Lesson 01: Introduction to Natural Language Processing

Human Computer
- [
dh —_—

NLP model

Figure 1.1: Natural language processing

Machine .

Natural Learning

Language [I |
Processing _ Deep .'

Figure 1.2: Venn diagram for natural language processing

Artificial Intelligence

Deep
Machine Learning -
Learning Neural
Networks

Natural
Language
Processing

Fig 1.3: Artificial intelligence and some of its subfields

Natural Language
Processing

Figure 1.4: Application areas of natural language processing

the cities i like most in india are mumbai, bangalore, dharamsala and allahabad.

Figure 1.5: Output for lowercasing with mixed casing in a sentence

["india", "india’, "india’, 'india’]

Figure 1.6: Output for lowercasing with mixed casing of words

With Noise

Without Noise

..sleepy

sleepyl!

fsleepy

sleepy

=rrrrsleepyszes

zazsleepy</a=

Figure 1.7: Output for noise removal

[*sleepy’,

"slespy’,

"sleepy’,

'sleepy’,

"sleepy’]

Figure 1.8: Output for noise removal

Raw form

Canonical form

Spaghetti

Spagetti

Spageti

Spaghetti

Spaghetty

Spagetty

Figure 1.9: Canonical form for incorrect spellings

Raw form

Canonical form

brb

be right back

Figure 1.10: Canonical form for abbreviations

Before stemming

After stemming

Annoying

Annoyed

Annay

Annoys

Figure 1.11: Output for stemming

rawword stem

0 annoving annoy
1 annoys annoy
2 annoyed annoy

i annoy annoy

Figure 1.12: Output of stemming

raw word lemmatized

0 froubling trouble
1 troukled trouble
2 froubles trouble
3 trouble trouble

Figure 1.13: Output of lemmatization

[Ihil_., !!I’ 'my'_, 'I'Iame', |:I--5|J Ithr‘IIJ !.I]

Figure 1.14: Output for the tokenization of words

["hi!", "my name is john.']

Figure 1.15: Output for tokenizing sentences

["weather®, 'really’, "hot', "want', 'go’, "swim']

Figure 1.16: Output after removing stopwords

Indonesia
\ Jakarta

Canada

T Ottawa

India
S T————_ NewDelhi

China

T Beijing
Russia ———________-
Moscow

Figure 1.17: Example for word embeddings

algorithm

Fig 1.18: The CBOW algorithm

|

\@I’
1
=

Fig 1.19: The skip-gram algorithm

this is the summary of the model:
Word2Vec(vocab=12, size=188, alpha=8.825)

Figure 1.20: Output for model summary

this is the vocabulary for our corpus:
["Ariana', 'Grande', 'is', 'a', 'singer’, 'She', 'has', 'been', 'for', 'many', 'years', ‘great']

Figure 1.21: Output for the vocabulary of the corpus

the vector for the word singer:

[3.9150659e-03 2.6659777e-03
1.9977870e-03 3.1204436e-03
-6.4308796e-04 3.0822519e-03
-3.7099270e-03 3.9439583e-03
2.3698520e-03 -7.8547641e-04
-1.67860882-03 1.74174252-03
-1.9871239e-03 2.9489421e-03

1.0298982e-03 -2.7156321e-03
1.20556822-04 1.0450699e-03
2.1972554e-03 5.1480172e-05
6.8276987e-04 7.7137066e-04
6.0383842e-04 4.6370425e-03
2.4216413e-03 3.6545738e-03

-1.2810023e-03 -4.9174053e-04

-3.9743204e-03 -2.7023794e-03 -3.0541950e-04 -1.5724347e-03

-2.1029566e-03 -2.16247542-03
-4.08248652-03 4.6588355e-04

2.1620055e-04 -1.4000515e-03
3.5028579e-03 4.8283348e-03

-2,8737928e-03 -4.55659306e-03 -7.6568732e-04 -3.3311991e-03

3.5790715e-03 4.2424244e-03
1.0030111e-03 -5.2394503e-04
2.6972082e-03 -4.80020759e-03
3.1952575e-05 -8.1621204e-04
-1.7713077e-03 -3.0155748e-03
-2.4637436e-03 3.3779652e-03
-2.4718521e-03 -1.9754141e-03
2.4405334e-03 -3.2013952e-04
2.0586823e-03 4.9897884e-03
1.5563263e-03 3.9063310e-03
-8.7642738e-06 3.9748671e-03
-1.2614765e-03 -8.5018738e-04
4.5014662e-03 4.3258793e-03
-3.9214552e-03 -2.4262110e-03

3.3478225e-03 -7.4140396e-04
5.8383477e-04 -4.8430995e-03

-2.3011414e-03 8.0388715e-04
-3.8127291e-03 -6.7428290e-04

1.7178850e-03 -1.9258332e-03
2.7676420e-03 1.8853768e-03
2.6104036e-03 -2.1335895e-03
3.996186%-03 4.0415102e-03
4.5599152e-03 -1.0976522e-03

-2.9308300e-03 -4.8254002e-03

5.2895391e-04 £.3330121e-04
3.7659388e-03 3.0237564e-03

-4.2659100e-03 4.9081761e-03
-8.1192164e-05 -4.1112076e-03]

Figure 1.22: Vector for the word 'singer’

[('has", ©.13253481686115265),
('been’, ©.12117968459668452),
('for', 8.165181%8771953583),
('singer’, ©.B88586522035828984),
('a', ©.88413773775188788),
('She", 8.888447249459688951)]

Figure 1.23: Word vectors similar to the word 'great’

[({"for", 8.175918682685438232),
('been’, ©.12124449759721758),
('great’, 9.0885865225368208984),
('is"', B.8768381884227829),
('a', 9.83382524511353874),
(‘Ariana’, 8.82957478342516892)]

Figure 1.24: Word vector similar to word 'singer’

[("woman', @.7866706012658177),
("young', ©.7787864197368234),
("spider', @.7728204994207245),
(‘girl', 8.7642560989647581)]

Figure 1.25: Output of word embeddings for 'man’

[('elizabeth’, ©.0298495098532598),
('victoria', ©.86500464526851297),
("mary’, ©.8039493382412337),
("anne’, ©.7667713778457262),
("scotland’, ©.6042531928211478),
("catherine’, 8.6910265819525073),
('consort’, ©.6996798004145204),
("tudor', ©.6686379422061477),
("isabella’, ©.6666968276614551)]

Figure 1.26: Output of word embeddings for 'queen’

[("woman', @.6842043095857239),
("girl", ©.5043484306335449),
("creature’, ©.5730946612358093),
("boy', ©.52045708293426514),
("person’, ©.5135789513587952),
("stranger’, ©.506784568862915),
("beast’, ©.504448652267456),
("god, ©.5037523508071899),
("evil®, ©.4908573525428772),
("thief', ©.4973783493041992)]

Figure 1.27: Output for similar word embeddings

[('mother', ©.7778676612854004),
('‘grandmother', 8.7824118555648884),
('wife', B.6915966438293457)]

Figure 1.28: Output for top three words for 'x'

Lesson 02: Applications of Natural Language Processing

Training Dataset

Number o fBed rooms (Input Feature) Selling Price (Target Output)

1 $10.000

3 ' $46,000 Tralning Supervised
1 Learning Model

4 $28,000

5 $49,000

Number of Bedrooms (Input Feature) Selling Price (Target Output)

1 $10,000
3 $46,000
4 $95,000
3 $49,000

Fig 2.1: Supervised learning

Number Tag Description

1 CC Coordinating conjunction

2 CD Cardinal number

3 DT Determiner

4 EX Existential there

5 W Foreign word

4] IN Preposition or subordinating conjunction
T JJ Adjective

a8 JJR Adjective, comparative

9 JUS Adjective, superlative

10 LS List item marker

1 MD Modal

12 NN Noun, singular or mass

13 NNS Noun, plural

14 MNP Proper noun, singular

15 NNPS Proper noun, plural

16 POT Predeterminer

17 POS Possessive ending

16 FRP Personal pronoun

19 PRP$ Possessive pronoun

20 RB Adverb

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP Particle

24 SYM Symbol

25 TO To

26 UH Interjection

2f VB Verb, base form

26 VBD Verb, past tense

29 VBG Verb, gerund or present participle
30 VEN Verb, past participle

31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner

34 WP Wh-pronoun

35 WP$S Possessive wh-pronoun

36 WRB Wh-adverb

Figure 2.2: POS tags with descriptions

|:|::Iilr 1NNI}I
("enjoy’, 'VBP"),
("playing’, 'VBG"),
('the', 'DTY),
("plano’, 'NNT]

Fig 2.3: Tagged output

NM: noun, common, singular or mass
commaon-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falloff slick wind hyena averride subhumanity
machinist ...

Fig 2.4: Noun details

[("and’, 'CC",
('sol, 'RE),
7,100,
('said’, 'VBD'"),
I::lir.r.llI PNNI};
('going’, "VBG"),
{I.tc"lll '|-|—{::|1)r
(play’, VB,
(the’, ‘DT,
('piana’, 'NN"),
('for', "IN"),
('the’, 'DT"),
{IplaYIf 1NNP}I
("tonight’, 'NN")]

Fig 2.5: Tagged output

and CCOMND CC
so ADV RB

i PRON PRP
said VERB VED
i PRON PRP

‘m VERB VEBEP

going VERB VBG

to PART TO
play VERE VB
the DET DT
pianc MOUN NN
for ADP IN

the DET DT

play NOUN NN
tonight NOUN NN

Figure 2.6: Output for POS tags

andCC soRB iJJ sadVBD iJ 'mVBP goingVBG toTO playVB Noun Phrase forIN Noun Phrase Noun Phrase

the DT piano NN the DT play NN tonight NN

Figure 2.7: Parse tree.

