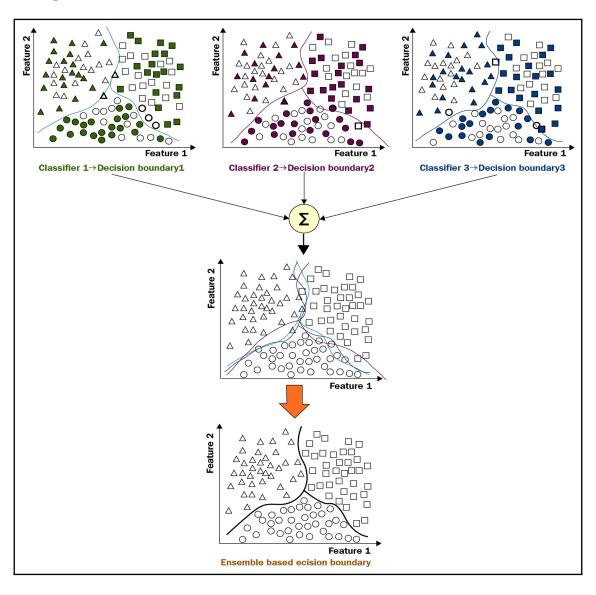
Chapter 1: Ensemble Methods for Regression and Classification



				Popu	lation				
1	2	3	4	5	6	7	8	9	10
9	7	9	10		rap sam	iple	9	2	8

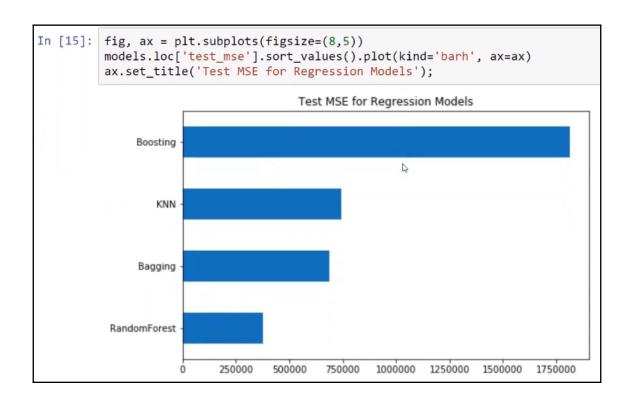
n [2]:	dat dia	ta_pat amonds	ting data th= '/da s = pd.rea s.head(10)	d_csv							
ut[2]:		carat	cut	color	clarity	depth	table	price	x	у	Z
	0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
	1	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
	2	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
	3	0.29	Premium	- 1	VS2	62.4	58.0	334	4.20	4.23	2.63
	4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
	5	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
	6	0.24	Very Good	- 1	VVS1	62.3	57.0	336	3.95	3.98	2.47
	7	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
	8	0.22	Fair	Е	VS2	65.1	61.0	337	3.87	3.78	2.49
	9	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39

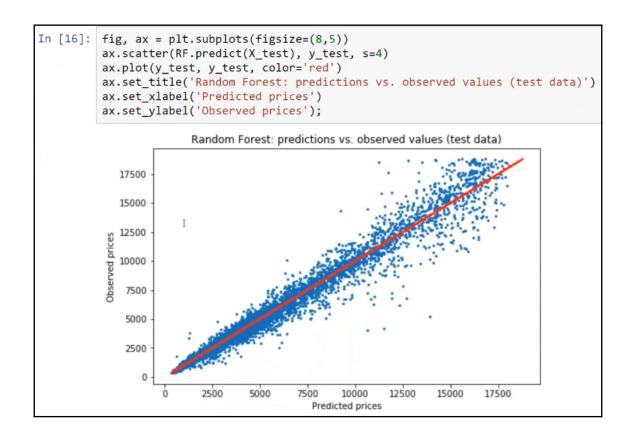
In [6]:	dia	amonds	.head	()								
Out[6]:		carat	depth	table	price	x	у	z	cut_Good	cut_ldeal	cut_Premium	 color_H
	0	0.23	61.5	55.0	326	3.95	3.98	2.43	0	1	0	 0
	1	0.21	59.8	61.0	326	3.89	3.84	2.31	0	0	1	 0
	2	0.23	56.9	65.0	327	4.05	4.07	2.31	1	0	0	 0
	3	0.29	62.4	58.0	334	4.20	4.23	2.63	0	0	1	 0
	4	0.31	63.3	58.0	335	4.34	4.35	2.75	1	0	0	 0
	5 r	ows × 2	24 colui	mns								

```
In [7]: from sklearn.model_selection import train_test_split
    from sklearn.metrics import mean_squared_error
    from sklearn.preprocessing import RobustScaler

In [8]: target_name = 'price'
    robust_scaler = RobustScaler()
    X = diamonds.drop('price', axis=1)
    feature_names = X.columns
    X = robust_scaler.fit_transform(X)
    y = diamonds[target_name]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
```

In [14]:	models			I	
Out[14]:		KNN	Bagging	RandomForest	Boosting
	train_mse	78.503	112862	142186	1.82036e+06
	test_mse	744451	688060	376764	1.81305e+06





```
In [18]: n_pred=10
         ind_pred = RF.predict(X_test[:n_pred,])
         print('Real price, Predicted price:')
         for i, pred in enumerate(ind pred):
             print(round(y_test.values[i]), round(pred), sep=', ')
         Real price, Predicted price:
         1882, 1784.0
         9586, 9592.0
         5058, 4907.0
         2780, 2666.0
         2811, 2612.0
         644, 660.0
         1378, 1420.0
         552, 572.0
         7823, 7817.0
         12800, 13046.0
```

Data Set Information:

This research aimed at the case of customers default payments in Taiwan

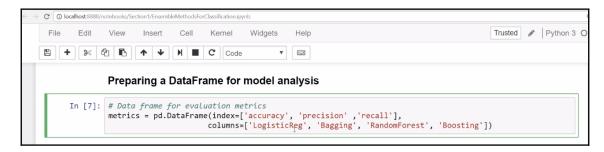
Features description:

- · LIMIT_BAL: Amount of the given credit (NT dollar): it includes both the individual consumer credit and his/her family (supplementary) credit.
- SEX: Gender (1 = male; 2 = female).
- EDUCATION: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
- MARRIAGE: Marital status (1 = married; 2 = single; 3 = others).
- AGE: Age (year).
- PAY_0 PAY_6: History of past payment. We tracked the past monthly payment records (from April to September, 2005) as follows: 0 = the repayment status in September, 2005; 1 = the repayment status in August, 2005; . . .; 6 = the repayment status in April, 2005. The measurement scale for the repayment status is: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above.
- BILL_AMT1-BILL_AMT6: Amount of bill statement (NT dollar). X12 = amount of bill statement in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 = amount of bill statement in April, 2005.
- · PAY_AMT1-PAY_AMT6: Amount of previous payment (NT dollar).
- · default payment next month: positive class: default | negative class: pay

```
In [3]: default.head()
Out[3]:
              limit_bal age pay_1 pay_2 pay_3 pay_4 pay_5 pay_6 bill_amt1 bill_amt2 ... pay_amt3 pay_amt4 pay_amt5
          ID
                                                                          3913
                                                                                    3102 ...
           1
                20000
                        24
               120000
                                                                          2682
                                                                                    1725 ...
                                                                                                  1000
                                                                                                            1000
                                                                                                                         0
                90000
                        34
                                                                         29239
                                                                                   14027
                                                                                                  1000
                                                                                                            1000
                                                                                                                      1000
                50000
                        37
                                0
                                       0
                                              0
                                                     0
                                                            0
                                                                   0
                                                                         46990
                                                                                   48233 ...
                                                                                                  1200
                                                                                                            1100
                                                                                                                      1069
                                                                                                 10000
           5
                50000
                        57
                                                     0
                                                                          8617
                                                                                    5670
                                                                                                            9000
                                                                                                                       689
         5 rows × 26 columns
```

```
In [4]: from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, precision_
    from sklearn.preprocessing import RobustScaler

In [5]: target_name = 'default'
    X = default'
    X = default', axis=1)    I
    feature_names = X.columns
    robust_scaler = RobustScaler()
    X = robust_scaler.fit_transform(X)
    y = default[target_name]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=55, stratify=y)
```



