{w}_{y} \qquad \overline{\mathbf{y}}_{t} = \mathbf{s}_{t} \cdot \mathbf{w}_{y}$$

Figure 5.10: Output expressions for FFNNs and RNNs

Figure 5.11 Different architectures of RNNs

Figure 5.12: Stacked RNNs

$$W_{new} = W_{previous} + \Delta W$$

Figure 5.13: Expression for weight update

$$\Delta W = -\alpha \frac{\partial E}{\partial W}$$

Figure 5.14 Partial derivative of error with regards to weight

Figure 5.15: Loss function

$$E_3 = (d_3 - y_3)^2$$

Figure 5.16 Loss at time t=3

Figure 5.18: Back propagation of loss through weight matrix Wy

$$\frac{\partial E_3}{\partial W_y} = \frac{\partial E_3}{\partial y_3} \frac{\partial y_3}{\partial W_y}$$

Figure 5.19: Expression for weight matrix Wy

Figure 5.20: Back propagation of loss through weight matrix Ws with respect to S₃

Figure 5.21: Back propagation of loss through weight matrix Ws with respect to S2

Figure 5.22: Back propagation of loss through weight matrix Ws with respect to S_1

$$\frac{\partial E_{3}}{\partial W_{s}} = \frac{\partial E_{3}}{\partial \overline{y}_{3}} \cdot \frac{\partial \overline{y}_{3}}{\partial \overline{s}_{3}} \cdot \frac{\partial \overline{s}_{3}}{\partial \overline{s}_{2}} \cdot \frac{\partial \overline{s}_{2}}{\partial W_{s}}$$

$$+ \frac{\partial E_{3}}{\partial \overline{y}_{3}} \cdot \frac{\partial \overline{y}_{3}}{\partial \overline{s}_{3}} \cdot \frac{\partial \overline{s}_{3}}{\partial \overline{s}_{2}} \cdot \frac{\partial \overline{s}_{2}}{\partial W_{s}}$$

$$+ \frac{\partial E_{3}}{\partial \overline{y}_{3}} \cdot \frac{\partial \overline{y}_{3}}{\partial \overline{s}_{3}} \cdot \frac{\partial \overline{s}_{3}}{\partial \overline{s}_{2}} \cdot \frac{\partial \overline{s}_{2}}{\partial \overline{s}_{2}} \cdot \frac{\partial \overline{s}_{1}}{\partial \overline{s}_{3}} \cdot \frac{\partial \overline{s}_{1}}{\partial W_{s}}$$

Figure 5.23: Sum of all derivatives of error with respect to Ws at t=3

∂E_N	N	∂E_N	∂y_N	∂S_i
∂W_s	$=$ $\sum_{i=1}$	$\partial \overline{y}_N$	$\partial \overline{S}_i$.	∂W_s

Figure 5.24: General expression for the derivative of error with respect to Ws

Figure 5.25: Back propagation of loss through weight matrix Wx with respect to S_2

Figure 5.26: Back propagation of loss through weight matrix Wx with respect to S₂

Figure 5.27: Back propagation of loss through weight matrix Wx with respect to S₁

$$\frac{\partial E_{3}}{\partial W_{x}} = \frac{\partial E_{3}}{\partial \overline{y}_{3}} \cdot \frac{\partial \overline{y}_{3}}{\partial \overline{s}_{3}} \cdot \frac{\partial \overline{s}_{3}}{\partial \overline{s}_{2}} \cdot \frac{\partial \overline{s}_{2}}{\partial W_{x}} + \frac{\partial E_{3}}{\partial \overline{y}_{3}} \cdot \frac{\partial \overline{y}_{3}}{\partial \overline{s}_{3}} \cdot \frac{\partial \overline{s}_{3}}{\partial \overline{s}_{2}} \cdot \frac{\partial \overline{s}_{2}}{\partial W_{x}} + \frac{\partial E_{3}}{\partial \overline{y}_{3}} \cdot \frac{\partial \overline{y}_{3}}{\partial \overline{s}_{3}} \cdot \frac{\partial \overline{s}_{3}}{\partial \overline{s}_{2}} \cdot \frac{\partial \overline{s}_{2}}{\partial W_{x}}$$

Figure 5.28: Sum of all derivatives of error with respect to Wx at t=3

∂E_N		∂E_N	$\partial \mathbf{y}_{N}$	$\partial \overline{S}_i$
∂W_x	$=$ $\sum_{i=1}$	$\partial \overline{y}_N$	$\partial \overline{S}_i$	∂W_x

Figure 5.29: General expression of derivative of error with respect to Wx

laven (type)	Outnut Shane	Danam #
		Fαι αιιι π
simple_rnn_1 (SimpleRNN)	(None, 64)	10560
dense_1 (Dense)	(None, 64)	4160
dense_2 (Dense)	(None, 100)	6500
Total params: 21,220 Trainable params: 21,220 Non-trainable params: 0		

Figure 5.30: Model summary for model layers

Layer (type)	Output Shape	Param #
simple_rnn_3 (SimpleRNN)	(None, 10, 64)	10560
dense_5 (Dense)	(None, 10, 64)	4160
dense_6 (Dense)	(None, 10, 100)	6500
Total params: 21,220 Trainable params: 21,220 Non-trainable params: 0		

Figure 5.31: Model summary of sequence-returning model

Layer (type)	Output Shape	Param #
simple_rnn_5 (SimpleRNN)	(None, 1000, 64)	10560
dense_9 (Dense)	(None, 1000, 64)	4160
dense_10 (Dense)	(None, 1000, 100)	6500
Total params: 21,220 Trainable params: 21,220 Non-trainable params: 0		

Figure 5.32: Model summary for timesteps

batch 1	_	batch 2		batch 1		batch N
i	State returned	i+1		i+2	→ →	i+N ₋₁
j	 •	j+1		j+2	→ →	j+N _{₋1}
						•
				•		•
k		k+1		k+2	-	k+N _{₋1}
					,	

Figure 5.33 Batch formations for stateful RNN

Figure 5.34: Box and whisker plot for stateful vs stateless

Paper 5 is predicted to have been written by Author A, 6142 to 5612 Paper 4 is predicted to have been written by Author B, 5215 to 4558 Paper 1 is predicted to have been written by Author B, 13924 to 6850 Paper 3 is predicted to have been written by Author B, 7620 to 5764 Paper 2 is predicted to have been written by Author B, 12840 to 6806