Figure 2.8: Output for chunking.

the beawtiful butterfly butterfly nsubj

the night sky sky pobj

Figure 2.9: Output for chunking with spaCy

5
and CC soRB iJJ saidVBD iJJ 'mVBFP goingVBG toTCO playVB the DT Chink foriM the DT Chink

piano MM play MM tonight MM

Figure 2.10: Output for chinking

Training completed
Accuracy: ©8.8059585861867267

Figure 2.11: Expected accuracy score.

Why Is Diversity Important For Google And India? Sundar Pichal Answers

L

Organization Location Name

Figure 2.12: Example for named entity recognition

5

—

NE visited VBD the DT NE afterIN takingVBG aDT NE flight NN from IN NE

Shubhangi NNP Taj MNP Mahal NMP Spicelet NNP Pune MNP

Figure 2.13: Output for named entity recognition with POS tags

5

e ———
PERSON visited VBD the DT ORGANIZATION afterIN takingVBG a DT ORGANIZATION flight NN from IN GPE

Shubhangi NNP Ta] NP Mahal MMP Spicelet NNP Pune MNP

Figure 2.14: Output with named entities

PERSON

People, including fictional.

NORP

Nationalities or religious or political groups.

FAC

Buildings, airports, highways, bridges, etc.

ORG

Companies, agencies, institutions, etc.

GPE

Countries, cities, states.

LOC

Non-GPE locations, mountain ranges, bodies of water.

PRODUCT

Objects, vehicles, foods, etc. (Not services.)

EVENT

Named hurricanes, battles, wars, sports events, etc.

WORK_OF_ART

Titles of books, songs, etc.

LAW

Named documents made into laws.

LANGUAGE

Any named language.

DATE

Absoclute or relative dates or periods.

TIME

Times smaller than a day.

PERCENT

Percentage, including "%".

MONEY

Monetary values, including unit.

QUANTITY

Measurements, as of weight or distance.

ORDINAL

“first", "second"”, etc.

CARDINAL

Numerals that do not fall under another type.

Spicelet ORG

Pune GPE

Figure 2.15: Categories of spaCy

Figure 2.16: Output for named entity

Shubhangi Hora PERSOM

the Taj Mahal WORK_OF_ART

Spicelet ORG

Pune GPE

Figure 2.17: Output for named entity recognition with spaCy.

=

(PERSON Rudolph/NNP)
(GPE Agnew/NNP)
sfs

55/CD

years/ /NS

old/J]

and,/CC

former/1]
chairman/MN
of/IN
(ORGANIZATION Consolidated/NNP Gold/NNP Fields/NNP)
PLC/NNP

ol

was/VBD

named/ VBN
*_1/-NOME-

a/DT
nonexecutive/J]
director/NN
of/IN

this/DT

(GPE British/313)
industrials/Jl
conglomerate/NN
A

Figure 2.18: Expected output for NER on tagged corpus

Lesson 03: Introduction to Neural Networks

Fig 3.1: Deep Learning as a subfield of Machine Learning

Fig 3.2: Neural Networks as a part of the Deep Learning Approach

Hidden Layers
. Output Layer

inputs outputs

Fig 3.3: A Neural Network with 2 Hidden Layers

Input Layer ! Hidden Layer

Input Layer | Hidden Layer
X, Weights
Wy \Wﬂfihted Sum Output to the
| next node
Xz — . 2 - A
K
Xz /

Fig 3.4: The Weighted Connections of a Neural Network

Figure 3.5: Expression for sigmoid function

Deep Learning
Model

Figure 3.6: Aspects of a deep learning model that impact the output

y=Cc+mx

Figure 3.7: Expression for linear regression

Number of Bedrooms (Input Selling Price (Target Output)
Feature)

1 $10, 000

3 546, 000

4 $98, 000

3 $49, 000

Fig 3.8: Sample Dataset for Linear Regression
n
1 2
MSE =) (v~ f(x)
i

Figure 3.9: Expression for mean squared error function

1

Log Loss = —EZ}H- (log (p(¥:)) + (1 — y))(log (1 — p(¥:)))

Figure 3.10: Expression for log loss function

Loss
Training Dataset Function
1 410,000
s 245,000 Linear Regression

4

5

Model

#08 000

440 000

Fig 3.11: Updating Parameters

T
1
Fw,b) = =% (v = fwx, + b))’
i
Figure 3.12: Expression for gradient of loss function

S = 200, = (v + b)
1

fiow,b) = |9 =
5D =250 — (wx, + b))

db

Figure 3.13: Expression of gradient with partial derivaive of loss function

dff(dw

wW=w— N

* o

Figure 3.14: Expression for learning rate multipled with gradient

df'! db

N |

Figure 3.15: Expression for learning rate multipled with gradient at each step

Small Learning Rate Large Learning Rate

VY

Fig 3.16: Learning Rate

fO) =X (Z(0)))

Figure 3.17: Expression for backpropagation function

Layer (type) Output Shape Param #

dense_1 (Dense) {None, 588) 23588

dense_2 (Dense) {None, 1) cel

Total params: 29,881
Trainable params: 29,881
Mon-trainable params: @

Figure 3.18: Model summary

18/18 [==============================] - @5 135us/step
Accuracy: ©.8999999761531421

Figure 3.19: Expected accuracy score
zalllrza [==============================] - GS 16@”5;5":6"3

Accuracy: 1.@
[1.1526933218334542-87, 1.8]

Figure 3.20: Accuracy score

Lesson 04: Foundations of Convolutional networks

Figure 4.2: Visualization of an image

253
170
127
154

Figure 4.3: Numerical representation of an image

S —

Section One Section Two

]‘_ﬂomgut:

Five

Image
matrix as
inPUt Pooling Pooling
™~ / T r‘
Rectified Feature Map Flatten Fully connected
Figure 4.4: Application of convolution and ReLU operations
-H-‘_"""'--.. "--_._______ ,_..-"'—r
1 104t 6| __ S 3
B HH""-—-_.___‘_:H-L"'::--E::HF ,",'
1 1 0 0 * A7
- — 110 e
—— e .-‘/
— "'-__'__‘-l_‘”‘_-_ '-_‘.F
ﬂ U ‘ﬂ- == __ — -‘-_‘1_"'"'--0._.__'_‘_ 1 __-"'f
1 0 1 0
. . ———1
Input Matrix ® Filter/ Kemel —

Figure 4.5: Filter application to images

Figure 4.6: Image after applying ReLU function

Figure 4.8: Max pool

Feature Map

Under Fitted Good Fit Over Fitted
Figure 4.9: Regularization

Layer (type) Output Shape Param #
conv2d7;=(Cor=1\=r2D) (Non:f 26T=26,=Z4) - ==640== -
convzd 6 (Conv2D) (None, 24, 24, 32) 18464
max pooling2d 3 (MaxPooling2 (None, 12, 12, 32) 0
dropout 3 (Dropout) (None, 12, 12, 32) 0
flatten 3 (Flatten) (None, 4608) 0
dense 2 (Dense) (None, 10) 46090

Total params:
Trainable params:
Non-trainable params:

exp(¥;)

softmax(v;) = = e
J

Figure 4.10: Model summary

Figure 4.12: Expression to calculate probability

H{v',v) = —Z . v'log(softmax(v;))

where i = is the class 0,1.....9

Figure 4.13: Expression to calculate loss

Figure 4.14: Cross-entropy loss vs. predicted probability

Probability

Calculation of
probabilities for each
output class by using
softmax function.

Apply aloss function
to quantify how well

Train on 60000 samples,
Epoch 1/12
60000/60000 [

the probabilities
predict the actual
class, through the
categorical cross
entropy loss function

Update the weights by
performing back
propagation through
gradient descent.

Figure 4.15: Steps for task of classification

array([[0.,

1.,
0.,
0.,
0.,

(1.,
(0.,
(0.,

0.,
0.,
0.,
1.,

-1,
-1,
-1,
-11)

o = O o

Figure 4.16: Array output

validate on 10000 samples

acc: 0.3130
Epoch 2/12
60000/60000 [

] -

c: 0.3884
Epoch 3/12
60000/60000 [

c: 0.3940
Epoch 4/12
60000/60000 [

c: 0.4033

209s 3ms/step -

197s 3ms/step -

199s 3ms/step =

227s 4ms/step -

loss:

loss:

loss:

loss:

11.8406 - acc: 0.2646 - val_loss:

9.8795 - acc: 0.3867 - val_loss:

9.8271 - acc: 0.3901 - val_loss:

11.0491 - val_

9.8567 - val_ac

9.7647 - val ac

9.6686 - acc: 0.4000 - val_loss: 9.6117 - val_ac

Figure 4.17: Training the model

Test loss:

6.17629175567627

Test accuracy: 8.6169

.‘_____

Figure 4.19: One-dimensional convolution

Length
CsomeTex T,
H N

Cayanbz alicn

/
L it

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

Ilr/

Figure 4.20: CNN with 6 convolutional and 3 fully connected layers

Test loss: 2.22798478276150864
Test accuracy: ©.43232413178984863

Figure 4.21: Accuracy score

Wall Painting

Table

Figure 4.23: Object detection

A puppyin a cup A dog wearing A white puppy sitting
sunglasses on a sofa chair

Figure 4.24: Image captioning

forward /inference

<

backward /learning

(00 21

P 3%5« 3%5: ,Lc)@

Figure 4.25: Semantic segmentation

image

convl

pooll conv2 pool2 conv3 pool3 conv4d poold conv) pool5 conv6-T

2x convT

poold ’_I_

4x conv7

2x poold [[]

pool3 [[] ||

Figure 4.26: Sample architecture of semantic segmentation

Training Accuracy: 1.8868
Testing Accuracy: 8.8167

Figure 4.27: Accuracy scores

32x upsampled
prediction (FCN-32s)

16x upsampled
prediction (FCN-16s)

8x upsampled
i FCN-8s)

Lesson 05: Recurrent Neural Networks

Input
Transforms
state /T‘l_ -7
2/

Figure 5.2: SimpleRNN structure

Figure 5.3: RNN structure

yr = F(xy, W)

Figure 5.4: Expression for the output of an RNN

Ut = F (T4, 1, Te—2, "+, Te—ty, W)

Figure 5.5: Expression for the output of an RNN at time t

Figure 5.6: Folded model of an RNN

t-2

Figure 5.8: Unfolded RNN

FF NN R NN
Y, Y,
W W
Yy y
; s(O,
WX WX
X, X,

Yy, = F()‘(t,wx,wy) y= F()_ct,im,ii_z,....wx,ws,wy)

Figure 5.9: Differences between FFNNs and RNNs

hy=x,.w, =X, W, +S,_ W,
;th + (it— lwx’gt—Zws) Wy
yi=h.w, V=S Wy
Figure 5.10: Output expressions for FFNNs and RNNs

one to many

many to one many to many

many to many

Figure 5.11 Different architectures of RNNs

Figure 5.12: Stacked RNNs

=W + AW

new pi'(’.W‘DHS

Figure 5.13: Expression for weight update

AW :—aa—E
ow

Figure 5.14 Partial derivative of error with regards to weight

EI:(JT_:T)
Yy
JdE,
Y oow,
_ ~ JE,
St St Ws b
W
JE,
VVx
oW,

Figure 5.15: Loss function

E, = (ds *J"g)z

Figure 5.16 Loss at time t=3

Figure 5.18: Back propagation of loss through weight matrix Wy

oE, COE, Oy,
oW, oy, oW,

Figure 5.19: Expression for weight matrix Wy

(]E‘ 0y, ();]

dy, ds, dw,

Figure 5.20:

0E; dy; dsy 0s,

dy; s, ds, 0w,

Figure 5.21: Back propagation of loss through weight matrix Ws with respect to S2

0E, dy; dsy ds, 0s,

dy; sy 0ds, ds; 0w,

Figure 5.22: Back propagation of loss through weight matrix Ws with respect to S:

dE; dy; 0ds; 0s,

OE; dy; sy 0s, 0w,
oW, _ _ _
0E; dy; 0ds; ds,
+ . . :
dy; 0sy 08, Jdw
. 0E; dy; ds; ds, 0s

dys ds; 0s, O0s; 0w,

Figure 5.23: Sum of all derivatives of error with respect to Ws at t=3

OEny &4 0EN Odyn OS,

OW, = oyy 0S, oW,

Figure 5.24: General expression for the derivative of error with respect to Ws

OE; dy, Os,

dy; sy ow,

Figure 5.25: Back propagation of loss through weight matrix Wx with respect to S,

6E3 dy3 683 08,

dy, sy 0ds, Ow,

Figure 5.26: Back propagation of loss through weight matrix Wx with respectto S;

AE; dy; dsy ds, ds,
dyy dsy ds, ds, aw,

Figure 5.27: Back propagation of loss through weight matrix Wx with respect to S;

0E; dy; Os; Os,
0E; ay3.as3'asz-dwx
ow,_ -
. 61:23 | d¥3 | (3?3' 05,
dy; 083 0s, OW,

. O dy; 0s; 0ds, 0s,

dyy dsy ds, ds; OW,

Figure 5.28: Sum of all derivatives of error with respect to Wx at t=3

0E N 0Ey

0YN

oS,

oW, =1 9yn

oS,

OW

Figure 5.29: General expression of derivative of error with respect to Wx

Layer (type) Output Shape Param #
simple_rnn_1 (SimpleRNN) (None, 64) 10560
dense_1 (Dense) {None, 64) 4168
dense_2 (Dense) {None, 1&8) 6588

Total params: 21,228
Trainable params: 21,228
Mon-trainable params: @

Figure 5.30: Model summary for model layers

Layer (type) Output Shape Param #

simple rnn_3 (SimpleRNN) {None, 18, B64) 185648
dense 5 (Dense) {None, 18, B64) 4168
dense 6 (Dense) {None, 18, 18a) 6588

Total params: 21,228
Trainable params: 21,228
Mon-trainable params: @

Figure 5.31: Model summary of sequence-returning model

Layer (type) Output Shape Param #
simple_rnn 5 (SimpleRiN) (None, 1000, 64) 1esee
dense_8 (Dense) {None, 1888, 64) 4168
dense_18 (Dense) (None, 1888, 18@) 6588

Total params: 21,228
Trainable params: 21,228
Non-trainable params: @

Figure 5.32: Model summary for timesteps

batch 1 batch 2 batch 1 batch N
. State) . .
I , i+1 i+2 o |+N71
returned
J » j+1 I —> - — - - — N,
k k+1 k+2 k+N
> > —>----—

Figure 5.33 Batch formations for stateful RNN

115 + 0
110 O
105 ~
100 - T
95 4
T I

stateful_batch12 stateless_batchl2

Figure 5.34: Box and whisker plot for stateful vs stateless

Paper 5 is predicted to have been written by Author 4, 6142 to 5612
Paper 4 is predicted to have been written by Author B, 5215 to 45583
Paper 1 is predicted to have been written by Author B, 13924 to 6358
Paper 3 is predicted to have been written by Author B, 7628 to 5764
Paper 2 is predicted to have been written by Author B, 12848 to 6386

Figure 5.35: Output for author attribution

Lesson 06: Gated Recurrent Units (GRUS)

IF‘t+1

e

Xeq X LS

Figure 6.1: A basic RNN

Figure 6.2: A simple neural network

‘ grad(C, b[1]) = d(z[1]) * w[2] = d(z[2]) * w(3] * d(z[3]) * w[4] * d{z[4]) * grad(C, a [4]) ‘

Figure 6.3: Gradient calculation using chain rule

b[1] = b[1] + lambda*grad(C, b[1])

Figure 6.4: Updating value of b[1] using the gradient

Without Gradient Clipping With Gradient Clipping

Figure 6.5: Clipping gradients to combat the explosion of gradients

h,
ht.i h:

B

%
Figure 6.6: The full GRU structure
i
+ o '._\._ _f_l tanh
'plus’ operation 'sigmoid’ function 'Hadamard product’ operation 'tanh’ function

Figure 6.7: The meanings of the different signs in the GRU diagram

hlt] = hadamard{z[t], h[t-1]} + hadamard{(1-z[t]) * h_candidate[t]}

Figure 6.8: The expression for the activation function for the next layer in terms of the candidate
activation function

Z[t] = sigmoid(W_z * x[t] + U_z * h[t-1])

Figure 6.9: The expression for calculating the update gate

Figure 6.10: The update gate in a full GRU diagram

x_t
array([[-0.93576943],
[-0.26788808],
[0.53035547],
[-0.69166075],
[-0.39675353]])

’h_prev
array([[0.90085595],
[-0.68372786],
[-0.12289023]1])
[WLZ
array([[1.62434536, -0.61175641, -0.52817175, -1.07296862, 0.86540763],
[-2.3015387 , 1.74481176, -0.7612069 , 0.3190391 , -0.24937038],
[1.46210794, -2.06014071, -0.3224172 , -0.38405435, 1.13376944]])
[U_z
array([[-1.09989127, -0.17242821, -0.87785842],
[0.04221375, 0.58281521, -1.10061918],
[1.14472371, 0.90159072, 0.50249434]1])

Figure 6.11: A screenshot displaying the weights and activation functions

Mt] = sigmoid(W_r * x{t] + U_r * h[t-1])

Figure 6.12: The expression for calculating the reset gate

Figure 6.13: The reset gate

W_r
array([[-0.6871727 , -0.84520564, -0.67124613, -0.0126646 , -1.11731035],

[0.2344157 , 1.65980218, 0.74204416, -0.19183555, -0.88762896],

[-0.74715829, 1.6924546 , 0.05080775, -0.63699565, 0.19091548]])
Ur
array([[2.10025514, 0.12015895, 0.61720311],

[0.30017032, -0.35224985, -1.1425182],

[-0.34934272, -0.20889423, 0.58662319]1])

Figure 6.14: A screenshot displaying the values of the weights

r t

array([[0-93699927],
[0.70392511],
[0.5971474 1])

Figure 6.15: A screenshot displaying the r_t output

h_candidate[t] = tanh(W * x[t] + U * hadamard{rt], h[t-1]})

Figure 6.16: The expression for calculating the candidate activation function

Figure 6.17: The candidate activation function

W

array ([

v

array ([

[o.
[1.
[1.

[-0.
[o.
[o.