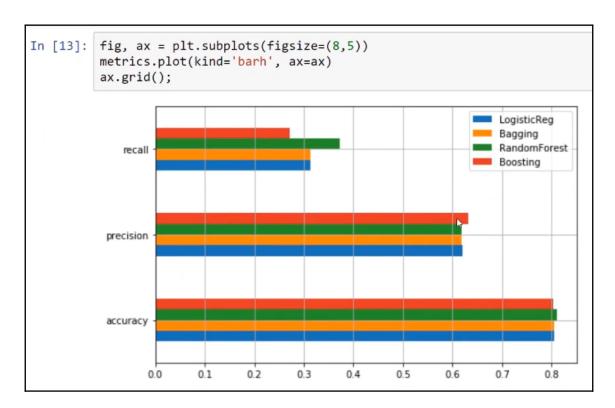
```
In [8]: # 1. Import the estimator object (model)
         from sklearn.linear_model import LogisticRegression
         # 2. Create an instance of the estimator
         logistic_regression = LogisticRegression(random_state=55)
         # 3. Use the trainning data to train the estimator
         logistic_regression.fit(X_train, y_train)
         # 4. Evaluate the model
         y_pred_test = logistic_regression.predict(X_test)
         metrics.loc['accuracy','LogisticReg'] = accuracy_score(y_pred=y_pred_test, y_true=y_test)
metrics.loc['precision','LogisticReg'] = precision_score(y_pred=y_pred_test, y_true=y_test)
         metrics.loc['recall','LogisticReg'] = recall_score(y_pred=y_pred_test, y_true=y_test)
         #Confusion matrix
         CM = confusion_matrix(y_pred=y_pred_test, y_true=y_test)
         CMatrix(CM)
Out[8]:
          PREDICTION pay default Total
          TRUE
                  pay 3315
                               190 3505
               default
                       684
                               311
                                    995
                 Total 3999
                               501 4500
```

```
In [9]: # 1. Import the estimator object (model)
        from sklearn.ensemble import BaggingClassifier
        # 2. Create an instance of the estimator
        log_reg_for_bagging = LogisticRegression()
        bagging = BaggingClassifier(base_estimator=log_reg_for_bagging, n_estimators=10,
                                     random_state=55, n_jobs=-1)
        # 3. Use the trainning data to train the estimator
        bagging.fit(X_train, y_train)
        # 4. Evaluate the model
        y_pred_test = bagging.predict(X_test)
        metrics.loc['accuracy','Bagging'] = accuracy_score(y_pred=y_pred_test, y_true=y_test)
        metrics.loc['precision','Bagging'] = precision_score(y_pred=y_pred_test, y_true=y_test)
        metrics.loc['recall','Bagging'] = recall_score(y_pred=y_pred_test, y_true=y_test)
        #Confusion matrix
        CM = confusion_matrix(y_pred=y_pred_test, y_true=y_test)
        CMatrix(CM)
Out[9]:
         PREDICTION pay default Total
         TRUE
                pay 3312
                            193 3505
              default
                    683
                            312 995
               Total 3995
                            505 4500
```

```
In [10]: # 1. Import the estimator object (model)
          from sklearn.ensemble import RandomForestClassifier
          # 2. Create an instance of the estimator
          RF = RandomForestClassifier(n_estimators=35, max_depth=20, random_state=55, max_features='sqrt',
                                          n_jobs=-1)
          # 3. Use the trainning data to train the estimator
          RF.fit(X_train, y_train)
          # 4. Evaluate the model
          y_pred_test = RF.predict(X_test)
          metrics.loc['accuracy','RandomForest'] = accuracy_score(y_pred=y_pred_test, y_true=y_test)
metrics.loc['precision','RandomForest'] = precision_score(y_pred=y_pred_test, y_true=y_test)
          metrics.loc['recall','RandomForest'] = recall_score(y_pred=y_pred_test, y_true=y_test)
          #Confusion matrix
          CM = confusion_matrix(y_pred=y_pred_test, y_true=y_test)
          CMatrix(CM)
Out[10]:
           PREDICTION pay default Total
           TRUE
                   pay 3276
                                229 3505
                default
                        625
                                370
                                      995
                  Total 3901
                                599 4500
```

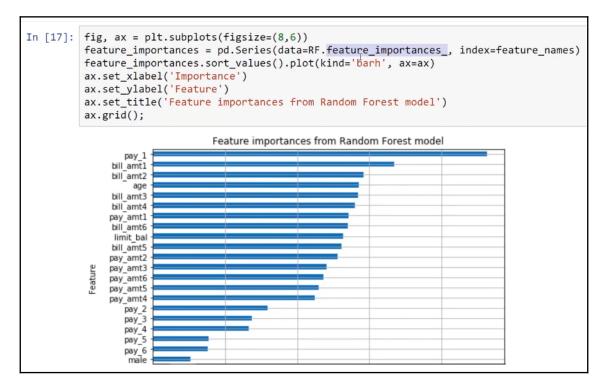
```
In [11]: # 1. Import the estimator object (model)
         from sklearn.ensemble import AdaBoostClassifier
         # 2. Create an instance of the estimator
         boosting = AdaBoostClassifier(n_estimators=50, learning_rate=0.1, random_state=55)
         # 3. Use the trainning data to train the estimator
         boosting.fit(X_train, y_train)
         # 4. Evaluate the model
         y_pred_test = boosting.predict(X_test)
         metrics.loc['accuracy','Boosting'] = accuracy_score(y_pred=y_pred_test, y_true=y_test)
         metrics.loc['precision','Boosting'] = precision_score(y_pred=y_pred_test, y_true=y_test)
         metrics.loc['recall','Boosting'] = recall_score(y_pred=y_pred_test, y_true=y_test)
         #Confusion matrix
         CM = confusion_matrix(y_pred=y_pred_test, y_true=y_test)
         CMatrix(CM)
Out[11]:
          PREDICTION pay default Total
          TRUE
                 pay 3347
                             158 3505
              default 724
                             271
                                 995
                Total 4071
                             429 4500
```

In [12]:	100*metr	ics			-
Out[12]:		LogisticReg	Bagging	RandomForest	Boosting
	accuracy	80.5778	80.5333	81.0222	80.4
	precision	62.0758	61.7822	61.7696	63.1702
	recall	31.2563	31.3568	37.1859	27.2362



```
In [15]: fig, ax = plt.subplots(figsize=(8,5))
          ax.plot(precision_rf, recall_rf, label='Random Forest')
          ax.plot(precision_lr,recall_lr , label='Logistic Regression')
          ax.set_ylim(0.5,1)
          ax.set_xlim(0.2,0.6)
          ax.set_xlabel('Precision')
          ax.set_ylabel('Recall')
          ax.set_title('Random Forest vs. Logistic Regression')
          ax.legend()
          ax.grid();
                                Random Forest vs. Logistic Regression
             1.0
                                                                  Random Forest
                                                                  Logistic Regression
             0.9
             0.8
             0.7
             0.6
             0.5
               0.20
                       0.25
                               0.30
                                       0.35
                                                                       0.55
                                               0.40
                                                       0.45
                                                               0.50
                                                                               0.60
                                             Precision
```

```
In [28]: y_pred_proba = RF.predict_proba(X_test)[:,1]
          y_pred_test = (y_pred_proba >= 0.12).astype('int')
          #Confusion matrix
          CM = confusion_matrix(y_pred=y_pred_test, y_true=y_test)
          print("Recall: ", 100*round(recall_score(y_pred=y_pred_test, y_true=y_test),2))
          print("Precision: ", 100*round(precision_score(y_pred=y_pred_test, y_true=y_test),2))
          CMatrix(CM)
         Recall: 84.0
         Precision: 30.0
Out[28]:
          PREDICTION pay
                           default Total
          TRUE
                 pay 1601
                             1904
                                  3505
               default
                      160
                             835
                                   995
                Total 1761
                            2739 4500
```



Chapter 2: Cross-validation and Parameter Tuning

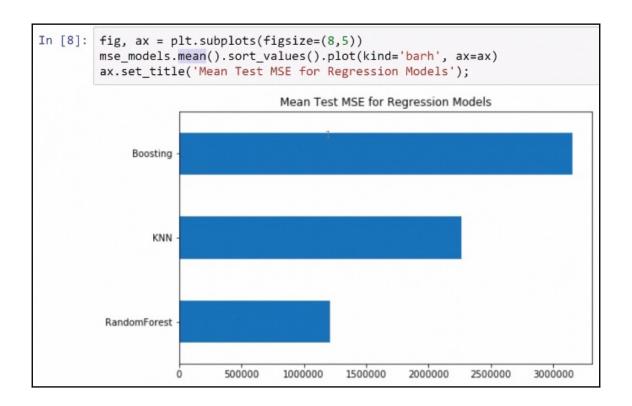
5-fold CV			DATASET							
Estimation 1	Test	Train	Train	Train	Train					
Estimation 2	Train	Test	Train	Train	Train					
Estimation 3	Train	Train	Test	Train	Train					
Estimation 4	Train	Train	Train	Test	Train					
Estimation 5	Train	Train	Train	Train	Test					

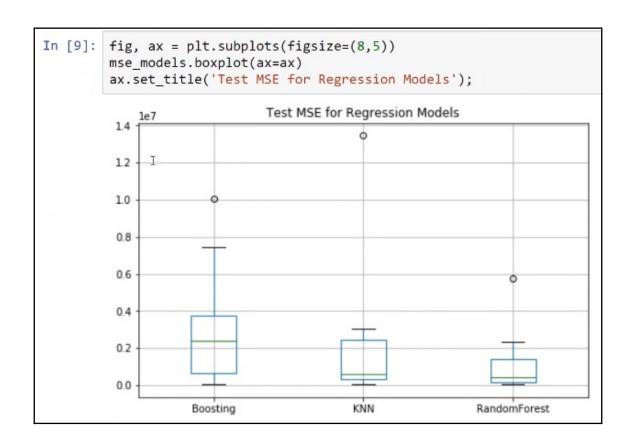
In [7]:	SC	ores['tes		uared_error'] = -1*sc	-	st_mean_squared_error rain_mean_squared_erro	-
Out[7]:		fit_time	score_time	test_mean_squared_error	test_r2	train_mean_squared_error	train_r2
	0	2.704191	0.720918	3.755390e+05	0.538764	148065.528065	0.991526
	1	3.141356	0.988628	4.506041e+05	0.672636	150123.441197	0.991437
	2	3.756991	1.060821	1.429308e+06	0.386105	118993.885068	0.993105
	3	3.542923	1.004674	2.386801e+06	0.569107	121708.194620	0.992298
	4	3.403554	1.176127	6.002576e+06	0.653763	84805.134870	0.990100
	5	3.737440	0.910923	1.376623e+06	0.958366	134400.626049	0.990314
	6	3.839710	4.791745	2.447721e+04	-0.314355	149193.566169	0.990960
	7	5.881141	0.306817	6.405753e+04	-0.214988	149713.173174	0.991024
	8	5.870614	0.363968	1.156133e+05	0.304016	156899.220946	0.990759
	9	6.064633	0.298291	1.976350e+05	0.396521	154009.670050	0.991083