Figure 5.35: Output for author attribution

Lesson 06: Gated Recurrent Units (GRUs)

Figure 6.1: A basic RNN

Figure 6.2: A simple neural network

Figure 6.3: Gradient calculation using chain rule

b[1] = b[1] + lambda*grad(C, b[1])

Figure 6.4: Updating value of b[1] using the gradient

Figure 6.5: Clipping gradients to combat the explosion of gradients

Figure 6.6: The full GRU structure

Figure 6.7: The meanings of the different signs in the GRU diagram

h[t] = hadamard{z[t], h[t-1]} + hadamard{(1 - z[t]) * h_candidate[t]}

Figure 6.8: The expression for the activation function for the next layer in terms of the candidate activation function

Figure 6.9: The expression for calculating the update gate

Figure 6.10: The update gate in a full GRU diagram

x_t
array([[-0.93576943], [-0.26788808], [0.53035547], [-0.69166075], [-0.39675353]])
h_prev
array([[0.90085595], [-0.68372786], [-0.12289023]])
W_z
array([[1.62434536, -0.61175641, -0.52817175, -1.07296862, 0.86540763], [-2.3015387, 1.74481176, -0.7612069, 0.3190391, -0.24937038], [1.46210794, -2.06014071, -0.3224172, -0.38405435, 1.13376944]])
U_z
array([[-1.09989127, -0.17242821, -0.87785842],

```
rray([[-1.09989127, -0.17242821, -0.87785842],
[ 0.04221375, 0.58281521, -1.10061918],
[ 1.14472371, 0.90159072, 0.50249434]])
```


 $r[t] = sigmoid(W_r * x[t] + U_r * h[t-1])$


```
W_r
W_r
array([[-0.6871727, -0.84520564, -0.67124613, -0.0126646, -1.11731035],
[ 0.2344157, 1.65980218, 0.74204416, -0.19183555, -0.88762896],
[-0.74715829, 1.6924546, 0.05080775, -0.63699565, 0.19091548]])
U_r
array([[ 2.10025514, 0.12015895, 0.61720311],
[ 0.30017032, -0.35224985, -1.1425182 ],
[ -0.34934272, -0.20889423, 0.58662319]])
```

Figure 6.14: A screenshot displaying the values of the weights

```
r_t
array([[0.93699927],
[0.70392511],
[0.5971474 ]])
```

Figure 6.15: A screenshot displaying the r_t output

h_candidate[t] = tanh(W * x[t] + U * hadamard{r[t], h[t-1]})

Figure 6.16: The expression for calculating the candidate activation function

Figure 6.17: The candidate activation function

```
W
array([[ 0.83898341, 0.93110208, 0.28558733, 0.88514116, -0.75439794],
      [ 1.25286816, 0.51292982, -0.29809284, 0.48851815, -0.07557171],
      [ 1.13162939, 1.51981682, 2.18557541, -1.39649634, -1.44411381]])
U
array([[-0.50446586, 0.16003707, 0.87616892],
      [ 0.31563495, -2.02220122, -0.30620401],
      [ 0.82797464, 0.23009474, 0.76201118]])
```


h_candidate
array([[-0.94284959],
 [-0.47277196],
 [0.9429634]])

Figure 6.19: A screenshot displaying the value of h_candidate

h_new

Figure 6.20: A screenshot displaying the value of the current activation function

Number of train sequences: 25000 Number of test sequences: 25000 train_data shape: (25000, 500) test_data shape: (25000, 500)

Figure 6.21: A screenshot showing the train and test sequences

Train on 20000 samples, validate on 5000 samples	
Epoch 1/10	
20000/20000 [======] - 53s 3ms/step - loss	3: 0.5382 - acc: 0.7286 - val_loss: 0.4796 - val_ac
c: 0.7620	
Epoch 2/10	
20000/20000 [======] - 53s 3ms/step - loss	s: 0.3120 - acc: 0.8701 - val_loss: 0.3218 - val_ac
c: 0.8732	
Epoch 3/10	
20000/20000 [======] - 51s 3ms/step - loss	s: 0.2503 - acc: 0.9025 - val_loss: 0.3644 - val_ac
c: 0.8720	
Epoch 4/10	
20000/20000 [======] - 51s 3ms/step - loss	<pre>s: 0.2187 - acc: 0.9184 - val_loss: 0.3092 - val_ac</pre>
c: 0.8740	
Epoch 5/10	
20000/20000 [======] - 51s 3ms/step - loss	s: 0.1937 - acc: 0.9290 - val_loss: 0.3130 - val_ac
c: 0.8792	
Epoch 6/10	
20000/20000 [======] - 51s 3ms/step - loss	s: 0.1747 - acc: 0.9350 - val_loss: 0.3299 - val_ac
c: 0.8710	
Epoch 7/10	
20000/20000 [==========] - 52s 3ms/step - loss	s: 0.1600 - acc: 0.9434 - val_loss: 0.3599 - val_ac
c: 0.8500	
Epoch 8/10	
20000/20000 [======] - 53s 3ms/step - loss	s: 0.1498 - acc: 0.9458 - val_loss: 0.3378 - val_ac
c: 0.8792	
Epoch 9/10	
20000/20000 [============] - 53s 3ms/step - loss	3: 0.1389 - acc: 0.9512 - val_loss: 0.5470 - val_ac
c: 0.8308	
Epoch 10/10	
20000/20000 [======] - 53s 3ms/step - loss	3: 0.1284 - acc: 0.9541 - val_loss: 0.3599 - val_ac
c• 0.8672	

Figure 6.22: A screenshot displaying the variable history output of the training model

Figure 6.23: The training and validation accuracy for the sentiment classification task

Figure 6.24: The training and validation loss for the sentiment classification task

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase, That thereby beauty's rose might never die, But as the riper should by time decease, His tender heir might bear his mem