83898341, 0.93110208, 0.28558733, 0.88514116, -0.75439794],
25286816, 0.51292982, -0.29809284, 0.48851815, -0.07557171),
13162939, 1.51981682, 2.18557541, -1.39649634, -1.44411381]])

50446586, 0.16003707, 0.87616892],
31563495, -2.02220122, -0.30620401],
82797464, 0.23009474, 0.76201118]])

Figure 6.18: A screenshot displaying how the W and U weights are defined

h candidate

array([[-0.94284959],
[-0.47277196],
[0.9429634 1])

Figure 6.19: A screenshot displaying the value of h_candidate

h new

array([[-0.72356608],
[-0.62428489],
[0.61671542]])

Figure 6.20: A screenshot displaying the value of the current activation function

Number of train sequences: 25000
Number of test sequences: 25000
train data shape: (25000, 500)
test data shape: (25000, 500)

Figure 6.21: A screenshot showing the train and test sequences

Train on 20000 samples, validate on 5000 samples

Epoch 1/10

20000/20000 [] - 53s 3ms/step - loss: 0.5382 - acc: 0.7286 - val loss: 0.4796 -
c: 0.7620

Epoch 2/10

20000/20000 [] - 535 3ms/step - loss: 0.3120 - acc: 0.8701 - val loss: 0.3218 -
c: 0.8732

Epoch 3/10

20000/20000 [] - 51s 3ms/step - loss: 0.2503 - acc: 0.9025 - val loss: 0.3644 -
c: 0.8720
Epoch 4/10
20000/20000
c: 0.8740
Epoch 5/10
20000/20000
c: 0.8792
Epoch 6/10
20000/20000 [] - 51s 3ms/step - loss: 0.1747 - acc: 0.9350 - val_loss: 0.3299 -
c: 0.8710
Epoch 7/10
20000/20000
c: 0.8500
Epoch 8/10
20000/20000
c: 0.8792
Epoch 9/10
20000/20000
c: 0.8308
Epoch 10/10

20000/20000
~e N RARTY

] - 51s 3ms/step - loss: 0.2187 - acc: 0.9184 - val_loss: 0.3092 -

—
1

51s 3ms/step - loss: 0.1937 - acc: 0.9290 - val_loss: 0.3130 -

—
I

525 3ms/step - loss: 0.1600 - acc: 0,9434 - val loss: 0.3599 -

53s 3ms/step - loss: 0.1498 - acc: 0.9458 - val_loss: 0.3378 -

1 - 53s 3ms/step - loss: 0.1389 - acc: 0.9512 - val_loss: 0.5470 -

—
1

53s 3ms/step - loss: 0.1284 - acc: 0.9541 - val_loss: 0.3599 -

Figure 6.22: A screenshot displaying the variable history output of the training model

val ac

val_ac

val_ac

val_ac

val_ac

val_ac

val ac

val_ac

val_ac

val ac

Training and validation accuracy

09549 & Training acc . . L] .

— Validation acc . .

L

0.90 .
(.85 -
0.80 -
0.75 4

L

2 H 6 8 10

Figure 6.23: The training and validation accuracy for the sentiment classification task

Training and validation loss

L]
0.5 -
0.4 -
03 - .

L]
L]
0.2 | ®
& Training loss * .
— Validation loss . [] .
2 4 6 8 10

Figure 6.24: The training and validation loss for the sentiment classification task

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,

But as the riper should by time decease,
His tender heir might bear his mem

Figure 6.25: A screenshot of THE SONNETS

'"\n\nFrom fairest creatures we desire incre'
'rom fairest creatures we desire increase',

fairest creatures we desire increase, \nT'

'irest creatures we desire increase,\nThat'
'st creatures we desire increase,\nThat th'
'creatures we desire increase, \nThat there'

'atures we desire increase,\nThat thereby

'res we desire increase,\nThat thereby bea'

we desire increase,\nThat thereby beauty'
desire increase,\nThat thereby beauty's

n

"sire increase,\nThat thereby beauty's ros"
"e increase,\nThat thereby beauty's rose m"
"ncrease, \nThat thereby beauty's rose migh"
"ease,\nThat thereby beauty's rose might n"
"e,\nThat thereby beauty's rose might neve"
"That thereby beauty's rose might never 4",
"t thereby beauty's rose might never die, ",

Epoch 1/10
31327/31327
Epoch 2/10
31327/31327
Epoch 3/10
31327/31327
Epoch 4/10
31327/31327
Epoch 5/10
31327/31327
Epoch 6/10
31327/31327
Epoch 7/10
31327/31327
Epoch 8/10
31327/31327
Epoch 9/10
31327/31327
Epoch 10/10
31327/31327

Figure 6.26: A screenshot of the training sequences

1 - 12s
] - 11s
] - 1l1s
1 - 12s
1] - 1l1s
] - 11s
] - 12s
1] - 11s
1 - 1l1s
] - 11s

374us/step
335us/step
339us/step
372us/step
353us/step
341lus/step
382us/step
346us/step
354us/step

356us/step

Figure 6.27: A screenshot displaying epochs

r

r

r

r

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.2844

.8985

.7675

.6757

.5984

.5479

.5083

.4803

.4648

.4428

' thou viewest,\nNow is the time that faced padince thy fete,\njevery bnuping griats I have liking dispictreessedg.\n
\nThy such thy sombeliner h'

Figure 6.28: A screenshot displaying the output of the generated poem sequence

Lesson 07: Long Short-Term Memory (LSTM)

® @, ®
t 1

A
a I O g ™
—> s —>
A A

& &)

Figure 7.1: The repeating module in a standard RNN
T A
\
CEanh>
o
- 4

Ac | b
Q)

- > -+

T
&

)

> md

Figure 7.2: The LSTM unit

>

Layer Operation Transfer Concatenate Copy

L

Neural Network Pointwise Vector

Figure 7.3: Notations used in the model

Figure 7.4: Cell state

f[t]=sigmoid (w_{*x[t] + U_{f*h[t—1])

Figure 7.5: Expression for the forget gate

fi

Figure 7.6: The forget gate

h prev

array([[1.76405235],
[0.40015721],
[0.9787379811)

X
array([[2.2408932],
[1.86755799],
[-0.97727788],
[0.95008842],
[-0.1513572111])
Figure 7.7: Output for the previous state, 'h_prev,' and the current input, 'x'
W f

array([[-0.10321885, 0.4105985 , 0.14404357, 1.45427351,
0.761037731,

[0.12167502, 0.44386323, 0.33367433, 1.49407907, -
0.205158261,

[0.3130677 , -0.85409574, -2.55298982, 0.6536186 ,
0.8644362 1])

U f

array([[-0.74216502, 2.26975462, -1.45436567],
[0.04575852, -0.18718385, 1.53277921],
[1.46935877, 0.15494743, 0.37816252]])

[

Figure 7.8: Output of the matrix values

f

array([[0.45930054],
[0.97661676],
[0.99403442]])

Figure 7.9: Output of the forget gate, f[t]

C_candidate=tanh (W_c*h[t— 1]+ U_c *x]t])

Figure 7.10: Expression for candidate cell state

Figure 7.11: Input gate and candidate state
i[t]=sigmoid (W_i*x[t] + U_i*h[t— 1])

Figure 7.12: Expression for the input gate value

W i

array([[-0.88778575,
1.23029068],
[1.20237985,
1.42001794],
[-1.70627019,
1.2527953611])

U i

array([[0.77749036,
[-0.89546656,
[-1.18063218,

-1.

-0

1.

-1.

0

-0.

98079647, -0
.38732682, -0
9507754 , -0
61389785, -0
.3869025 , -0
02818223, 0

.34791215,
.30230275,

.50965218,

.21274028],
.510805147,
.428331877]]

0.15634897,
-1.04855297,

-0.4380743 ,

)

Figure 7.13: Screenshot of values of matrices for candidate cell state and input gate

i

array([[0.00762368],
[0.39184172],
[0.17027909]1])

Figure 7.14:

W

C

array([[0.06651722,
0.67246045],
[-0.35955316,
0.40178094],
[-1.63019835,
0.7290905611])

9)

C

array([[0.12898291,
[0.40234164,
[-0.57884966,

1
o

1
-0.
-0.

Screenshot of output of input gate

.3024719 , -0.
.81314628, -1
.46278226, -0.
.13940068, -1
68481009, -0

31155253, O

634322009,

.7262826 ,

90729836,

.23482582],
.87079715],
.056165347]1])

-0.36274117,

0.17742614,

0.0519454 ,

Figure 7.15: Screenshot for values of matrices W_cand U_c

c_candidate

array([[0.51233992],
[-0.67747899],
[-0.99555958]11])

Figure 7.16: Screenshot of the candidate cell state
C[t]=hadamard(f[t], C[t-1]) + hadamard(i[t], C_candidate[t])

Figure 7.17: Expression for cell state update

.ﬁ %{"'E
Ci

Figure 7.18: Updated cell state

C_new

array([[-0.53124803],
[0.61429771],
[0.29336152]])

Figure 7.19: Screenshot for output of updated cell state

o[t] = sigmoid(W_o*x[t] + U_o*h[t-1])

Figure 7.20: Expression for output gate.

hy

W o

array([[-1.16514984,
1.48825219],
[1.89588918,
1.05445173],
[-0.40317695,
0.3563664]])

U o

array([[0.70657317,
[0.12691209,
[-1.34775906,

Figure 7.21: Output gate and current activation

=

-90082649,
.17877957,

.22244507,

-01050002,
.270485

1.