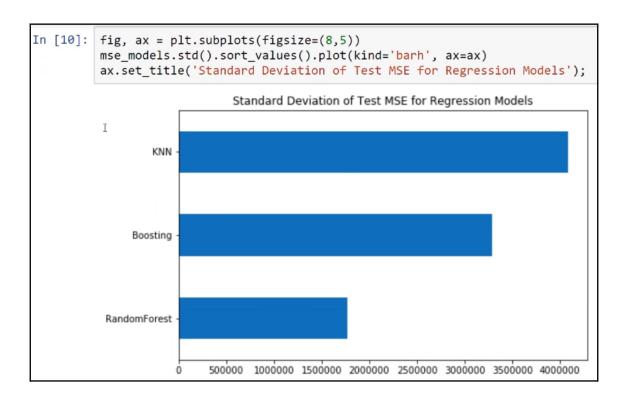
In [7]: mse_models

Out[7]:

	Boosting	KNN	RandomForest
0	1.871637e+06	6.261917e+05	3.751482e+05
1	3.796796e+06	5.654357e+05	4.506298e+05
2	2.928736e+06	1.172655e+06	1.413179e+06
3	7.420615e+06	2.856918e+06	2.360007e+06
4	1.004345e+07	1.346273e+07	5.753556e+06
5	3.616306e+06	3.056937e+06	1.351211e+06
6	3.880890e+04	4.662510e+04	2.460778e+04
7	5.167800e+05	1.218936e+05	6.391719e+04
8	6.208819e+05	2.427801e+05	1.190176e+05
9	6.810013e+05	4.797159e+05	1.917342e+05

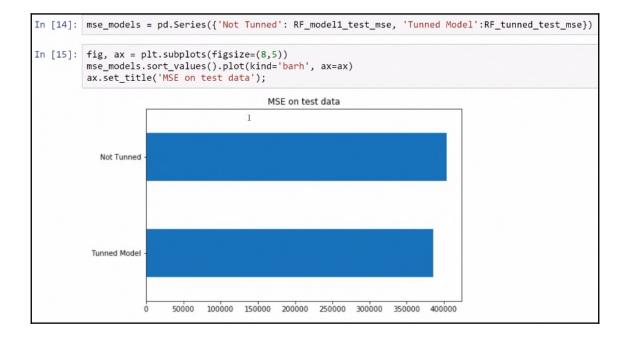


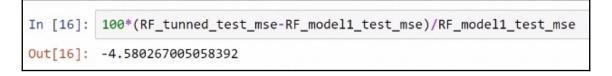




auto	auto	10				
	auto	10				0
auto			-528058.000445	-634506.134927	1.439769	1.513492
auto						1
dato	auto	10	-522750.323802	-627471.180849	1.502697	7.872935
						2
auto	auto	10	-520297.873599	-625250.042255	2.227475	10.642504
						3
auto	auto	10	-517914.197711	-622589.325370	1.598602	13.102797
						10.642504

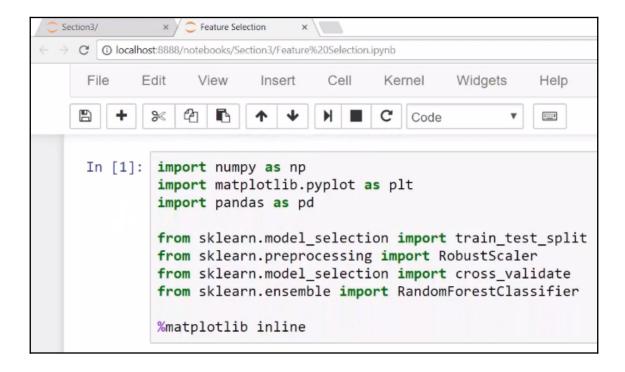
	mean fit time	Imean score time	mean test score	mean train score	param max depth	param_max_features	param n
0	1:						
	1.513492	1.439769	-634506.134927	-528058.000445	10	auto	
1							
	7.872935	1.502697	-627471.180849	-522750.323802	10	auto	
2							
	10.642504	2.227475	-625250.042255	-520297.873599	10	auto	
3							
	13.102797	1.598602	-622589.325370	-517914.197711	10	auto	
4							
7	2.363837	0.955541	-810008.883519	-695999.613338	10	sqrt	





Chapter 3: Working with Features

$$Var[X] = p(1-p)$$



```
In [2]:
    default = pd.read_csv('../data/credit_card_default.csv', index_col="ID")
    default.rename(columns=lambda x: x.lower(), inplace=True)
    default.rename(columns={'pay_0': 'pay_1', 'default payment next month': 'default'}, inplace=True)

    default['grad_school'] = (default['education'] == 1).astype(int)
    default['high_school'] = (default['education'] == 2).astype(int)
    default['high_school'] = (default['education'] == 3).astype(int)
    default.drop('education', axis=1, inplace=True)

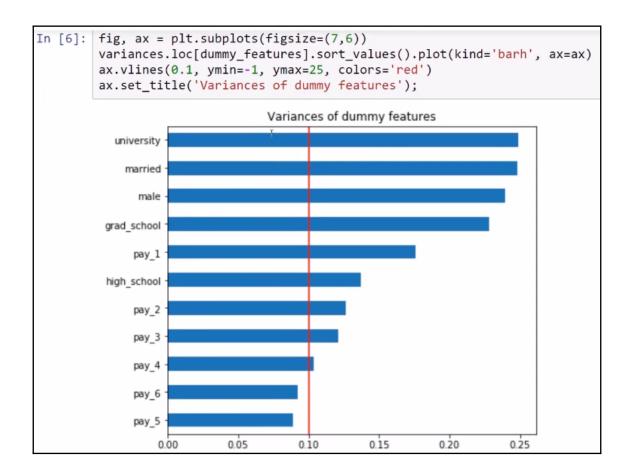
    default['male'] = (default['sex']==1).astype(int)
    default['married'] = (default['marriage'] == 1).astype(int)
    default.drop(['sex', 'marriage'], axis=1, inplace=True)

# For pay_n features if >0 then it means the customer was delayed on that month
    pay_features = ['pay_' + str(i) for i in range(1,7)]
    for p in pay_features:
        default[p] = (default[p] > 0).astype(int)
```

```
In [3]: dummy_features =['pay_'+str(i) for i in range(1,7)]
    dummy_features += ['male','married','grad_school','university','high_school']
    numerical_features = [x for x in default.columns if x not in dummy_features+['default']]
```

```
In [4]: target_name = 'default'
   X = default.drop('default', axis=1)
   feature_names = X.columns
   robust_scaler = RobustScaler()
   X = robust_scaler.fit_transform(X)
   y = default[target_name]
```

```
In [5]: variances = pd.Series(default.var(axis=0))
```



```
In [7]: from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
```

```
In [8]: dummy_selector = SelectKBest(chi2, k="all")
  dummy_selector.fit(default[dummy_features], default[target_name])
Out[8]: SelectKBest(k='all', score_func=<function chi2 at 0x00000214BF3E3EA0>)
```

```
In [11]: # ANOVA F-value between label/feature for classification tasks.
from sklearn.feature_selection import f_classif
```

```
In [12]:    num_selector = SelectKBest(f_classif, k="all")
    num_selector.fit(default[numerical_features], default[target_name])
Out[12]: SelectKBest(k='all', score_func=<function f_classif at 0x000000214BF3E30D0>)
```

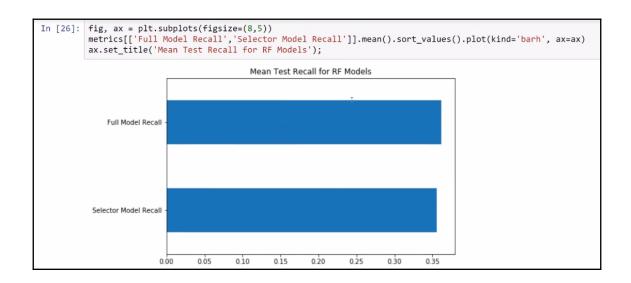
```
In [15]: print("Number of featues:", X.shape[1])
    Number of featues: 25
```