Figure 6.25: A screenshot of THE SONNETS

'\n\nFrom fairest creatures we desire incre', 'rom fairest creatures we desire increase', ' fairest creatures we desire increase, \nT', 'irest creatures we desire increase, \nThat', 'st creatures we desire increase, \nThat th', 'creatures we desire increase, \nThat there', 'atures we desire increase, \nThat thereby ', 'res we desire increase, \nThat thereby bea', ' we desire increase, \nThat thereby beauty', " desire increase, \nThat thereby beauty's ", "sire increase, \nThat thereby beauty's ros", "e increase, \nThat thereby beauty's rose m", "ncrease, \nThat thereby beauty's rose migh", "ease, \nThat thereby beauty's rose might n", "e, \nThat thereby beauty's rose might neve", "That thereby beauty's rose might never d", "t thereby beauty's rose might never die,",

Figure 6.26: A screenshot of the training sequences

Epoch 1/10		
31327/31327	[=====] - 12s 374us/step - loss:	2.2844
Epoch 2/10		
31327/31327	[=====] - 11s 335us/step - loss:	1.8985
Epoch 3/10		
31327/31327	[=====] - 11s 339us/step - loss:	1.7675
Epoch 4/10		
31327/31327	[=====] - 12s 372us/step - loss:	1.6757
Epoch 5/10		
31327/31327	[=====] - 11s 353us/step - loss:	1.5984
Epoch 6/10		
31327/31327	[=====] - 11s 341us/step - loss:	1.5479
Epoch 7/10		
31327/31327	[=====] - 12s 382us/step - loss:	1.5083
Epoch 8/10		
31327/31327	[=====] - 11s 346us/step - loss:	1.4803
Epoch 9/10		
31327/31327	[=====] - 11s 354us/step - loss:	1.4648
Epoch 10/10		
31327/31327	[=====] - 11s 356us/step - loss:	1.4428

Figure 6.27: A screenshot displaying epochs

' thou viewest,\nNow is the time that faced padince thy fete,\njevery bnuping griats I have liking dispictreessedg.\n \nThy such thy sombeliner h'

Figure 6.28: A screenshot displaying the output of the generated poem sequence

Lesson 07: Long Short-Term Memory (LSTM)

Figure 7.1: The repeating module in a standard RNN

Figure 7.3: Notations used in the model

Figure 7.4: Cell state

$f[t] = sigmoid(w_f * x[t] + U_f * h[t-1])$

Figure 7.5: Expression for the forget gate

Figure 7.6: The forget gate

h_prev

```
array([[1.76405235],
[0.40015721],
[0.97873798]])
```

х

array([[2.2408932], [1.86755799], [-0.97727788], [0.95008842], [-0.15135721]])

Figure 7.7: Output for the previous state, 'h_prev,' and the current input, 'x'

W_f

```
array([[-0.10321885, 0.4105985, 0.14404357, 1.45427351,
0.76103773],
      [ 0.12167502, 0.44386323, 0.33367433, 1.49407907, -
0.20515826],
      [ 0.3130677, -0.85409574, -2.55298982, 0.6536186,
0.8644362 ]])
```

U f

```
array([[-0.74216502, 2.26975462, -1.45436567],
      [ 0.04575852, -0.18718385, 1.53277921],
      [ 1.46935877, 0.15494743, 0.37816252]])
```

Figure 7.8: Output of the matrix values

```
f
```

```
array([[0.45930054],
[0.97661676],
[0.99403442]])
```

Figure 7.9: Output of the forget gate, f[t]

C_candidate = tanh (W_c * h[t - 1] + U_c * x[t])

Figure 7.10: Expression for candidate cell state

Figure 7.11: Input gate and candidate state

$i[t] = sigmoid(W_i * x[t] + U_i * h[t-1])$

Figure 7.12: Expression for the input gate value

₩_i

array([[-0.88778575, -1.98079647, -0.34791215, 0.15634897, 1.23029068], [1.20237985, -0.38732682, -0.30230275, -1.04855297, -1.42001794], [-1.70627019, 1.9507754, -0.50965218, -0.4380743, -1.25279536]])

U_i

```
array([[ 0.77749036, -1.61389785, -0.21274028],
       [-0.89546656, 0.3869025 , -0.51080514],
       [-1.18063218, -0.02818223, 0.42833187]])
```

```
Figure 7.13: Screenshot of values of matrices for candidate cell state and input gate
```

i

```
array([[0.00762368],
[0.39184172],
[0.17027909]])
```

Figure 7.14: Screenshot of output of input gate

TAT	0
**	<u> </u>
_	

```
array([[ 0.06651722, 0.3024719 , -0.63432209, -0.36274117, -
0.67246045],
            [-0.35955316, -0.81314628, -1.7262826 , 0.17742614, -
0.40178094],
            [-1.63019835, 0.46278226, -0.90729836, 0.0519454 ,
0.72909056]])
```

U_C

array([[0.12898291, 1.13940068, -1.23482582], [0.40234164, -0.68481009, -0.87079715], [-0.57884966, -0.31155253, 0.05616534]])

Figure 7.15: Screenshot for values of matrices W_c and U_c

c_candidate

array([[0.51233992], [-0.67747899], [-0.99555958]])

Figure 7.16: Screenshot of the candidate cell state

C[t]=hadamard(f[t], C[t-1]) + hadamard(i[t], C_candidate[t])

Figure 7.17: Expression for cell state update

c_new
array([[-0.53124803],
 [0.61429771],
 [0.29336152]])

Figure 7.19: Screenshot for output of updated cell state

$o[t] = sigmoid(W_o*x[t] + U_o*h[t-1])$

Figure 7.20: Expression for output gate.

Figure 7.21: Output gate and current activation

```
W_o
```

```
array([[-1.16514984, 0.90082649, 0.46566244, -1.53624369,
1.48825219],
      [ 1.89588918, 1.17877957, -0.17992484, -1.07075262,
1.05445173],
      [-0.40317695, 1.22244507, 0.20827498, 0.97663904,
0.3563664 ]])
```

U_o

```
array([[ 0.70657317, 0.01050002, 1.78587049],
[ 0.12691209, 0.40198936, 1.8831507 ],
[-1.34775906, -1.270485 , 0.96939671]])
```

Figure 7.22: Screenshot for output of matrices W_o and U_o

array([[-0.06989015], [0.99999957], [0.11232103]])

Figure 7.23: Screenshot of the value of the output gate

h[t] = hadamard(o[t], tanh (C[t]))

```
Figure 7.24: Expression to calculate the value of the next activation
```

h_new	
array([[-0.04695679],	
[0.12468345],	
[0.07479682]])	