1
0

46566244, -1.53624369,

.20827498, 0.97663904,

78587049],

.8831507],
.9693967111])

Figure 7.22: Screenshot for output of matrices W_o and U_o

o

array([[-0.06989015],
[0.99999957],
[0.11232103]])

Figure 7.23: Screenshot of the value of the output gate

h[t] = hadamard(o[t], tanh (C[t]))
Figure 7.24: Expression to calculate the value of the next activation

h new

array([[-0.04695679],
[0.12468345],
[0.07479682]])

Figure 7.25: Screenshot for the current timestep activation

df.head()

vi v2 Unnamed: Unnamed: Unnamed:

2 3 4

0 ham Go until jurong point, crazy.. Available only NaN NaN NaN
1 ham Ok lar... Joking wif u oni... NaN NaN NaN
2 spam Free entry in 2 a wkly comp to win FAﬁr?:p NaN NaN NaN
3 ham U dun say so early hor... Uc already;;l;n NaN NaN NaN
0 e Nah | don't think he goes to usf, he;i:é)es NaN NaN NaN

Figure 7.26: Screenshot of the output for spam classification

df.head

vi v2
0 ham Go until jurong point, crazy.. Available only ...
1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...
3 ham U dun say so early hor... U c already then say...
4

ham Nah | don't think he goes to usf, he lives aro...

Figure 7.27: Screenshot for columns with text and labels

df["v1"].value counts()

ham 4825
spam 747
Name: v1, dtype: inté64

Figure 7.28: Screenshot for label distribution

X

array(['Go until jurong point, crazy.. Available only in bugi
s n great world la e buffet... Cine there got amore wat...',

'Ok lar... Joking wif u oni..."',

"Free entry in 2 a wkly comp to win FA Cup final tkts
21lst May 2005. Text FA to 87121 to receive entry question(std
txt rate)T&C's apply 084528100750overl8's",

..., 'Pity, * was in mood for that. So...any other sug
gestions?',

"The guy did some bitching but I acted like i'd be int
erested in buying something else next week and he gave it to
us for free",

'Rofl. Its true to its name'], dtype=object)

Figure 7.29: Screenshot for output X

Y

array([o, o, 1, ..., 0, 0, 01)

Figure 7.30: Screenshot for output Y

In [24]: text tokenized

Out[24]: [[50, 64, 8, 89, 67, 58],
[46, 6],

(47, 8, 19, 4, 2, 71, 2, 2, 731,

[6, 23, 6, 571,

[1, 98, 69, 2, 69],

(67, 21, 7, 38, 87, 55, 3, 44, 12, 14, 85, 46, 2, 68, 2],
11, 9, 25, 55, 2, 36, 10, 10, 55],

(72, 13, 72, 13, 12, 51, 2, 131,

(72, 4, 3, 17, 2, 2, 16, 64],

[13, 96, 26, 6, 81, 2, 2, 5, 36, 12, 47, 16, 5, 96, 47, 18],
(3o, 32, 77, 7, 1, 98, 70, 2, 80, 40, 93, 88],

[2, 48, 2, 73, 7, 68, 2, 65, 92, 421,

(3, 17, 4, 47, 8, 91, 73, 5, 2, 381,

(12, s, 2, 3, 12, 40, 1, 1, 97, 13, 12, 7, 33, 11, 3, 17, 7,
4, 29, 517,

(1, 17, 4, 18, 36, 33],

(2, 13, 5, 8, 5, 73, 26, 89],

[93, 301,

[6, 49, 19, 1, 69, 1],

r2A [~ ' [~ K11

Figure 7.31: Screenshot for the output of tokenized values

sequences

array([[0, o, O0, ..., 89, 67, 58],
[6, o, 0, ..., O, 46, 6],
[o, o0, 0, ..., 2, 2, 731,

e,
[0, O, O, , 12, 20, 23],
[0, O, 0, ..., 2, 12, 471,
[0, O, O, ..., 61, 2, 61]], dtype=int32)

Figure 7.32: Screenshot for padded sequences

model.fit(sequences,Y,batch size=128,epochs=10,

validation split=0.2

Train on 4457 samples, validate on 1115 samples

Epoch 1/10

4457/4457 [
0.4885

loss:
00
Epoch 2/10

4457/4457 [==
0.3425

loss:
71
Epoch 3/10

4457/4457 [==
0.2028

loss:
34
Epoch 4/10

4457/4457 [==
0.1348

loss:
16
Epoch 5/10

4457/4457 [==
0.1157

loss:
78
Epoch 6/10
4457/4457
loss:
14
Epoch 7/10
4457/4457
loss:
78
Epoch 8/10

4457/4457 [==
0.0955

loss:
96

0.1061

0.0998

acc: 0.8548 - val loss: 0.3700 -
acc: 0.8652 - val loss: 0.2649 -
== = =] - 2s
acc: 0.9226 - val loss: 0.1489 -
== = =] - ZS
acc: 0.9547 - val loss: 0.1271 -
== = =] - ZS
acc: 0.9605 - val loss: 0.1073 -
== = =] - 25
acc: 0.9632 - val loss: 0.1027 -
acc: 0.9657 - val loss: 0.1046 -
acc: 0.9672 - val loss: 0.1004 -

539us/step -

val acc: 0.

374us/step

val acc: 0.

38lus/step

val acc: 0.

367us/step

val acc: 0.

404us/step

val acc: 0.

368us/step

val acc: 0.

371lus/step

val acc: 0.

372us/step

val acc: 0.

Figure 7.33: Screenshot of model fitting to 10 epochs

model.predict(test sequences matrix

array([[0.96648586]], dtype=float32)

Figure 7.34: Screenshot of the output of model prediction

87

95

95

95

95

95

-

array ([[0.878118]], dtype=floatil)

Figure 7.35: Output for mail category prediction

mdchte

Ich _END
| 'y (TARGET DATA EMBEDDINGS |
LETM ERCODER 1 of target language) i
cEuL A A A ' i

loss function = categorical cross pntropy
LETM DECODER

CELL

SOFTMAX
. LAYER
decoder cutputs
c-finad !
S 4 @ [Coeseestoosc — o o e e ettty
ENCODER . . ! DECODER
""""" ! —» e ey P 1 > —»l | TTTTTTTTTTTT
m 1 s t
encoder Inputs decoder Inputs

| EMBEDDINGS : [j : E“::'E:'D;:L"‘Gs -
] for source i .
. language [+ language !

T

| would swimming BEGIN_ Ich méchte gehen END

Figure 7.36: Neural translation model

lines_to_use

['Hi.\tHallo!',
"Hi.\tGriiB Gott!',
'Run!\tLauf!',
'Wow! \tPotzdonner!',
'Wow! \tDonnerwetter!',
'Fire!\tFeuer!',
'Help!\tHilfe!',
'Help!\tZu HUlf!',
'Stop!\tStopp!"',
'Wait!\tWarte!',
'Go on.\tMach weiter.',
'Hello!\tHallo!',
'I ran.\tIch rannte.',
'I see.\tIch verstehe.',
'I see.\tAha.',
'I try.\tIch probiere es.',
'I won!\tIch hab gewonnen!',

Figure 7.37: Screenshot for the English-to-German translation of sentence pairs

input_ texts

['Hi.',
'Hi.',
'Run!’',
'Wow! ',
"Wow! ',
'Fire!l',
'Help!',
'Help!',
'Stop! "',
'Wait!',
'Go on.',
'Hello!',
'I ran.',
'I see.',
'I see.',
'T try.',
'I won!',
'I won!',
'Smile.',
'Chasral'

target texts

['BEGIN Hallo! END',
'BEGIN GriiB Gott! END',
'BEGIN Lauf! END',
'"BEGIN _Potzdonner! END',
'BEGIN Donnerwetter! END',
'BEGIN Feuer! END',
'BEGIN Hilfe! END',
'BEGIN Zu Hiilf! END',
'BEGIN_ Stopp! _END',
'BEGIN Warte! END',
'BEGIN Mach weiter. END',

I~ vrar T mare |

Figure 7.38: Screenshot for input and output texts after mapping

input words

"LOOk, "o ,

"aah. ,

Sy,

[

.
-

AL,
'ATM? ',
'AWOL. ',
'Abandon’,
'About’',
'Act’',
'Add’,
'Admission’',
'AfFt+ar'

wl\)lil

target_words

[""Schau!"',
's. 'y,

vy,

"'ne",

l"'

|_|'

r
1
r

'Abend'’',
'Abend! ',
'Abend?’',
'Abendbrot’',

P AL~ Al e~ v

") o

Figure 7.39: Screenshot for input text and target words

input token index

{

=
o)
)
~
o

~ ~ ~

-

~l
-

-

= \O 0 e O U1 & WKN
-

-0 = O~

= -

o
H
=
) ee
= =
[\

o
=
o
[

: 13,
'Abandon': 14,
"About': 15,
'Act': 16,
'Add': 17,
'Admission': 18,
'Aftar'e 10Q

target token index

{'"Schau!"': 0,

's.': 1,
'g':

ne

3,

r

2
4
Sy
6
7

-~

Figure 7.40

: Screenshot for output of integer index for each token

encoder input data

array([[283., 0., 0., ..., 0., 0.,
[283., 0., 0., ..., 0., 0.,
[505., 0., 0., ..., 0., 0.,
[696., 3001., 4502., ..., 0., 0.,
[696., 3001., 4682., ..., 0., 0.,
[696., 3004., 3008., ..., 0., 0.,
e=float32)

decoder input data

array([[175., 1172., 3665., ..., 0., 0.,
[175., 1140., 1113., ..., 0., 0.,
[175., 1706., 3665., ..., 0., 0.,
ceay
[175., 3405., 8432., ..., 0., 0.,
[175., 3405., 6239., ..., 0., 0.,
[175., 3405., 6239., ..., 0., 0.,

e=float32)

decoder target data

array([rro., 0., 0., ..., 0., 0., 0.7,
(6., 0., 0., ..., 0., 0., 0.7,
(6., 0., 0., ..., 0., 0., 0.7,
ceay
[0., 0., 0., «v., 0., 0., 0.1,
[0., 0., 0., «v., 0., 0., 0.1,
[0., 0., 0., «e., 0., 0., 0.11,