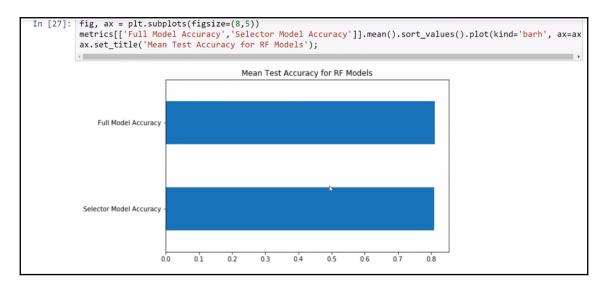
```
In [19]: recursive_selector = recursive_selector.fit(X, y)
```

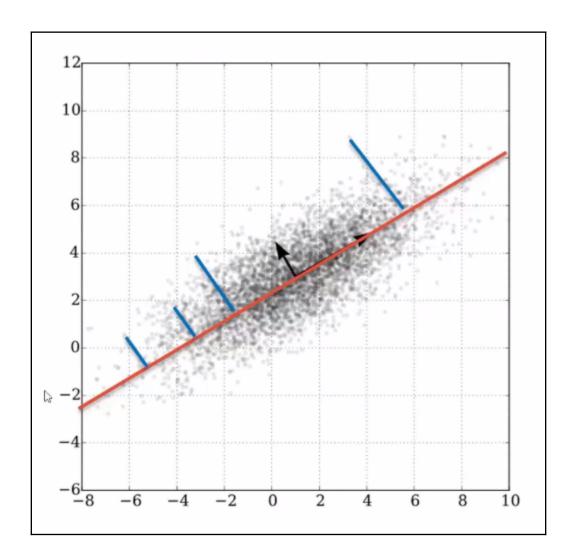
```
In [20]: recursive_selector.support_
Out[20]: array([ True, True, True, False, Fa
```

```
In [21]: print('12 most important features:')
         for x in feature_names[recursive_selector.support_]:
             print(x)
         12 most important features:
         limit_bal
         age
         pay_1
         bill_amt1
         bill_amt2
         bill_amt3
         bill_amt4
         bill_amt5
         bill_amt6
         pay_amt1
         pay_amt2
         pay_amt3
```

```
In [22]: print('Features to eliminate:')
         for x in feature_names[~recursive_selector.support_]:
              print(x)
         Features to eliminate:
         pay 2
         pay 3
         pay_4
         pay 5
         pay 6
         pay amt4
         pay_amt5
         pay amt6
         grad school
         university
         high school
         male
         married
```

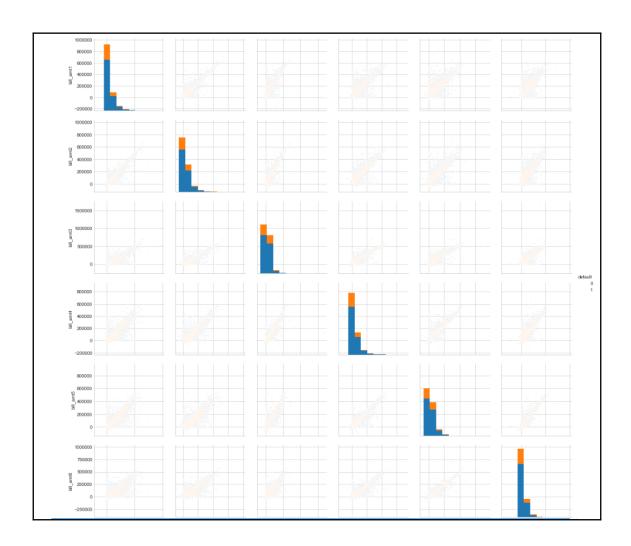






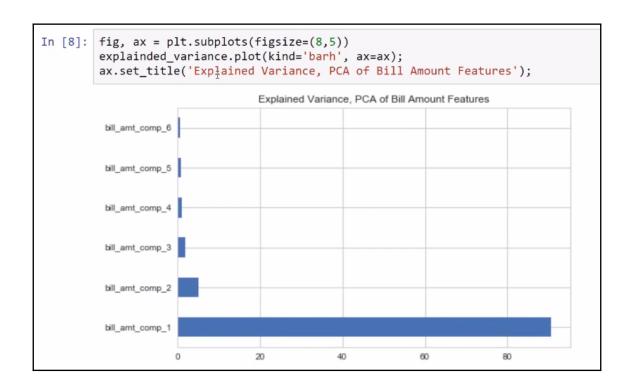
```
In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
sns.set_style('whitegrid')
%matplotlib inline
```

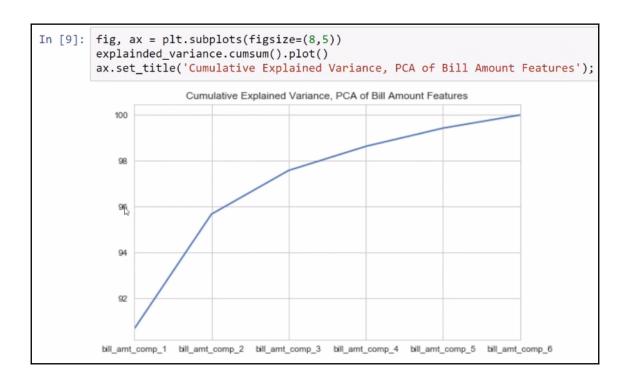
```
In [2]: | default = pd.read_csv('.../data/credit_card_default.csv', index_col="ID")
        default.rename(columns=lambda x: x.lower(), inplace=True)
        default.rename(columns={'pay_0':'pay_1','default payment next month':'default'}, inplace=True)
        # Base values: female, other_education, not_married
        default['grad_school'] = (default['education'] == 1).astype('int')
        default['university'] = (default['education'] == 2).astype('int')
        default['high_school'] = (default['education'] == 3).astype('int')
        default.drop('education', axis=1, inplace=True)
        default['male'] = (default['sex']==1).astype('int')
        default.drop('sex', axis=1, inplace=True)
        default['married'] = (default['marriage'] == 1).astype('int')
        default.drop('marriage', axis=1, inplace=True)
        # For pay_n features if >0 then it means the customer was delayed on that month
        pay_features = ['pay_' + str(i) for i in range(1,7)]
        for p in pay_features:
            default[p] = (default[p] > 0).astype(int)
```



	[bill_amt	_features].corr()			
]:	bill_amt1	bill_amt2	bill_amt3	bill_amt4	bill_amt5	bill_amt6
bill_amt	1.000000	0.951484	0.892279	0.860272	0.829779	0.802650
bill_amt2	0.951484	1.000000	0.928326	0.892482	0.859778	0.831594
bill_amt3	0.892279	0.928326	1.000000	0.923969	0.883910	0.853320
bill_amt4	0.860272	0.892482	0.923969	1.000000	0.940134	0.900941
bill_amt	0.829779	0.859778	0.883910	0.940134	1.000000	0.946197
bill_amt6	0.802650	0.831594	0.853320	0.900941	0.946197	1.000000

In [5]: from sklearn.decomposition import PCA





```
In [1]: import numpy as np
  import matplotlib.pyplot as plt
  import pandas as pd
  import seaborn as sns
  sns.set_style('whitegrid')
  %matplotlib inline
```

```
In [2]: default = pd.read_csv('../data/credit_card_default.csv', index_col="ID")
    default.rename(columns=lambda x: x.lower(), inplace=True)
    default.rename(columns={'pay_0':'pay_1','default payment next month':'default'}, inplace=True)

    default['male'] = (default['sex']==1).astype('int')
    default.drop('sex', axis=1, inplace=True)

    default['married'] = (default['marriage'] == 1).astype('int')
    default.drop('marriage', axis=1, inplace=True)

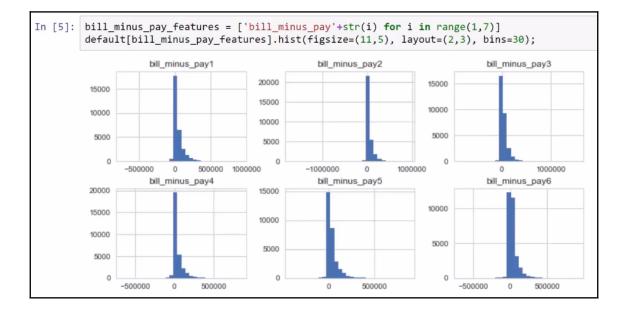
# For pay_n features if >0 then it means the customer was delayed on that month
    pay_features = ['pay_' + str(i) for i in range(1,7)]
    for p in pay_features:
        default[p] = (default[p] > 0).astype(int)
```

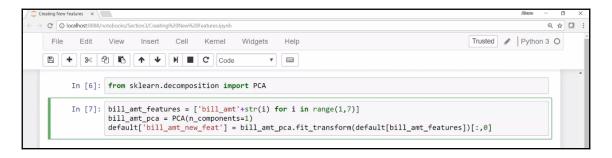
```
In [3]: def transform_education(x):
    if x==1: # 1==graduate school, give it a 2
        return 2
    elif x==2: # 2==university, give it a 1
        return 1
    else:
        return -1 # give a negative value to all other levels of education

default['education'] = default['education'].apply(transform_education)
```

```
In [4]: for i in range(1,7):
    i = str(i)
    new_var_name = 'bill_minus_pay' + i
    default[new_var_name] = default['bill_amt'+i] - default['pay_amt'+i]

In [5]: bill_minus_pay_features = ['bill_minus_pay'+str(i) for i in range(1,7)]
    default[bill_minus_pay_features].hist(figsize=(11,5), layout=(2,3), bins=30);
```