Figure 7.25: Screenshot for the current timestep activation

df.head()						
	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4	
0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN	
1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN	
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN	
3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN	
4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN	

Figure 7.26: Screenshot of the output for spam classification

ο

df.head()

	v1	v2
0	ham	Go until jurong point, crazy Available only
1	ham	Ok lar Joking wif u oni
2	spam	Free entry in 2 a wkly comp to win FA Cup fina
3	ham	U dun say so early hor U c already then say
4	ham	Nah I don't think he goes to usf, he lives aro

Figure 7.27: Screenshot for columns with text and labels

df["v1"].value_counts()					
ham spam Name:	4825 747 v1, dtype:	int64			

Figure 7.28: Screenshot for label distribution

"Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's",

..., 'Pity, * was in mood for that. So...any other sug gestions?',

"The guy did some bitching but I acted like i'd be int erested in buying something else next week and he gave it to us for free",

'Rofl. Its true to its name'], dtype=object)

Figure 7.29: Screenshot for output X

Y

array([0, 0, 1, ..., 0, 0, 0])

Figure 7.30: Screenshot for output Y

In [24]: text tokenized Out[24]: [[50, 64, 8, 89, 67, 58], [46, 6], [47, 8, 19, 4, 2, 71, 2, 2, 73], [6, 23, 6, 57], [1, 98, 69, 2, 69], [67, 21, 7, 38, 87, 55, 3, 44, 12, 14, 85, 46, 2, 68, 2], [11, 9, 25, 55, 2, 36, 10, 10, 55], [72, 13, 72, 13, 12, 51, 2, 13], [72, 4, 3, 17, 2, 2, 16, 64], [13, 96, 26, 6, 81, 2, 2, 5, 36, 12, 47, 16, 5, 96, 47, 18], [30, 32, 77, 7, 1, 98, 70, 2, 80, 40, 93, 88], [2, 48, 2, 73, 7, 68, 2, 65, 92, 42], [3, 17, 4, 47, 8, 91, 73, 5, 2, 38], [12, 5, 2, 3, 12, 40, 1, 1, 97, 13, 12, 7, 33, 11, 3, 17, 7, 4, 29, 51], [1, 17, 4, 18, 36, 33], [2, 13, 5, 8, 5, 73, 26, 89], [93, 30], [6, 49, 19, 1, 69, 1], 134 5 6 5 611

sequences									
array([[Ο,	Ο,	Ο,	,	89,	67 ,	58] ,		
]	Ο,	Ο,	Ο,	•••,	Ο,	46,	6],		
[Ο,	Ο,	Ο,	•••,	2,	2,	73] ,		
•	•••								
[Ο,	Ο,	Ο,	•••,	12,	20,	23],		
[Ο,	Ο,	Ο,	•••,	2,	12,	47],		
[Ο,	Ο,	0,	•••,	61,	2,	61]],	dtype=int32)	

Figure 7.31: Screenshot for the output of tokenized values

Figure 7.32: Screenshot for padded sequences

model.fit(sequences,Y,batch size=128,epochs=10, validation split=0.2) Train on 4457 samples, validate on 1115 samples Epoch 1/10 loss: 0.4885 - acc: 0.8548 - val loss: 0.3700 - val acc: 0.87 00 Epoch 2/104457/4457 [===========] - 2s 374us/step loss: 0.3425 - acc: 0.8652 - val_loss: 0.2649 - val acc: 0.87 71 Epoch 3/10 4457/4457 [==========] - 2s 381us/step loss: 0.2028 - acc: 0.9226 - val loss: 0.1489 - val acc: 0.95 34 Epoch 4/104457/4457 [==========] - 2s 367us/step loss: 0.1348 - acc: 0.9547 - val loss: 0.1271 - val acc: 0.95 16 Epoch 5/10 4457/4457 [==============================] - 2s 404us/step loss: 0.1157 - acc: 0.9605 - val loss: 0.1073 - val acc: 0.95 78 Epoch 6/10 4457/4457 [==============================] - 2s 368us/step loss: 0.1061 - acc: 0.9632 - val loss: 0.1027 - val acc: 0.96 14 Epoch 7/10 loss: 0.0998 - acc: 0.9657 - val loss: 0.1046 - val acc: 0.95 78 Epoch 8/10 4457/4457 [==============================] - 2s 372us/step loss: 0.0955 - acc: 0.9672 - val_loss: 0.1004 - val_acc: 0.95 96

Figure 7.33: Screenshot of model fitting to 10 epochs

model.predict(test sequences matrix)

```
array([[0.96648586]], dtype=float32)
```


Figure 7.35: Output for mail category prediction

Figure 7.36: Neural translation model

input_texts				
['Hi.',				
'Hi.',				
'Run!',				
'Wow!',				
'Wow!',				
'Fire!',				
'Help!',				
'Help!',				
'Stop!',				
'Wait!',				
'Go on.',				
'Hello!',				
'I ran.',				
'I see.',				
'I see.',				
'I try.',				
'I won!',				
'I won!',				
'Smile.',				
'Cheers!'				
target_texts				
['BEGIN_ Hallo! _END',				
'BEGIN_ Grüß Gott! _END',				

```
'BEGIN_ Lauf! _END',
'BEGIN_ Potzdonner! _END',
'BEGIN_ Donnerwetter! _END',
'BEGIN_ Feuer! _END',
'BEGIN_ Hilfe! _END',
```

'BEGIN_ Zu Hülf! _END', 'BEGIN_ Stopp! _END', 'BEGIN_ Warte! _END',

'BEGIN_ Mach weiter. _END',

Figure 7.38: Screenshot for input and output texts after mapping

input_words					
<pre>['"Look,"', '"aah."', '\$', '\$', '*', '-', '-', '.', '.', '.', '.', '.', '.</pre>					
target_words					
<pre>['"Schau!"', '\$.', '\$', "'ne", ',', '-', '.', '.', '2', 'Abend', 'Abend!', 'Abend?', 'Abendbrot', 'Abendbrot',</pre>					