[[0., O., 0., «.., 0., 0., 0.1,
[0., 0., Ou, weu., O., 0., 0.1,

Figure 7.41: Screenshot of matrix population

.11, dtyp

0.1,
0.1,

0.11, dtyp

Layer (type)
Connected to

Output Shape Param #

input 1 (InputLayer) (None, None) 0
input 2 (InputLayer) (None, None) 0
embedding 1 (Embedding) (None, None, 50) 286200

input 1[0][0]

embedding 2 (Embedding) (None, None, 50) 456300

input 2[0][0]

Istm 1 (LSTM)
embedding 1[0]

[(None, 50), (None, 20200
[0]

lstm 2 (LSTM)
embedding 2[0]

Istm 1[0][1]

Istm 1[0][2]

[(None, None, 50), (20200
[0]

dense 1 (Dense

) (None, None, 9126) 465426

Total params:

1,248,326

Trainable params: 1,248,326
Non-trainable params: 0

Figure 7.42: Screenshot of model summary

Train on 19000
Epoch 1/20

samples,

validate on 1000

19000/19000 [

- loss: 1.6492
0674
Epoch 2/20

- acc:

0.

19000/19000 [

- loss: 1.5174
0822
Epoch 3/20

- acc:

.0908

19000/19000 [
- loss: 1.4060
1065

Epoch 4/20

- acec:

.1040

19000/19000 [
- loss: 1.3343
1100

Epoch 5/20

- acc:

.1157

19000/19000 [
- loss: 1.2860
1197

Epoch 6/20

- acc:

.1212

19000/19000 [

- loss: 1.2510
1145
Epoch 7/20

- acc:

.1241

19000/19000 [

1.

1.

1.

1.

1.

1.

samples

] - 310s léms/step
8068 - val acc: 0.

] - 303s léms/step
6923 - val acc: 0.

] - 304s léms/step
6107 - val acc: 0.

] - 292s 15ms/step
5683 - val acc: 0.

] - 292s 15ms/step
5299 - val acc: 0.

] - 291s 15ms/step
5037 - val _acc: 0.

] - 291s 15ms/step

Figure 7.43: Screenshot of model fitting with 20 epochs

reverse input word index

= = W oo g0 U & W

W RN se s ss s s s e

o

o
Ul
LL]

16:
17:
18:
19:
20:
21:
22:

! 1
3,
1 1
r r
' 1

=) ss @

A',

'A.',

"ATM? ',
'AWOL. ',
'Abandon’',
'About’',
'Act',
'Add’,
'"Admission’',
'After’',
"Aim. "',
"Ain't",
'Air'.

reverse target word index

{0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

|||Schau1u|'
|$-|’

|%|’

neu’

r r
1 1

1o

'"Abend’',
'Abend!’,
'Abend?’,
'Abendbrot’',

Figure 7.44

: Screenshot of dictionary values

In [122]:

In [123]:

In [124]:

Out[l24]:

text to_translate = "Where is my car?"

encoder input to translate = np.zeros(
(1, max_input seq length),
dtype='float32")

for t, word in enumerate(text to_translate.split()):

AnAndayr Tinrmiidt A Fvanaladarn +1 = dmnnriid+ +FAlrAan inAdavlinrAarAl

decode sequence(encoder input to translate)
' Wo ist mein Auto? END'

Figure 7.45: Screenshot of English-to-German translator

" Get a lot. END'

Figure 7.46: Output for French to English translator model

Lesson 08: State-of-the-Art Natural Language Processing

Er liebt zu schwimmen

Softmax !

He loved to swim

Figure 8.1: Neural language translation model

The The
animal_ animal_
could_ could_

not_
walk_
on_ on_
the the_
street_

because because

it_ it_
- was_ was_
badly_ badly
injured_ injured_

Figure 8.2: An example of an attention mechanism

Er liebt

Decoder'

NULL Er

He loved to swim

Figure 8.3: An attention mechanism model
User Input Mormalized Date
3-May-79 5/3M1479
5-Apr-09 5/5/2009
21th of August 2016 8/21/2016
Tue 10 Jul 2007 7110/2007
Figure 8.4: Table for date normalization

context[t] = dot(H, alpha[t])

Figure 8.5: Expression for the context vector

context|t]
A

alpha[1 alphal2] alpha[T]

h1 h2 hT
Figure 8.6: Determination of attention to inputs
context[t]
9
hi h2 hT
alpha[1] alpha[2] alpha[T]
Softmax
Dense Dense Dense
[S_prev; h1] [S_prev; h2] [S_prev; hT]

Figure 8.7: The calculation of alpha

m = 10000
dataset, human vocab, machine vocab, inv_machine vocab = load dataset(m)

100% | IENNENNNNNNN | 10000/10000 [00:00<00:00, 23983.69it/s]

dataset

[('9 may 1998', '1998-05-09'),

('10.09.70', '1970-09-10"),

('4/28/90', '1990-04-28"),

('thursday january 26 1995', '1995-01-26'),
('monday march 7 1983', '1983-03-07'"),

Figure 8.8: Screenshot displaying variable values

human vocab

O
..

12,
's 13,
14,
c': 15,
16,
e': 17,
18,

[[-~

0.0 oW

Hh

Figure 8.9: Screenshot for human_vocab dictionary

machine vocab

{'-':
'0':
'1':
'2"':
'3':
"4
'5':
'6':
'7" .
'8':
'9';

.- %" N~

~

- % =

= WO ooJoU & WNhEO
~

O~
—~

Figure 8.10: Screenshot for the machine_vocab dictionary

inv_machine vocab

L} 1

o,
e
2,
‘30
‘a,
5
6",
70
'8,

{

H O oo s WwhhRE o

O e
L1}
O
-~

Figure 8.11: Screenshot for the inv_machine_vocab dictionary

X.shape: (10000, 30)
Y.shape: (10000, 10)
Xoh.shape: (10000, 30, 37)
Yoh.shape: (10000, 10, 11)

Figure 8.12: Screenshot for the shape of matrices

index = 0

print("Source date:", dataset[index][0])

print("Target date:", dataset[index][1])

print()

print("Source after preprocessing (indices):", X[index].shape)
print("Target after preprocessing (indices):", Y[index].shape)
print()

print("Source after preprocessing (one-hot):", Xoh[index].shape)
print("Target after preprocessing (one-hot):", Yoh[index].shape)

Source date: 9 may 1998
Target date: 1998-05-09

Source after preprocessing (indices): (30,)
Target after preprocessing (indices): (10,)

Source after preprocessing (one-hot): (30, 37)
Target after preprocessing (one-hot): (10, 11)

Figure 8.13: Screenshot for the shape of matrices after processing

model.summary()

dense 3 (Dense) (None, 11) 715 lstm 1[0]([0]
lstm 1[1][0]
1stm_1[2][0]
lstm 1[3][0]
lstm 1[4][0]
1stm_1[5][0]
lstm 1[6][0]
lstm 1[7][0]
1stm_1[8][0]
lstm 1[9][0]

Total params: 52,960
Trainable params: 52,960
Non-trainable params: 0

Figure 8.14: Screenshot for model summary

Epoch 1/1

10000/10000 [] - 15s lms/step - loss: 17.0066 - dense 3 loss:
2.5402 - dense_3_acc: 0.4576 - dense_3_acc_l: 0.7088 - dense_3_acc_2: 0.3134 - dense_ 3_acc_3:
0.0748 - dense_3_acc_4: 0.8606 - dense 3 _acc_5: 0.3337 - dense_3_acc_6: 0.0510 - dense_3_acc_
7: 0.8976 - dense_3 acc_8: 0.2671 - dense_3 acc_9: 0.1082

Figure 8.15: Screenshot for epoch training

source: 3 May 1979

output: 1979-05-03

source: 5 April 09

output: 2009-05-05

source: 21th of August 2016
output: 2016-08-21

source: Tue 10 Jul 2007
output: 2007-07-10

source: Saturday May 9 2018
output: 2018-05-09

source: March 3 2001
output: 2001-03-03

source: March 3rd 2001
output: 2001-03-03

source: 1 March 2001
output: 2001-03-01

Figure 8.16: Screenshot for normalized date output

source: Last night a meteorite was seen flying near the earth's moon.
output: aaaaa <pad><pad»<pad><pad><pad><pad»<pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>

Figure 8.17: Output for text summarization

Lesson 09: A Practical NLP Project Workflow in an
Organization

‘

Research

Production

Figure 9.1: General workflow for the development of a machine learning product

/7~ 2\

Application
of techniques

Reception of
requests

N

Display

Figure 9.2: General presentation workflow

Internal identification of machine learning requirement

Data gathering and experimenting with various learning
techniques in line with the defined requirement

Present the output/ conclusion in form of research papers or
toolboxes

Figure 9.3: Research workflow

component

The data science team receives requests for development of a machine learning product or
identifies the need of a product. The requests can be from internal fexternal stakeholders of
the organization.