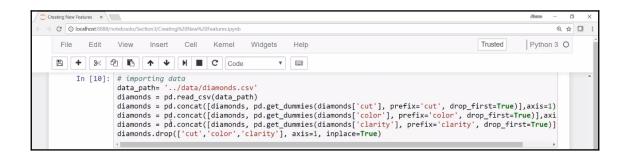




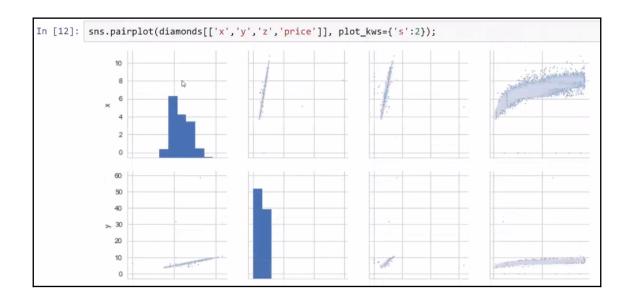
```
In [8]: pay_features = ['pay_'+str(i) for i in range(2,7)]
    pay_features_pca = PCA().fit(default[pay_features])
    pay_features_pca.explained_variance_ratio_

Out[8]: array([ 0.62640566,  0.15478995,  0.10049793,  0.07279835,  0.04550811])

In [9]: pay_features_pca = PCA(n_components=2).fit_transform(default[pay_features])
    default['new_pay1'] = pay_features_pca[:,0]
    default['new_pay2'] = pay_features_pca[:,1]
```

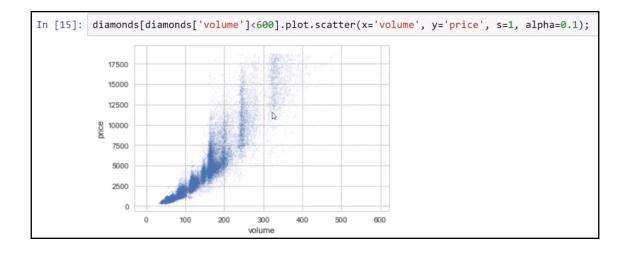


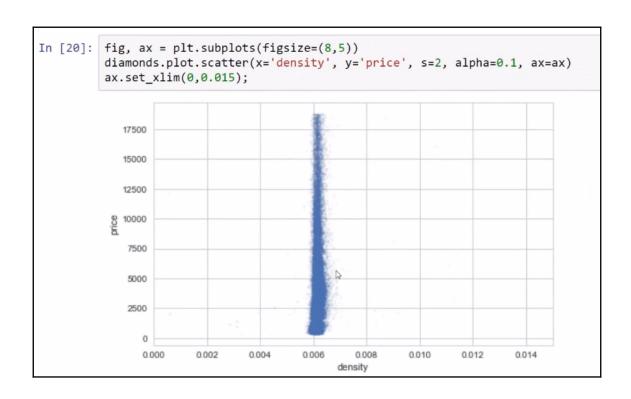
11]:		carat	depth	table	price	×	v	7	cut Good	cut Ideal	cut Premium	74 P	color H	color I	color J	clarity IF
(0	0.23		55.0	•	3.95			0	1				0	0	0
1	1	0.21	59.8	61.0	326	3.89	3.84	2.31	0	0	1		0	0	0	0
2	2	0.23	56.9	65.0	327	4.05	4.07	2.31	1	0	0		0	0	0	0
3	3	0.29	62.4	58.0	334	4.20	4.23	2.63	0	0	1		0	1	0	0
4	4	0.31	63.3	58.0	335	4.34	4.35	2.75	1	0	0	710	0	0	1	0

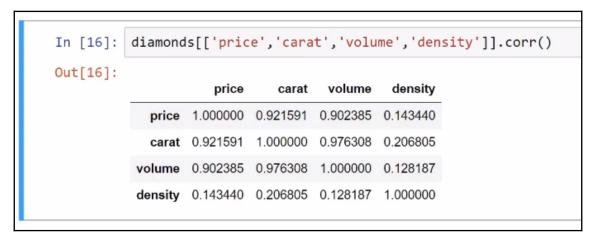


```
In [13]: diamonds['volume'] = diamonds['x']*diamonds['y']*diamonds['z']
```

```
In [15]: diamonds['density'] = diamonds['carat']/diamonds['volume']
```







```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd

from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.preprocessing import RobustScaler
    from sklearn.model_selection import train_test_split
    from sklearn.decomposition import PCA
    from sklearn.metrics import accuracy_score, recall_score, precision_score

%matplotlib inline
```

```
In [2]: default = pd.read_csv('../data/credit_card_default.csv', index_col="ID")
    default.rename(columns=lambda x: x.lower(), inplace=True)
    default.rename(columns={'pay_0':'pay_1','default payment next month':'default'}, inplace=True)

    default['grad_school'] = (default['education'] == 1).astype(int)
    default['university'] = (default['education'] == 2).astype(int)
    default['high_school'] = (default['education'] == 3).astype(int)
    default.drop('education', axis=1, inplace=True)

    default['married_male'] = ((default['sex']==1) & (default['marriage'] == 1)).astype(int)
    default['not_married_female'] = ((default['sex']==2) & (default['marriage'] != 1)).astype(int)
    default[orton fort in the state of the stat
```

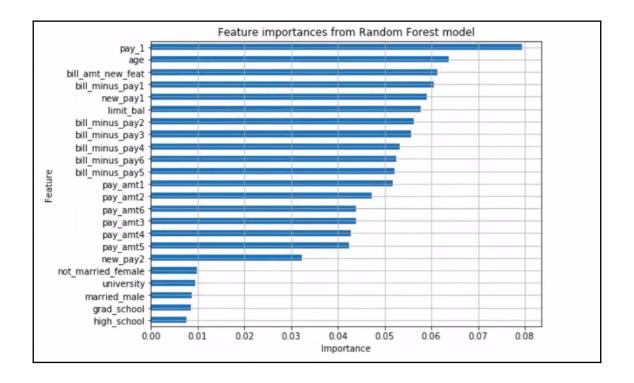
	limit_bal	age	pay 1	pay 2	pay 3	pay 4	pay 5	pay 6	bill amt1	bill amt2	 pay amt3	pay_amt4	pay amt5
ID	_								_	_			
1	20000	24	1	1	0	0	0	0	3913	3102	 0	0	0
2	120000	26	0	1	0	0	0	1	2682	1725	 1000	1000	0
3	90000	34	0	0	0	0	0	0	29239	14027	 1000	1000	1000
4	50000	37	0	0	0	0	0	0	46990	48233	 1200	1100	1069
5	50000	57	0	0	0	0	0	0	8617	5670	 10000	9000	689

```
In [4]: # Bill amount minus payment
        for i in range(1,7):
            i = str(i)
            new_var_name = 'bill_minus_pay' + i
            default[new_var_name] = default['bill_amt'+i] - default['pay_amt'+i]
        # Reducing the 6 bill amount features to 1
        bill_amt_features = ['bill_amt'+str(i) for i in range(1,7)]
        bill_amt_pca = PCA(n_components=1)
        default['bill_amt_new_feat'] = bill_amt_pca.fit_transform(default[bill_amt_features])[:,0]
        default.drop(bill_amt_features, axis=1, inplace=True)
 6
        # Reducing the 5 pay i features to 2
        pay features = ['pay '+str(i) for i in range(2,7)]
        pay_features_pca = PCA(n_components=2).fit_transform(default[pay_features])
        default['new_pay1'] = pay_features_pca[:,0]
        default['new_pay2'] = pay_features_pca[:,1]
        default.drop(pay_features, axis=1, inplace=True)
```

```
In [6]: default[money_features].var()
Out[6]: limit_bal
                     1.683446e+10
      pay_amt1
                     2.743423e+08
                     5.308817e+08
      pay_amt2
      pay_amt3
                      3.100051e+08
                     2.454286e+08
      pay_amt4
                     2.334266e+08
      pay amt5
      pay_amt6
                      3.160383e+08
      bill minus pay1
                      5.354403e+09
                     5.265815e+09
      bill_minus_pay2
                     4.801847e+09
      bill_minus_pay3
      bill_minus_pay4
                     4.121718e+09
      bill_minus_pay5
                      3.666711e+09
                      3.618178e+09
      bill_minus_pay6
      bill amt new feat 2.418877e+10
      dtype: float64
```

```
In [7]: default[money features] = default[money features]/1000
In [8]: default[money_features].var()
Out[8]: limit_bal
                             16834.455682
                               274.342256
        pay amt1
                               530.881709
        pay_amt2
        pay_amt3
                               310.005092
                               245,428561
        pay_amt4
        pay_amt5
                              233.426624
        pay_amt6
                              316.038289
        bill minus pay1
                              5354.403462
        bill minus pay2
                          T 5265.815238
        bill minus pay3
                              4801.847004
        bill minus pay4
                              4121.718431
        bill minus_pay5
                              3666.710625
        bill minus pay6
                              3618.177789
        bill amt new feat
                             24188.771200
        dtype: float64
```

```
In [11]: RF_classifier.best_params_
Out[11]: {'max_depth': 30, 'max_features': 'auto', 'n_estimators': 100}
```