Figure 7.39: Screenshot for input text and target words

input token index

```
{'"Look,"': 0,
 '"aah."': 1,
 '$': 2,
 '%': 3,
 ',': 4,
 '-': 5,
 '.': 6,
 '...': 7,
 ':': 8,
 '?': 9,
 'A': 10,
 'A.': 11,
 'ATM?': 12,
 'AWOL.': 13,
 'Abandon': 14,
 'About': 15,
 'Act': 16,
 'Add': 17,
 'Admission': 18,
 'After' 19
```

target token index

```
{'"Schau!"': 0,
'$.': 1,
'%': 2,
"'ne": 3,
',': 4,
'-': 5,
'.': 6,
':': 7,
'?': 8,
'Abend': 9,
'Abend!': 10,
'Abend?': 11,
'Abendbrot': 12,
```

Figure 7.40: Screenshot for output of integer index for each token

|--|

array([[283.,	0.,	0.,	•••,	0.,	0.,	0.],
[283.,	0.,	0.,	•••,	0.,	0.,	0.],
[505.,	0.,	0.,	•••,	0.,	0.,	0.],
• •	••,						
[696.,	3001.,	4502.,	•••,	0.,	0.,	0.],
[696.,	3001.,	4682.,	•••,	0.,	0.,	0.],
[696.,	3004.,	3008.,	•••,	0.,	0.,	0.]], dtyp
e=float32	2)						

decoder_input_data

array([[175., 1172., 3665., ..., 0., 0., 0.], [175., 1140., 1113., ..., 0., 0., 0.], [175., 1706., 3665., ..., 0., 0., 0.], •••, [175., 3405., 8432., ..., 0., 0., 0.], [175., 3405., 6239., ..., 0., 0., 0.], [175., 3405., 6239., ..., 0., 0., 0.]], dtyp e=float32)

decoder_target_data

array([[[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], [[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.],

Figure 7.41: Screenshot of matrix population

Layer (type) Output Shape Param # Connected to ______ _____ (None, None) 0 input 1 (InputLayer) input 2 (InputLayer) (None, None) 0 (None, None, 50) embedding 1 (Embedding) 286200 input_1[0][0] embedding_2 (Embedding) (None, None, 50) 456300 input_2[0][0] lstm 1 (LSTM) [(None, 50), (None, 20200 embedding 1[0][0] [(None, None, 50), (20200 lstm 2 (LSTM) embedding 2[0][0] lstm_1[0][1] lstm 1[0][2] dense 1 (Dense) (None, None, 9126) 465426 lstm 2[0][0] ______ Total params: 1,248,326 Trainable params: 1,248,326 Non-trainable params: 0

Figure 7.42: Screenshot of model summary

Train on 19000 samples, validate on 1000 samples Epoch 1/20 19000/19000 [=======================] - 310s 16ms/step - loss: 1.6492 - acc: 0.0787 - val loss: 1.8068 - val acc: 0. 0674 Epoch 2/20 19000/19000 [=======================] - 303s 16ms/step - loss: 1.5174 - acc: 0.0908 - val loss: 1.6923 - val acc: 0. 0822 Epoch 3/20 19000/19000 [=============] - 304s 16ms/step - loss: 1.4060 - acc: 0.1040 - val loss: 1.6107 - val acc: 0. 1065 Epoch 4/20 19000/19000 [=======================] - 292s 15ms/step - loss: 1.3343 - acc: 0.1157 - val loss: 1.5683 - val acc: 0. 1100 Epoch 5/20 19000/19000 [==============================] - 292s 15ms/step - loss: 1.2860 - acc: 0.1212 - val_loss: 1.5299 - val_acc: 0. 1197 Epoch 6/20 19000/19000 [============================] - 291s 15ms/step - loss: 1.2510 - acc: 0.1241 - val loss: 1.5037 - val acc: 0. 1145 Epoch 7/20 19000/19000 [========================] - 291s 15ms/step

Figure 7.43: Screenshot of model fitting with 20 epochs
reverse_input_word_index

3: '%', 4: ',', 5: '-', 6: '.', 7: '...', 8: ':', 9: '?', 10: 'A', 11: 'A.', 12: 'ATM?', 13: 'AWOL.', 14: 'Abandon', 15: 'About', 16: 'Act', 17: 'Add', 18: 'Admission', 19: 'After', 20: 'Aim.', 21: "Ain't", 22: 'Air'.

reverse_target_word_index

```
{0: '"Schau!"',
1: '$.',
2: '%',
3: "'ne",
4: ',',
5: '-',
6: '.',
7: ':',
8: '?',
9: 'Abend',
10: 'Abend!',
11: 'Abend?',
12: 'Abendbrot',
```


Out[124]: ' Wo ist mein Auto? _END'

Figure 7.45: Screenshot of English-to-German translator

Figure 7.46: Output for French to English translator model

Lesson 08: State-of-the-Art Natural Language Processing

Figure 8.1: Neural language translation model

Figure 8.2: An example of an attention mechanism

Figure 8.3: An attention mechanism model

User Input	Normalized Date
3-May-79	5/3/1979
5-Apr-09	5/5/2009
21th of August 2016	8/21/2016
Tue 10 Jul 2007	7/10/2007

Figure 8.4: Table for date normalization

Figure 8.5: Expression for the context vector

Figure 8.6: Determination of attention to inputs

Figure 8.7: The calculation of alpha

```
m = 10000
dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m)
100%| 1000/10000 [00:00<00:00, 23983.69it/s]</pre>
```

dataset

```
[('9 may 1998', '1998-05-09'),
('10.09.70', '1970-09-10'),
('4/28/90', '1990-04-28'),
('thursday january 26 1995', '1995-01-26'),
('monday march 7 1983', '1983-03-07'),
```


;	human_	_vocab	
	'9' :	12,	
	'a' :	13,	
	'b' :	14,	
	'c':	15,	
	'd':	16,	
	'e' :	17,	
	'f':	18,	
		10	

machi	ne_vocab
{'-':	Ο,
'0' :	1,
'1' :	2,
'2' :	3,
'3' :	4,
'4' :	5,
'5' :	6,
'6' :	7,
'7' :	8,
'8' :	9,
'9' :	10}

Figure 8.10: Screenshot for the machine_vocab dictionary

inv_	machine_vocab
{0:	'-',
1:	'0' ,
2:	'1',
3:	'2' ,
4:	'3' ,
5:	'4' ,
6:	'5' ,
7 :	'6' ,
8:	'7' ,
9:	'8' ,
10:	'9' }

Figure 8.11: Screenshot for the inv_machine_vocab dictionary

X.shape: (10000, 30)
Y.shape: (10000, 10)
Xoh.shape: (10000, 30, 37)
Yoh.shape: (10000, 10, 11)