Gathering of relevant data, processing the data, building the learning model is carried out here.
Several machine learning techniques in line with the requirement are tried and tested,
The outputs/ conclusions can be used as Proof of Concept.

A Minimum Viable Product is defined here,
Generally, in the form of a SaaS.

Other aspects such as Data Acquisition Pipelines, Continuous Integration, Monitoring gfc are
added.

Figure 9.4: Production-oriented workflow

& tutoriall.ipynb ¢

File Edit View Insert Runtime Tools Help
{4 Locate in Drive

New Python 3 notebook

New Python 2 notebook

Open notebook... #/Cri+0O
€t Upload notebook...

Save a copy in Drive...

Save a copy as a GitHub Gist...

Tt Save a copy in GitHub... imazi
S #ICtri+S o
ave |+
b/ma
uicks
Revision history tutor
-of-in
Download .ipynb Omir
Ce Download .py 4
Au
Ce
Print #ICri+P
Header

Figure 9.5: A new Python notebook on Google Colab

L train_sentiment_classifier.ipynb ¢

File Edit View Insert Runtime Tools Help

COoDI Undo insert cell $B/Ctrl+Shift+Z
[11 # selectall cells $8/Ctrl+Shift+A
i Cut selection
Copy selection
B Paste
Delete selected cells 38/Ctrl+M D
[31 £
d
Find and replace... 88/Ctrl+H
> D Find next /CHI+G /gdrive; to attempt to forcil
| Find previous 38 /Ctrl+Shift+G
[13] 1
i
i Notebook settings
1
£ Show/hide code t Tokenizer
£ mport pad_sequences
Clear all outputs
£

from keras.layers imi:ort Deﬁse, Embedding, LSTM

Using TensorFlow backend.

Figure 9.6: Edit dropdown in Google Colab

Notebook settings

Runtime type

Python 3

Hardware accelerator

None - ®

|:| Omit code cell output when saving this notebook

CANCEL SAVE

Figure 9.7: Notebook settings for Google Colab

Notebook settings

Runtime type
Python 3 v

Hardware accelerator

GPU - ®

[J omit code cell output when saving this notebook

CANCEL SAVE

Figure 9.8: GPU hardware accelerator

[1] # Check if GPU is detetced

import tensorflow as tf
tf.test.gpu device name().

I '"/device:GPU:0"'

Figure 9.9: Screenshot for GPU device name

ﬁ) from google.colab import drive
drive,mount('/content/gdrive')

w Go to this URL in a browser: https://accounts.qoogle.com/o/oauth?/auth?client id=947318989803-6bn6gk8gdaféndg3pfeetsd hcdbredi.apps.googleusercontent. conkredirect uri=urnt3Aietfs3augh

Enter your authorization code:

Figure 9.10: Screenshot for importing data from Google Drive

[] pwd

[> '/content/gdrive/My Drive/Lesson-9'

Figure 9.11: Data imported on the Colab notebook from Google Drive

[1 !unzip data.csv.zip

[Archive: data.csv.zip
inflating: data.csv
creating: _ MACOSX/
inflating: __ MACOSX/. data.csv

Figure 9.12: Unzipping a data file on a Colab notebook

df.head().
rating title review
0 3 more like funchuck gave this to my dad for a gag gift after direc...
1 5 Inspiring i hope a lot of people hear this cd we need mo...
2 5 The best soundtrack ever to anything. im reading a lot of reviews saying that this i...
3 4 Chrono Cross OST the music of yasunori misuda is without questi...
4 5 Too good to be true probably the greatest soundtrack in history us...
Figure 9.13: Screenshot of dataframe contents

X
arrav([[0, 0, 0, .., 40, 7, 6],

[0, 0, 0, «o.ay 23, 1694, 21,

[0, 0, 0, ..., 24, 171, 1701,

cony

[0, 0, 0, ..., 42, 712, 1358],

[0, 0, o, ..., 580, 290, 1722],

[0, 0, 0, ..y, 1, 38, 1840]], dtype=int32)

Figure 9.14: Screenshot of the X variable array

y_train

array([[0, O,
[0! 0!
[0! 0!
[0, 1,
[0, O,
[1, O,

0]1, dtype=uint8)

Figure 9.15:; y_train output

Layer (type)

Output Shape

]
Il

Param #

embedding 1 (Embedding)

256000

1stm 1 (LSTM)

91600

dense 1 (Dense)

505

Total params: 348,105
Trainable params: 348,105
Non-trainable params: 0

Figure 9.16: Screenshot of the model summary

fit the model

model.fit(X[:100000, :], y train[:100000, :], batch size = 128, epochs=15, validation split=0.2)

Train on 80000 samples, validate on 20000 samples

Epoch 1/15

80000/80000 [] - 320s 4ms/step - loss: 1.1106 - acc: 0.5231 - val loss: 1.1261 - val_acc: 0.5171
Epoch 2/15

80000/80000 [] - 319s 4ms/step - loss: 1.0786 - acc: 0.5385 - val loss: 1.1099 - val acc: 0.5192
Epoch 3/15

80000/80000 [] - 318s 4ms/step - loss: 1.0482 - acc: 0.5533 - val _loss: 1.1256 - val_acc: 0.5164
Epoch 4/15

80000/80000 [] - 311s 4ms/step - loss: 1.0226 - acc: 0.5660 - val_loss: 1.1226 - val_acc: 0.5172
Epoch 5/15

80000/80000 [] - 315s 4ms/step - loss: 1.0014 - acc: 0.5771 - val loss: 1.1348 - val acc: 0.5087
Epoch 6/15

80000/80000 [] - 319s 4ms/step - loss: 0.9754 - acc: 0.5873 - val loss: 1.1455 - val_acc: 0.5078
Epoch 7/15

80000/80000 [] - 320s 4ms/step - loss: 0.9496 - acc: 0.6015 - val loss: 1.1708 - val acc: 0.5051
Epoch 8/15

80000/80000 [] - 322s 4ms/step - loss: 0.9244 - acc: 0.6099 - val_loss: 1.1870 - val_acc: 0.5028
Epoch 9/15

80000/80000 [] - 317s 4ms/step - loss: 0.8978 - acc: 0.6226 - val loss: 1.2118 - val acc: 0.5002
Epoch 10/15

80000/80000 [] - 313s 4ms/step - loss: 0.8678 - acc: 0.6383 - val loss: 1.2304 - val_acc: 0.4975
Epoch 11/15

80000/80000 [] - 319s 4ms/step - loss: 0.8391 - acc: 0.6508 - val loss: 1.2817 - val_acc: 0.4953
Epoch 12/15

80000/80000 [] - 320s 4ms/step - loss: 0.8089 - acc: 0.6655 - val loss: 1.3062 - val_acc: 0.4907
Epoch 13/15

80000/80000 [] - 319s 4ms/step - loss: 0.7753 - acc: 0.6810 - val_loss: 1.3529 - val_acc: 0.4883
Epoch 14/15

80000/80000 [] - 3158 4ms/step - loss: 0.7442 - acc: 0.6958 - val loss: 1.3931 - val acc: 0.4814
Epoch 15/15

80000/80000 [] - 316s 4ms/step - loss: 0.7081 - acc: 0.7134 - val loss: 1.4570 - val_acc: 0.4803
<keras.callbacks.History at 0x7fcba53a00£0>

Figure 9.17: Screenshot of the training session

Using TensorFlow backend.

2019-03-24 23:08:25.948604: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions
that this TensorFlow binary was not compiled to use: AVX2 FMA

* Serving Flask app "app” (lazy loading)

* Environment: production

* Debug mode: on

* Running on http://127.9.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat
Using TensorFlow backend.

2019-03-24 23:08:31.730337: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions
that this TensorFlow binary was not compiled to use: AVX2 FMA

* Debugger is active!

* Debugger PIN: 150-665-765

Figure 9.18: Output for Flask

Sending build context to Docker daemon 115.6MB
Step 1/9 : FROM python:3.6-slim
---> 5d4dd7f71a65
Step 2/9 : COPY ./app.py /deploy/
---> f71341666654
Step 3/9 : COPY ./requirements.txt /deploy/
---> 688538f2682c
Step 4/9 : COPY ./trained_model.h5 /deploy/
---> 89af21aa696e
Step 5/9 : COPY ./trained_tokenizer.pkl /deploy/
--=> 9cha42121f49
Step 6/9 : WORKDIR /deploy/
-==> Running in 204358b07798
Removing intermediate container 204358b@7798
---> 33241b6c60@15
Step 7/9 : RUN pip install -r requirements.txt
--=> Running in d19156@53f1d
Collecting Flask==1.0.2 (from -r requirements.txt (line 1))
Downloading https://files.pythonhosted.org/packages/7f/e7/08578774ed4536d3242b14dach4696386634607af824ea99
7202cdvedb4b/Flask-1.0.2-py2.py3-none-any.whl (91kB)
Collecting numpy==1.14.1 (from -r requirements.txt (line 2))
Downloading https://files.pythonhosted.org/packages/de/7d/348c5d8d44443656e76285aa97b828b6dbd9c10e5b9cof7f
98effOff70e4/numpy-1.14.1-cp36-cp3bm-manylinux1_x86_64.whl (12.2MB)
Collecting keras==2.2.4 (from -r requirements.txt (line 3))
Downloading https://files.pythonhosted.org/packages/5e/10/aa32dad@71ce52b5502266b5¢c659451cfd6ffchf14e6c8c4
f16ceff5aaab/Keras-2.2.4-py2.py3-none-any.whl (312kB)
Collecting tensorflow==1.10.@ (from -r requirements.txt (line 4))
Downloading https://files.pythonhosted.org/packages/ee/e6/a6d371306c23¢c2b0d1¢cd2cb38909673d17ddd388d9e4b3cof
6602bfd972c8/tensorflow-1.1@.0-cp36-cp36m-manylinux1_x86_64.whl (58.4MB)

Figure 9.19: Output screenshot for docker build

of run -p 80:8@ app-packt
2019-04-28 21:57:24.697584: 1 tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructio
s that this TensorFlow binary was not compiled to use: AVX2 FMA

* Serving Flask app "app" (lazy loading)

* Environment: production

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

Using TensorFlow backend.