$$y = f(X) + \epsilon$$

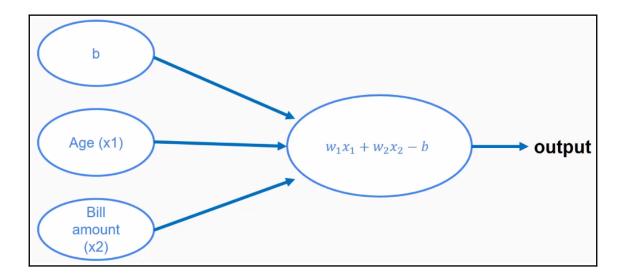
$$y_{pred} = \hat{f}(X)$$

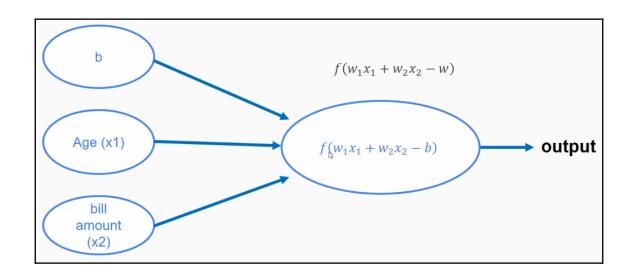
$$ExpectedError = E\big(y-y_{pred}\big) = [\hat{f}(X)-f(X)]^2 + Var[\epsilon]$$
 Reducible error Irreducible error

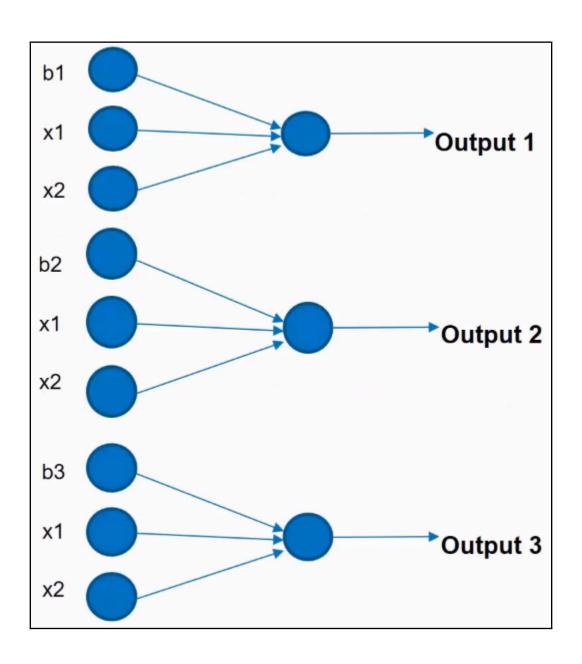
Chapter 4: Introduction to Artificial Neural Networks and TensorFlow

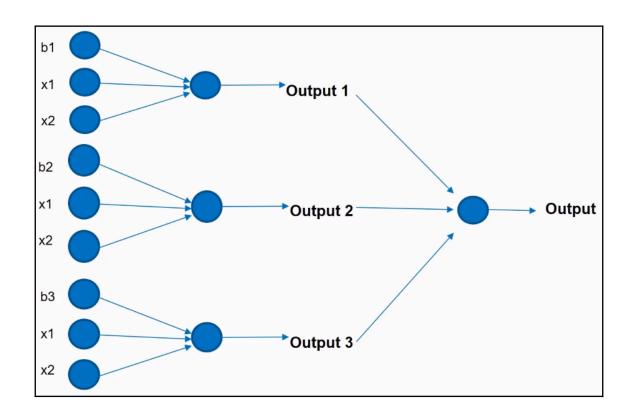
$$y_pred \ = \begin{cases} 1 \ if \ (w_1 age + \ w_2 bill - b) > 0 \\ 0 \ if \ (w_1 age + \ w_2 bill - b) \le 0 \end{cases}$$

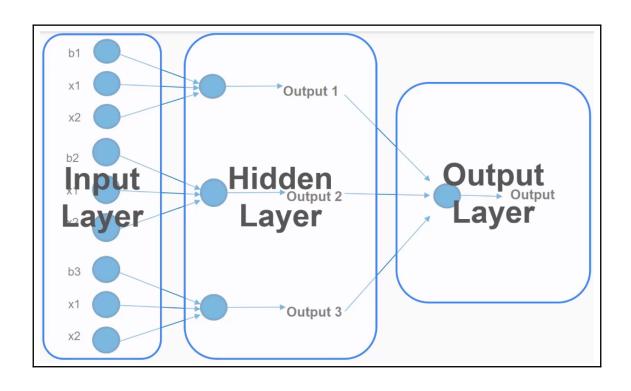
$$y_pred \ = \begin{cases} 1 \ if \sum_{j=1}^{n} w_j x_j - b > 0 \\ 0 \ if \sum_{j=1}^{n} w_j x_j - b \le 0 \end{cases}$$

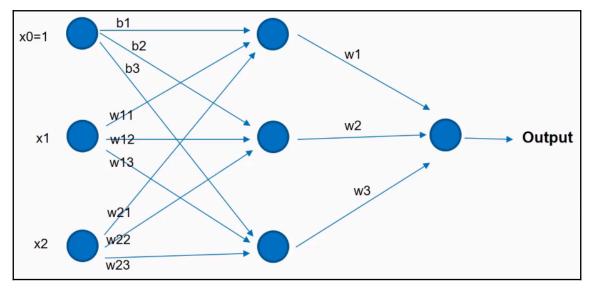


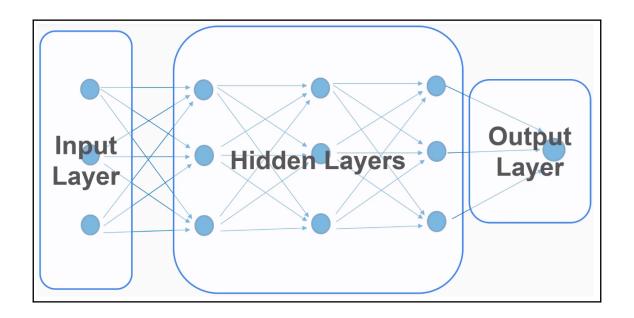












 $iterations = epochs \ \left[\frac{T_{size}}{b} \right]$

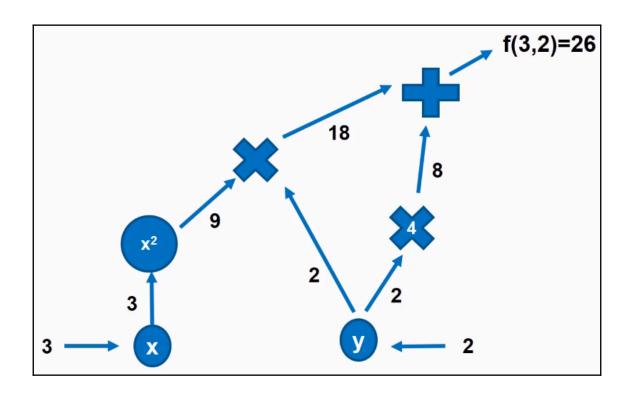
```
conda create -n apa anaconda
                                                                                                                                            (C:\Users\direc\Anaconda3) C:\Users\direc>conda create -n apa anaconda
Fetching package metadata ......
Solving package specifications:
                              1.2.8-vc14_3
Proceed ([y]/n)? Y
INFO menuinst_win32:__init__(182): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'C:\Users\direc\Anaconda3\envs\a
pa', env_name: 'apa', mode: 'None', used_mode: 'user'
INFO menuinst_win32:__init__(182): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'C:\Users\direc\Anaconda3\envs\a
pa', env_name: 'apa', mode: 'None', used_mode: 'user'
INFO menuinst_win32:__init__(182): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'C:\Users\direc\Anaconda3\envs\a
INFO menuinst_win32:_init__(182): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'C:\Users\direc\Anaconda3\envs\apa', env_name: 'apa', mode: 'None', used_mode: 'user'
INFO menuinst_win32:__init__(182): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'C:\Users\direc\Anaconda3\envs\a
pa', env_name: 'apa', mode: 'None', used_mode: 'user'
INFO menuinst_win32:__init__(182): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'C:\Users\direc\Anaconda3\envs\a
INFO menuinst_win32:_init__(182): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'C:\Users\direc\Anaconda3\envs\apa', env_name: 'apa', mode: 'None', used_mode: 'user'
# To activate this environment, use:
# > activate apa
# To deactivate an active environment, use:
# > deactivate
# * for power-users using bash, you must source
(C:\Users\direc\Anaconda3) C:\Users\direc>activate apa
 apa) C:\Users\direc>
```

```
Anaconda Prompt
                                                                                                                   П
 Using cached tensorflow-1.3.0-cp36-cp36m-win_amd64.whl
Collecting protobuf>=3.3.0 (from tensorflow)
Using cached protobuf-3.4.0-py2.py3-none-any.whl
Collecting six>=1.10.0 (from tensorflow)
 Using cached six-1.11.0-py2.py3-none-any.whl
Collecting numpy>=1.11.0 (from tensorflow)
Using cached numpy-1.13.3-cp36-none-win_amd64.whl
Collecting wheel>=0.26 (from tensorflow)
Using cached wheel-0.30.0-py2.py3-none-any.whl
Collecting tensorflow-tensorboard<0.2.0,>=0.1.0 (from tensorflow)
 Using cached tensorflow_tensorboard-0.1.8-py3-none-any.whl
Collecting setuptools (from protobuf>=3.3.0->tensorflow)
 Downloading setuptools-36.6.0-py2.py3-none-any.whl (481kB)
                                         481kB 1.5MB/s
Collecting werkzeug>=0.11.10 (from tensorflow-tensorboard<0.2.0,>=0.1.0->tensorflow)
 Using cached Werkzeug-0.12.2-py2.py3-none-any.whl
Collecting markdown>=2.6.8 (from tensorflow-tensorboard<0.2.0,>=0.1.0->tensorflow)
Collecting bleach==1.5.0 (from tensorflow-tensorboard<0.2.0,>=0.1.0->tensorflow)
 Using cached bleach-1.5.0-py2.py3-none-any.whl
Collecting html51ib==0.9999999 (from tensorflow-tensorboard<0.2.0,>=0.1.0->tensorflow)
Installing collected packages: six, setuptools, protobuf, numpy, wheel, werkzeug, markdown, html5lib, bleach, tensorflow
tensorboard, tensorflow
Successfully installed bleach-1.5.0 html5lib-0.9999999 markdown-2.6.9 numpy-1.13.3 protobuf-3.4.0 setuptools-36.6.0 six-
1.11.0 tensorflow-1.3.0 tensorflow-tensorboard-0.1.8 werkzeug-0.12.2 wheel-0.30.0
apa) C:\Users\direc>
```

```
(apa) C:\Users\direc>python
Python 3.6.1 [Anaconda 4.4.0 (64-bit)| (default, May 11 2017, 13:25:24) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.Constant("Hello")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'tensorflow' has no attribute 'Constant'
>>> hello = tf.constant("Hello")
>>> sess = tf.Session()
2017-10-15 14:23:18.420603: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\36\tensorflow\core\platform\cpu_feature
guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and
could speed up CPU computations.
2017-10-15 14:23:18.420872: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\36\tensorflow\core\platform\cpu_feature
guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine a
d could speed up CPU computations.
b'Hello'
>>>
```