Figure 8.12: Screenshot for the shape of matrices

```
: index = 0
print("Source date:", dataset[index][0])
print("Target date:", dataset[index][1])
print()
print("Source after preprocessing (indices):", X[index].shape)
print("Target after preprocessing (indices):", Y[index].shape)
print()
print("Source after preprocessing (one-hot):", Xoh[index].shape)
print("Target after preprocessing (one-hot):", Yoh[index].shape)
Source date: 9 may 1998
Target date: 1998-05-09
Source after preprocessing (indices): (30,)
Target after preprocessing (one-hot): (30, 37)
Target after preprocessing (one-hot): (10, 11)
```

Figure 8.13: Screenshot for the shape of matrices after processing

<pre>model.summary()</pre>			
dense_3 (Dense)	(None, 11)	715	lstm_1[0][0]
			lstm_1[1][0]
			lstm_1[2][0]
			lstm_1[3][0]
			lstm_1[4][0]
			lstm_1[5][0]
			lstm_1[6][0]
			lstm_1[7][0]
			lstm_1[8][0]
			lstm_1[9][0]
=====			
Total params: 52,960			
Trainable params: 52,960			
Non-trainable params: 0			

Figure 8.14: Screenshot for model summary

```
Epoch 1/1
10000/10000 [==========] - 15s lms/step - loss: 17.0066 - dense_3_loss:
2.5402 - dense_3_acc: 0.4576 - dense_3_acc_1: 0.7088 - dense_3_acc_2: 0.3134 - dense_3_acc_3:
0.0748 - dense_3_acc_4: 0.8606 - dense_3_acc_5: 0.3337 - dense_3_acc_6: 0.0510 - dense_3_acc_
7: 0.8976 - dense_3_acc_8: 0.2671 - dense_3_acc_9: 0.1082
```

Figure 8.15: Screenshot for epoch training

```
source: 3 May 1979
output: 1979-05-03
source: 5 April 09
output: 2009-05-05
source: 21th of August 2016
output: 2016-08-21
source: Tue 10 Jul 2007
output: 2007-07-10
source: Saturday May 9 2018
output: 2018-05-09
source: March 3 2001
output: 2001-03-03
source: March 3rd 2001
output: 2001-03-03
source: 1 March 2001
output: 2001-03-01
```

Figure 8.16: Screenshot for normalized date output

Lesson 09: A Practical NLP Project Workflow in an Organization

Figure 9.1: General workflow for the development of a machine learning product

Figure 9.2: General presentation workflow

Figure 9.4: Production-oriented workflow

Figure 9.5: A new Python notebook on Google Colab

	_							Ŭ
CO	4 Fi	train	n_sentiment_class	sifier.ipynb me Tools Help	☆ >			
	+ C	DD	Undo insert cell	೫/Ctrl+Shift+Z				
>								
	[1]	# i t	Select all cells Cut selection	೫/Ctrl+Shift+A				
	C→	'	Paste					
	[3]	f d	Delete selected cells	೫/Ctrl+M D				
	E.	D	Find and replace	第/Ctrl+H	/adrive. to	attempt	+0	forci
	L₹	<i>D</i> .	Find next	₩/Ctrl+G	/garive, co	accempt		10101
	[13]	i	Find previous	೫/Ctrl+Shift+G				
		i i i	Notebook settings					
		f f f	Show/hide code Clear all outputs keras.layers impo	rt Dense, Emb	t Tokenizer mport pad_se pedding, LSTM	quences		
	C→	Usin	g TensorFlow back	end.				

Figure 9.6: Edit dropdown in Google Colab

o forcibly	remount, call drive	.mount("/c	ontent/gdr	ive", for	ce_remount=	=True
	Notebook setting	S				
	Runtime type Python 3	.				
	Hardware accelerator None	• ?				
	Omit code cell ou	itput when sa	ving this note	book		1
	_	-	CANCEL	SAVE		1

Figure 9.7: Notebook settings for Google Colab

Notebook settings	
Runtime type Python 3	
Hardware accelerator	<u> </u>
Omit code cell out	put when saving this notebook
	CANCEL SAVE

Figure 9.8: GPU hardware accelerator

Figure 9.9: Screenshot for GPU device name

Figure 9.11: Data imported on the Colab notebook from Google Drive

Figure 9.12: Unzipping a data file on a Colab notebook

df.head()

	rating	title	review
0	3	more like funchuck	gave this to my dad for a gag gift after direc
1	5	Inspiring	i hope a lot of people hear this cd we need mo
2	5	The best soundtrack ever to anything.	im reading a lot of reviews saying that this i
3	4	Chrono Cross OST	the music of yasunori misuda is without questi
4	5	Too good to be true	probably the greatest soundtrack in history us

Figure 9.13: Screenshot of dataframe contents

х							
array([[[[0, 0, 0,	0, 0, 0,	0,, 0,, 0,,	40, 23, 24,	7, 1694, 171,	6], 2], 170],	
 [[[0, 0, 0,	0, 0, 0,	0,, 0,, 0,,	42, 580, 1,	712, 290, 38,	1358], 1722], 1840]],	dtype=int32)

Figure 9.14:	Screenshot of	the X	variable	array
--------------	---------------	-------	----------	-------

y_train
array([[0, 0, 1, 0, 0],
 [0, 0, 0, 0, 1],
 [0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [1, 0, 0, 0, 0]], dtype=uint8)

Figure 9.15: y_train output

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 250, 128)	256000
lstm_1 (LSTM)	(None, 100)	91600
dense_1 (Dense)	(None, 5)	505
Total params: 348,105 Trainable params: 348,105 Non-trainable params: 0		
None		