* Running on http://@.0.0.0:80/ (Press CTRL+C to quit)

Figure 9.20: Output screenshot for the docker run command

AWS Management Console

AWS services

Find Services
You can enter names, keywords or acronyms.

Q. ec2 X
EC2

Virtual Servers in the Clouc

ECS

Run and Manage Docker Containers

EFS

Mananed Eile Starane for EC2

Figure 9.21: AWS services in the AWS Management Console

=] NETWORK & SECURITY

Security Groups
Elastic IPs
Placement Groups
Key Pairs

Network Interfaces

Figure 9.22: Network and security on the AWS console

Resources

You are using the following Amazon EC2 resources in the EU Central (Frankfurt) region:

0 Running Instances 0 Elastic IPs

0 Dedicated Hosts 0 Snapshots

1 Volumes 0 Load Balancers
2 Key Pairs 6 Security Groups
0 Placement Groups

Learn more about the latest in AWS Compute from AWS re:Invent by viewing the EC2 Videos.

Create Instance

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.

Note: Your instances will launch in the EU Central (Frankfurt) region

Service Health ™ Scheduled Events

Figure 9.23: Resources on the AWS console

1.Choose AMI 2 Choose Instance Type 3, Configure Instance 4. Add Storage 5.AddTags 6. Configure Security Group 7. Review

Btep 1: Choose an Amazon Machine Image (AMI) Cancel and Exit
hn AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI provided by AWS, our user community, or the AWS Markstplace; or you can select ane of
our own AMIs.

Q Search for an AMI by entering a search term e.g. "Windows* bd
Quick Start 110 38 of 38 AMIs

P o e e e e e e e e e e e e e e e e N

My AMis ' Amazon Linux 2 AM| (HVM), SSD Volume Type - ami-09def150731bdbcc2 m '

AWS Marketplace 1 _Amazon Linux_ Amazon Linux 2 comes with five years support. It provides Linux kemel 4.14 tuned for optimal performance on Amazon EC2, systemd 219, GGG 7.3, Glibe 2.26, Binutls 2.29.1, and the latest 54-bit (86) '

' software packages through extras. '

Gommunity AMIs H Root davice typa:ebs Vituaiizaon type: hvm ENA Enablect Yes]

H

Amazon Linux AMI 2018.03.0 (HVM), SSD Volume Type - ami-Ocfbf4fédb41068ac

Free tier only (j
Amazon Linux - The Amazon Linux AMI is an E8S-backed, AWS-supported image. The default image includes AWS command lin tools, Pythion, Ruby, Perl, and Java. The repositories include Docker, PHP MySQL, g o (x88)
PostgreSQL, and other packages.

Rotdevicetype: b Viriuslization fype: fum ENA Enabled: Yes

Y Red Hat Enterprise Linux 7.5 (HVM), SSD Volume Type - ami-c86e3f23 m
Red Hat Rad Hat Enterprise Linux version 7.5 (HVM), EBS General Purpose (3SD) Voluma Type

Frae tier eligible

Roctdevicetype:ebs Vinuslizstion ype: mum ENA Enablad: Yea

B4-bit (x86)

Figure 9.24: Amazon Machine Instance (AMI)

Step 2: Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virual servers that can run applications. They have varying comblinations of GPU, memory, storage, and networking capacity, and give you the flexibility to
choose the appropriate mix of resources for your applications. Leam more about instance types and how they can mest your computing needs.

Filter by: Allinstance types v Current generation v Show/Hide Columns

Currently selected: t2 small (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 2 GiB memory, EBS only)

Family - Type - vOPUs (i - Memory (GiB) - Instance Storage (GB) (i) - Do~ Netwark Performance (i 1Pve S':“m
General 2.nano 1 05 EBS only - Low to Moderate Yes
1 1 EBS only - Low to Moderata Yos
[} 1 2 EBS only - Low to Moderate Yes
General purpose 2 4 EBS only - Low to Moderate Yes
General purpose 2 8 EBS only - Low to Moderate Yes
s 2 xlarge) 18 EBS only - Moderate Yes
General purpose 2.2xiarge 8 32 EBS only - Moderate Yos
G | purpose t3.nano 2 0.5 EBS only Yos Up to 5 Gigabit Yos
General purpose 13.micro 2 1 EBS only Yes Up to 5 Gigabit Yes
General purpose t3.small 2 2 EBS only Yes Up to 5 Gigabit Yes
General purpose t3.medium 2 4 EBS only Yes Up to 5 Gigabit Yes
General purpose 13.large 2 8 EBS only Yes Up to 5 Gigabit Yes

Cancel Previous Review and Launch Next: Configure Instance Detalls

Figure 9.25: Choosing the instance type on AMI

Step 7: Review Instance Launch
Please review your instance launch details. You can go biack te edit changes for each section. Click Launch to assign a key pair to your instance end complete the launch process.
. *
& Yourinstance configuration is not eligible for the free usage tier
To launch an instance that's eligible for the fres usage tier, check your AMI selection, instance typs, cenfiguration options, or storage devices. Leam more about free usage tier eligibllity and usage restrictions.
‘ Dort show e this again
~ AMI Details Ediit AMI
Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-09def150731bdbcc2
Amazon Linux 2 comes with five years support. It provides Linux kemel £.14 tuned for optimal performance on Amazon EC2, systemd 218, GCC 7.3, Glibc 2.26, Binutils 2.28.1, and the latest software packages through extras.
Root Devion Type: sbe Virkalization fype: frvm
¥ Instance Type Edit instance type
Instance Type ECUs VCPUs Memory (GIE) Instance Storage (GB) EBS-Optimized Available Network Parformanca
12.small Varible 1 2 EBS only - Low to Moderate
~ Security Groups Edit security groups
Sacurity group name launch-wizard-6
Description launch-wizard-6 created 2019-05-01T23:24:09.484402:00
Type (i Protocal (i Port Range (i Source (i Description (i
This security group has o rules
} Instance Details Edit instance detalls
» Storage Edit storage
» Tacs Edit tags

Figure 9.26: The review instance launch screen

Step 6: Configure Security Group
A security group is a set of firewall rules that control the traffic for your instance. On this page, you can add rules to allow specific traffic ta reach your instance. For example, If you want ta set up a web server and allow Internet traffic ta reach your instance, add
rules that allow unrestricted access to the HTTP and HTTPS ports. You can create a new security group or select from an existing one below. Learn more about Amazon EC2 security groups.

Assign a security group: @Create a new security group

Select an existing security group

Security group name: launch-wizard-2
Description: launch-wizard-2 created 2019-04-13720,04:04.323+02:00
Type (i Protocol (i Port Range (i Source (i Description (i
SSH : TCP 22 Custom | 0.0.0.0/0 &.g. SSH for Admin Desktop G
HTTP D TCP 80 Custom 4] 0.0.0.0/0, =/0 £.g. SSH for Admin Desktop (%]
Add Rule
A Warning

Rules with source of 0.0.0.0/0 allow all IP addresses 1o access your instance. We recommend setting security group rules to allow access from known IP addresses only.

Figure 9.27: Configure the security group

Launch Status

©@ Yourinstances are now launching
The following instance launches have been initiated: i-0011cc563321e813a View launch log

@ Get notified of estimated charges

Create billing alerts to get an email notification when estimated charges on your AWS bill exceed an ameunt you define (for example, If you exceed the free usage tier)

How to connect to your instances

‘Your instances are launching, and it may take a few minutes until they are in the running state, when they will be ready for you to use. Usage hours on your new instances will start immediately and continue to accrue until you stop or terminate your instances.

Click View Instances to monitor your instances' status. Once your instances are in the running stats, you can connect to them from the Instances screen. Find out how to connect to your instances

~ Here are some helpful resources to get you started
* How to connect to your Linux instance « Amazon EC2: User Guide

+ Learn about AWS Free Usage Tier + Amazon EC2: Discussion Farum

While your instances are launching you can also
Create status check alarms to be notified when these instances fail status checks. (Additional charges may apply)
Create and attach additional EBS volumes (Additional charges may apply)

Manage security groups

Figure 9.28: Launch status on the AWS instance

= C' (® Not Secure | ec2-52-59-206-245.eu-central-1.compute.amazonaws.com

Hello World!

Figure 9.29: Screenshot for the home endpoint

Q search : i-050b9208dd5¢c1a0dd Add filter

- Name ~ Instance ID ~ Instance Type ~ Availability Zone ~ Instance Sta

- i-050b9208dd Connect entral-1b) running

Create Template From Instance
Launch More Like This

Instance State

Instance Settings Stop
Image

Networking Reboot

Instance: | i-050b9208dd5c1a0dd
CloudWatch Monitoring Terminate

Description Status Checks Monitoring Tags

Figure 9.30: Stopping the AWS EC2 instance