$$f(x,y) = x^2y + 4y$$

$$f(3,2) = 3^2 \times 2 + 4 \times 2 = 26$$



```
In [9]: x
Out[9]: <tf.Tensor 'Placeholder_2:0' shape=<unknown> dtype=float32>
In [10]: c
Out[10]: <tf.Tensor 'Const_1:0' shape=() dtype=int32>
```

$$f(x,y) = x^2y + 4y$$

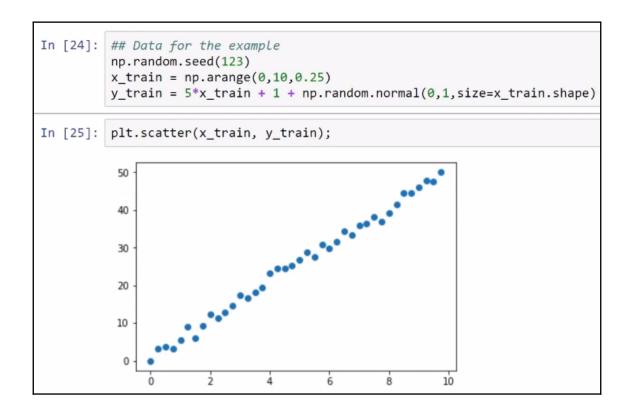
```
In [14]: sess = tf.Session()
In [15]: sess.run(c)
Out[15]: 5
In [16]: sess.run(x, feed_dict={x:6})
Out[16]: array(6.0, dtype=float32)
In [17]: sess.run(square_node, feed_dict={x:10})
Out[17]: 100.0
In [19]: sess.run(adder_node, feed_dict={x:3, y:2})
Out[19]: 26.0
```

```
In [20]: f = x**2 * y + 4*y
In [21]: f
Out[21]: <tf.Tensor 'add_1:0' shape=<unknown> dtype=float32>
In [22]: sess.run(f, feed_dict={x:3, y:2})
Out[22]: 26.0
```

```
In [23]: with tf.Session() as sess:
    print("f(10,5)=", sess.run(f, feed_dict={x:10, y:5}))
    print("f(10,5)=", f.eval(feed_dict={x:10, y:5}))

f(10,5)= 520.0
f(10,5)= 520.0
```

y = b + wx + noise

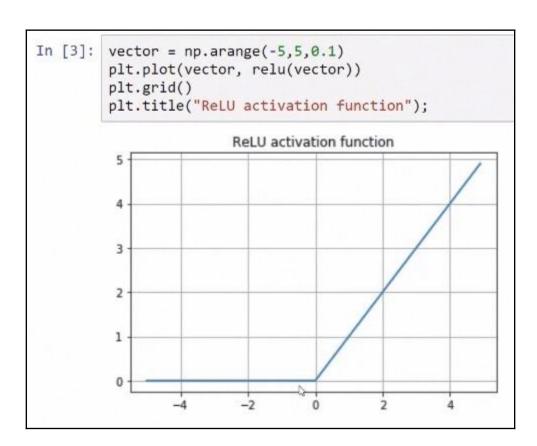


```
w = tf.Variable(0.0, dtype=tf.float32)
In [18]:
          b = tf.Variable(0.0, dtype=tf.float32)
In [19]: x = tf.placeholder(tf.float32)
         y = tf.placeholder(tf.float32)
         linear_model = w * x + b
In [20]:
In [21]:
         loss = tf.reduce sum(tf.square(linear model - y))
         optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.0005)
In [22]:
         training_op = optimizer.minimize(loss)
In [23]:
         init = tf.global_variables_initializer()
In [24]:
In [25]:
          sess = tf.Session()
         sess.run(init)
In [26]:
```

```
In [35]: for i in range(20):
             sess.run(training_op, feed_dict={x: x_train, y: y_train})
             print("Iteration {}: w: {:0.5f}, b: {:0.5f}".format(i, sess.run(w), sess.run(b)))
         Iteration 0: w: 6.58667, b: 1.01166
         Iteration 1: w: 4.52043, b: 0.69846
         Iteration 2: w: 5.16780, b: 0.80070
         Iteration 3: w: 4.96417, b: 0.77262
         Iteration 4: w: 5.02743, b: 0.78537
         Iteration 5: w: 5.00699, b: 0.78527
         Iteration 6: w: 5.01281, b: 0.78916
         Iteration 7: w: 5.01040, b: 0.79176
         Iteration 8: w: 5.01058, b: 0.79473
         Iteration 9: w: 5.00995, b: 0.79754
         Iteration 10: w: 5.00958, b: 0.80036
         Iteration 11: w: 5.00913, b: 0.80315
         Iteration 12: w: 5.00872, b: 0.80590
         Iteration 13: w: 5.00830, b: 0.80863
         Iteration 14: w: 5.00788, b: 0.81134
         Iteration 15: w: 5.00747, b: 0.81401
         Iteration 16: w: 5.00707, b: 0.81666
         Iteration 17: w: 5.00667, b: 0.81928
         Iteration 18: w: 5.00627, b: 0.82187
         Iteration 19: w: 5.00588, b: 0.82444
```

Chapter 5: Predictive Analytics with TensorFlow and Deep Neural Networks





In [4]: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("./data/") Extracting ./data/train-images-idx3-ubyte.gz Extracting ./data/train-labels-idx1-ubyte.gz Extracting ./data/t10k-images-idx3-ubyte.gz Extracting ./data/t10k-labels-idx1-ubyte.gz