Figure 9.16: Screenshot of the model summary

fit the model
<pre>model.fit(X[:100000, :], y_train[:100000, :], batch_size = 128, epochs=15, validation_split=0.2)</pre>
Train on 80000 samples, validate on 20000 samples
80000/80000 [=======================] - 320s 4ms/step - loss: 1.1106 - acc: 0.5231 - val_loss: 1.1261 - val_acc: 0.5171 Exoch 2/15
80000/80000 [=================================
00000/80000 [=================================
80000/80000 [=========================] - 311s 4ms/step - loss: 1.0226 - acc: 0.5660 - val_loss: 1.1226 - val_acc: 0.5172 Epoch 5/15
80000/80000 [========================] - 315s 4ms/step - loss: 1.0014 - acc: 0.5771 - val_loss: 1.1348 - val_acc: 0.5087 Epoch 6/15
80000/80000 [========================] - 319s 4ms/step - loss: 0.9754 - acc: 0.5873 - val_loss: 1.1455 - val_acc: 0.5078 Epoch 7/15
80000/80000 [========================] - 320s 4ms/step - loss: 0.9496 - acc: 0.6015 - val_loss: 1.1708 - val_acc: 0.5051 Epoch 8/15
80000/80000 [========================] - 322s 4ms/step - loss: 0.9244 - acc: 0.6099 - val_loss: 1.1870 - val_acc: 0.5028 Epoch 9/15
80000/80000 [========================] - 317s 4ms/step - loss: 0.8978 - acc: 0.6226 - val_loss: 1.2118 - val_acc: 0.5002 Epoch 10/15
80000/80000 [========================] - 313s 4ms/step - loss: 0.8678 - acc: 0.6383 - val_loss: 1.2304 - val_acc: 0.4975 Epoch 11/15
80000/80000 [========================] - 319s 4ms/step - loss: 0.8391 - acc: 0.6508 - val_loss: 1.2817 - val_acc: 0.4953 Epoch 12/15
80000/80000 [========================] = 320s 4ms/step = loss: 0.8089 = acc: 0.6655 = val_loss: 1.3062 = val_acc: 0.4907 Epoch 13/15
80000/80000 [=================================
80000/80000 [=================================
80000/80000 [=================================

Figure 9.17: Screenshot of the training session

Figure 9.18: Output for Flask

Sending build context to Docker daemon 115.6MB
Step 1/9 : FROM python:3.6-slim
> 5d4dd7f71a65
Step 2/9 : COPY ./app.py /deploy/
> f71341666654
Step 3/9 : COPY ./requirements.txt /deploy/
> 688538f2682c
Step 4/9 : COPY ./trained_model.h5 /deploy/
> 89af21aa696e
Step 5/9 : COPY ./trained_tokenizer.pkl /deploy/
> 9cba42121f49
Step 6/9 : WORKDIR /deploy/
> Running in 204358b07798
Removing intermediate container 204358b07798
> 33241b6c6015
Step 7/9 : RUN pip install -r requirements.txt
> Running in d19156053f1d
Collecting Flask==1.0.2 (from -r requirements.txt (line 1))
Downloading https://files.pythonhosted.org/packages/7f/e7/08578774ed4536d3242b14dacb4696386634607af824ea99
7202cd0edb4b/Flask-1.0.2-py2.py3-none-any.whl (91kB)
Collecting numpy==1.14.1 (from -r requirements.txt (line 2))
Downloading https://files.pythonhosted.org/packages/de/7d/348c5d8d44443656e76285aa97b828b6dbd9c10e5b9c0f7f
98eff0ff70e4/numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12.2MB)
Collecting keras==2.2.4 (from -r requirements.txt (line 3))
Downloading https://files.pythonhosted.org/packages/5e/10/aa32dad071ce52b5502266b5c659451cfd6ffcbf14e6c8c4
f16c0ff5aaab/Keras-2.2.4-py2.py3-none-any.whl (312kB)
Collecting tensorflow==1.10.0 (from -r requirements.txt (line 4))
Downloading https://files.pythonhosted.org/packages/ee/e6/a6d371306c23c2b01cd2cb38909673d17ddd388d9e4b3c0f
6602bfd972c8/tensorflow-1.10.0-cp36-cp36m-manylinux1_x86_64.whl (58.4MB)

Figure 9.19: Output screenshot for docker build

Figure 9.20: Output screenshot for the docker run command

WS Ma	nagement Co	nsole	
AWS services			
Find Services You can enter names, keyv	ords or acronyms.		
Q <u>ec</u> 2			 ×
EC2 Virtual Servers in the Clo	d		
ECS Run and Manage Docker	ontainers		
FFS			

Figure 9.22: Network and security on the AWS console

Resources											
You are using the following Amazon EC2 resources in the EU Central (Frankfurt) region:											
0 Running Instances 0 Elastic IPs											
0 Dedicated Hosts 0 Snapshots											
1 Volumes		0	Load Balancers								
2 Key Pairs 6 Security Groups											
0 Placement Groups											
Learn more about the latest in AWS Compute from AWS re:Invent by viewing the EC2 Videos.											
To start using Amazon EC2 you will want to launch a virtual server, known as ar	۱ Ar	nazon EC2 ins	stance.								
Launch Instance -											
Note: Your instances will launch in the EU Central (Frankfurt) region											
Service Health	2	Schedule	ed Events								

Figure 9.23: Resources on the AWS console

1. Choose AMI	2. Choose Instance Type	3. Configure Instance	4. Add Storage	5. Add Tags	6. Configure Security Group	7. Review	
Step 1: Ch An AMI is a templ /our own AMIs.	late that contains the soft	con Machine In ware configuration (oper	nage (AMI) rating system, applie	cation server,	and applications) required to	launch your instance. You can select an AMI provided by AWS, our user community, or the AWS Marketplace;	Cancel and Exit or you can select one of
Q, Search for an	n AMI by entering a searcl	h term e.g. "Windows"					×
Quick Start						< < 1 to	38 of 38 AMIs > >
My AMIs AWS Market Community /	tplace Free AMIs Ity () Amar	Amazon Lia Amazon Linu Arnazon Linu Software paci Root device typ Amazon Li PostgreSolu Root device typ Amazon Li Con Linux Root device typ Root device typ	nux 2 AMI (HVM), x 2 comes with five y kages through extras re: ebs Virtualization 1 nux AMI 2018.03.0 Linux AMI is an EBS- and other packages. e: ebs Virtualization 1	SSD Volum ears support.	e Type - ami-09del150731L It provides Linux kernel 4.14 tun 44 Enabled: Yes D Volume Type - ami-0cfb/- supported image. The default in 14 Enabled: Yes	odbcc2 ed for optimal performance on Amazon EC2, systemd 219, GCC 7.3, Glibc 2.26, Binutils 2.29.1, and the latest 4f6db41068ac nage includes AWS command line tools, Python, Ruby, Perl, and Java. The repositories include Docker, PHP, MySQL,	Select 64-bit (x86) Select 64-bit (x86)
	R4 Free t	Red Hat En ed Hat Red Hat Ente tiar eligible Root device typ	tterprise Linux 7.5 rprise Linux version 7 e: ebs Virtualization t	5 (HVM), SS .5 (HVM), EBS ype: hvm EN	D Volume Type - ami-c86c3 9 General Purpose (SSD) Volume 1A Enabled: Yes	M23 Тура	Select 64-bit (x86)

Figure 9.24: Amazon Machine Instance (AMI)

er by:	All instance types 💙	Current	generation 👻	Show/Hide Columns					
Currently selected: t2.small (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 2 GiB memory, EBS only)									
	Family	÷	Туре	vCPUs (i) v	Memory (GiB) -	Instance Storage (GB) (i) -	EBS-Optimized Available (i) 🔹	Network Performance (i) *	IPv6 Support
	General purpose		t2.nano	1	0.5	EBS only	-	Low to Moderate	Yes
	General purpose		t2.micro Free tier eligible	1	1	EBS only	-	Low to Moderate	Yes
	General purpose		t2.small	1	2	EBS only	-	Low to Moderate	Yes
	General purpose		t2.medium	2	4	EBS only	-	Low to Moderate	Yes
	General purpose		t2.large	2	8	EBS only	-	Low to Moderate	Yes
	General purpose		t2.xlarge	4	16	EBS only	-	Moderate	Yes
	General purpose		t2.2xlarge	8	32	EBS only	-	Moderate	Yes
	General purpose		t3.nano	2	0.5	EBS only	Yes	Up to 5 Gigabit	Yes
	General purpose		t3.micro	2	1	EBS only	Yes	Up to 5 Gigabit	Yes
	General purpose		t3.small	2	2	EBS only	Yes	Up to 5 Gigabit	Yes
	General purpose		t3.medium	2	4	EBS only	Yes	Up to 5 Gigabit	Yes
	General purpose		t3.large	2	8	EBS only	Yes	Up to 5 Gigabit	Yes

Figure 9.25: Choosing the instance type on AMI

Ste	Step 7: Review Instance Launch Plasse review your instance launch details. You can go back to edit changes for each section. Click Launch to assign a key pair to your instance and complete the launch process.									
4	Your instance configuration is not eligible for the free usage tier To launch an instance that is eligible for the free usage tier, check your AMI selection, instance type, configuration options, or storage devices. Learn more about free usage fer eligibility and usage restrictions.									
▼ A	AMI Details Edit									
•	Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def15074 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def15074									
	Instance Type	ECUs	vCPUs	Memory (GiB)	Instance Storage (GB)	EBS-Optimized Available	Network Performance		Can motando typo	
	t2.small	Variable	1	2	EBS only	-	Low to Moderate			
▼ S	ecurity Groups								Edit security groups	
s	ecurity group name Description	launch-wia launch-wia	zard-6 zard-6 created 3	2019-05-01T23:24:09.494	+02:00					
	Туре (і)		Protocol (i)		Port Range (i)	Source ()	Description (i)			
	This security group has no rules									
▶ In	stance Details								Edit instance details	
► S	2 Storage Edit storage									
► Ta	aqs								Edit tags	
								Cancel	Previous Launch	

Figure 9.26: The review instance launch screen

Step 6: Configure Security C A security group is a set of firewall rules that con rules that allow unrestricted access to the HTTP Assign a security group:	TOUD trol the traffic for your instance. On this page, yo and HTTPS ports. You can create a new security Create a new security group Select an existing security group	u can add rules to allow specific traffic to reach y group or select from an existing one below. Lea	our instance. For example, if you want to set up a web serv m more about Amazon EC2 security groups.	er and allow Internet traffic to reach your Instance, a	add
Security group name:	launch-wizard-2				
Description:	launch-wizard-2 created 2019-04-13T20:04:0	14.323+02:00			
Туре ()	Protocol (i)	Port Range (i)	Source (i)	Description (i)	
SSH \$	TCP	22	Custom \$ 0.0.0/0	e.g. SSH for Admin Desktop	8
(HTTP \$	TCP	80	Custom \$ 0.0.0.0/0, ::/0	e.g. SSH for Admin Desktop	8
Add Rule Warning Rules with source of 0.0.0.0/0 allow a	all IP addresses to access your instance. We recc	mmend setting security group rules to allow acce	ass from known IP addresses only.		

Figure 9.27: Configure the security group

Laur	nch Status
•	Your instances are now launching The following instance launches have been initiated: I-0d11cc56332fe813a View launch log
0	Get notified of estimated charges Create billing alerts to get an email notification when estimated charges on your AWS bill exceed an amount you define (for example, if you exceed the free usage tier).
How t	to connect to your instances
Your ins Click Vi	stances are launching, and it may take a few minutes until they are in the running state, when they will be ready for you to use. Usage hours on your new instances will start immediately and continue to accrue until you stop or terminate your instances. Iew Instances to monitor your instances' status. Once your instances are in the running state, you can connect to them from the Instances screen. Find out how to connect to your instances.
• How	w to connect to your Linux instance Amazon EC2: User Guide
 Lear 	m about AWS Free Usage Tier Amazon EC2: Discussion Forum
While y	your instances are launching you can also
Crea	ate status check alarms to be notified when these instances fail status checks. (Additional charges may apply)
Crea	ate and attach additional EBS volumes (Additional charges may apply)
Mar	View Instances

Figure 9.28: Launch status on the AWS instance

Figure 9.29: Screenshot for the home endpoint

Q search : i-050b9208dd5c1a0dd									
Name	 Instance ID 	▲ Insta	ance Type	e - Ava	ilability Zone	 Instance Sta 			
	i-050b9208dd	Connect			entral-1b	🥚 running			
		Get Windows	Password	d					
		Create Template From Instance							
		Launch More	Like This						
		Instance Stat	е	•	Start				
		Instance Settings			Stop				
		Image		►	Stop - Hib	ernate			
Instance: i-05	0b9208dd5c1a0dd	Networking		►	Reboot	ute.ama			
		CloudWatch I	Monitoring	〕 ▶	Terminate				
Description	Status Checks	Monitoring	Tags						

Figure 9.30: Stopping the AWS EC2 instance