Building the DNN

```
In [ ]: hidden1 = fully_connected(X, n_hidden1)
    hidden2 = fully_connected(hidden1, n_hidden2)
    hidden3 = fully_connected(hidden2, n_hidden3)
    logits = fully_connected(hidden3, n_outputs, activation_fn=None)
```

```
Running the computational graph
In [ ]:
          1 with tf.Session() as sess:
                ## Initializing the variables
          3
                tf.global variables initializer().run()
          4
                for epoch in range(n_epochs):
                    for iteration in range(mnist.train.num_examples // batch_size):
                        X batch, y batch = mnist.train.next batch(batch size)
          7
                        sess.run(training op, feed dict={X: X batch, y: y batch})
          8
                 acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
          9
                    acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
         10
                    print("====== Epoch: {} ======".format(epoch+1))
         11
                    print("Train accuracy:", acc_train, "| Test accuracy:", acc_test)
         12
                    print(50*"-")
         13
                print("Done Trainning!")
         14
         15
                ## Producing individual predictions
         16
                print("\n======\n")
                print("Using the network to make individual predictions")
         17
         18
                n_pred = 15
         19
                X_new = mnist.test.images[:n_pred]
         20
                Z = logits.eval(feed dict={X: X new})
         21
                y_pred = np.argmax(Z, axis=1)
         22
                print("Actual | Predicted")
         23
                print("======"")
         24
                for obs, pred in zip(mnist.test.labels[:n_pred], y_pred):
```

```
====== Epoch: 1 ======
                                     ====== Epoch: 11 ======
                                     Train accuracy: 0.975 | Test accuracy: 0.9602
Train accuracy: 0.8625 | Test accuracy: 0.8898
______
                                     ====== Epoch: 12 ======
====== Epoch: 2 ======
                                     Train accuracy: 0.975 | Test accuracy: 0.9594
Train accuracy: 0.9875 | Test accuracy: 0.9151
                                     ===== Epoch: 13 ======
===== Epoch: 3 ======
                                     Train accuracy: 0.95 | Test accuracy: 0.961
Train accuracy: 0.925 | Test accuracy: 0.9249
====== Epoch: 4 ======
                                     ====== Epoch: 14 ======
                                     Train accuracy: 1.0 | Test accuracy: 0.9642
Train accuracy: 0.95 | Test accuracy: 0.9351
====== Epoch: 15 ======
===== Epoch: 5 ======
                                     Train accuracy: 0.9875 | Test accuracy: 0.9654
Train accuracy: 0.9125 | Test accuracy: 0.9405
------
====== Epoch: 6 ======
                                     ====== Epoch: 16 ======
Train accuracy: 0.95 | Test accuracy: 0.9425
                                    Train accuracy: 0.95 | Test accuracy: 0.9661
====== Epoch: 7 ======
                                    ====== Epoch: 17 ======
Train accuracy: 0.9875 | Test accuracy: 0.9499
                                   Train accuracy: 0.975 | Test accuracy: 0.9662
====== Epoch: 8 ======
                                     ===== Epoch: 18 ======
Train accuracy: 0.9875 | Test accuracy: 0.9525
Train accuracy: 0.975 | Test accuracy: 0.9684
===== Epoch: 9 ======
                                     ====== Epoch: 19 ======
Train accuracy: 0.975 | Test accuracy: 0.9556
Train accuracy: 0.9625 | Test accuracy: 0.9691
====== Epoch: 10 ======
Train accuracy: 0.9375 | Test accuracy: 0.9566
                                     ====== Epoch: 20 ======
------ Train accuracy: 0.975 | Test accuracy: 0.9696
```

```
In [1]: import tensorflow as tf
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
   from tensorflow.contrib.layers import fully_connected
%matplotlib inline
```

```
In [2]: data_path= '.../data/diamonds.csv'
diamonds = pd.read_csv(data_path)
diamonds = pd.concat([diamonds, pd.get_dummies(diamonds['cut'], prefix='cut', drop_first=True)],axis=1)
diamonds = pd.concat([diamonds, pd.get_dummies(diamonds['color'], prefix='color', drop_first=True)],axi
diamonds = pd.concat([diamonds, pd.get_dummies(diamonds['clarity'], prefix='clarity', drop_first=True)]
diamonds.drop(['cut','color','clarity'], axis=1, inplace=True)
```

```
In [3]: from sklearn.preprocessing import RobustScaler
    target_name = 'price'
    robust_scaler = RobustScaler()
    X = diamonds.drop('price', axis=1)
    X = robust_scaler.fit_transform(X)
    y = diamonds[target_name]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=123)
```

```
Building the DNN

In [8]:

def DNN(X_values):
    hidden1 = fully_connected(X_values, n_hidden1)
    hidden2 = fully_connected(hidden1, n_hidden2)
    hidden3 = fully_connected(hidden2, n_hidden3)
    y_pred = fully_connected(hidden3, n_outputs, activation_fn=None)
    return tf.squeeze(y_pred)
```

```
In [9]: y_pred = DNN(X)
loss = tf.losses.mean_squared_error(labels=y, predictions=y_pred)
```

```
In [10]: optimizer = tf.train.AdamOptimizer()
    training_op = optimizer.minimize(loss)
```

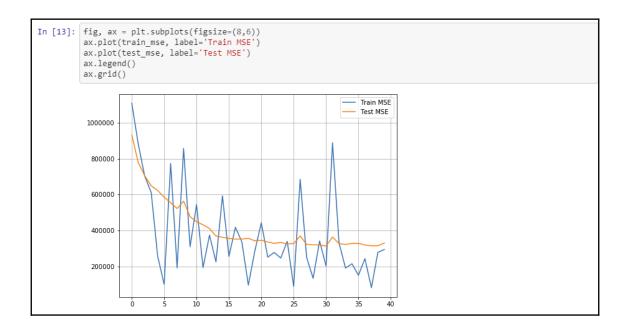
```
In [11]: train_mse = np.zeros(n_epochs)
test_mse = np.zeros(n_epochs)
```

```
In [12]: with tf.Session() as sess:
            tf.global_variables_initializer().run()
            for epoch in range(n_epochs):
                sess.run(iterator.initializer, feed dict={X placeholder: X train, y placeholder: y train})
               while True:
                   try:
                       batch_data = sess.run(next_element)
                      X_batch = batch_data[0]
                      y batch = batch data[1]
                      sess.run(training_op, feed_dict={X: X_batch, y:y_batch})
                   except tf.errors.OutOfRangeError:
                      break
               print("======EPOCH {}======".format(epoch+1))
                train mse[epoch] = loss.eval(feed dict={X:X batch, y:y batch})
               test_mse[epoch] = loss.eval(feed_dict={X:X_test, y:y_test})
               print('Training MSE:', round(train_mse[epoch],1))
               print('Test MSE:', round(test_mse[epoch],1))
            print("Done Trainning")
            ## Producing individual predictions
            print("\n======\n")
            print("Using the network to make individual predictions")
            n_pred = 25
           y_obs = y_test[:n_pred]
            y_predicted = y_pred.eval(feed_dict={X:X_test[:n_pred,]})
            print("Actual | Predicted")
            print("======")
```

EPOCH 1	======EPOCH 15======	=======EPOCH 29======
Training MSE: 1108550.2	Training MSE: 592405.4	Training MSE: 133975.9
Test MSE: 931511.3	Test MSE: 362381.4	Test MSE: 319997.7
======EPOCH 2======	EPOCH 16	=====EPOCH 30======
Training MSE: 881021.8	Training MSE: 255663.3	Training MSE: 341670.3
	Test MSE: 355960.6	Test MSE: 319737.8
======EPOCH 3======	EPOCH 17	======EPOCH 31======
		Training MSE: 202358.5
S .	e e e e e e e e e e e e e e e e e e e	Test MSE: 313453.7
======EPOCH 4======		=======EPOCH 32======
		Training MSE: 888398.9
	9	Test MSE: 363695.1
	=======EPOCH 19======	
		Training MSE: 331596.2
S S		Test MSE: 326987.9
	EPOCH 20	
		Training MSE: 190857.3
		Test MSE: 322487.9
		======EPOCH 35======
		Training MSE: 214686.9
	- C	Test MSE: 328078.7
	EPOCH 22	
		Training MSE: 151052.2
	9	Test MSE: 328686.4
	=======EPOCH 23======	
		Training MSE: 243469.2
Test MSE: 563310.8	5	Test MSE: 319324.0
	EPOCH 24	
Test MSE: 477155.2	e e e e e e e e e e e e e e e e e e e	Training MSE: 81571.8
	=======EPOCH 25======	Test MSE: 314596.3
Test MSE: 449225.3		Training MSE: 278487.6
		Test MSE: 315318.3
	EPOCH 26	
	_	Training MSE: 294473.1
	Test MSE: 327290.8	Test MSE: 329880.5
	EPOCH 27	Done Trainning
	Training MSE: 684625.6	
Test MSE: 410921.5		
	=======EPOCH 28======	
Training MSE: 225274.2	Training MSE: 249729.0	
	Test MSE: 322820.4	

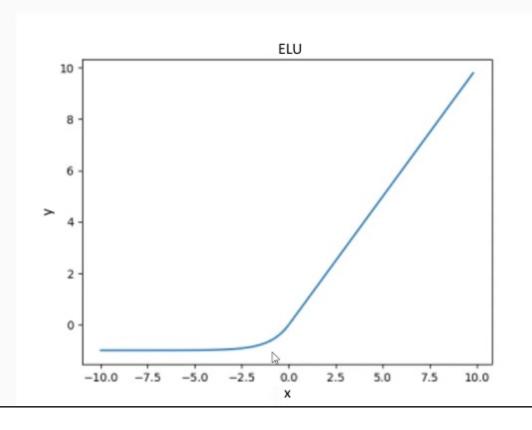
```
Using the network to make individual predictions 
Actual | Predicted
```

========	
802	706.0
935	865.0
5826	6124.0
935	1018.0
2817	3144.0
855	724.0
2846	2808.0
926	893.0
15962	16339.0
5445	5536.0
2550	2271.0
6221	5743.0
544	570.0
1122	
1367	1421.0
4077	3992.0
2144	1973.0
2960	2735.0
7131	7853.0
1221	
4563	5521.0
3830	
1137	
1361	1386.0
4641	4639.0
Correlation:	0.996551814653



ELU - a little modification to ReLU

$$f = \begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$



```
In [1]: import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import precision_score, recall_score, accuracy_score
from tensorflow.contrib.layers import fully_connected
%matplotlib inline
```

```
In [2]:
        default = pd.read_csv('../data/credit_card_default.csv', index_col="ID")
        default.rename(columns=lambda x: x.lower(), inplace=True)
        default.rename(columns={'pay_0':'pay_1','default payment next month':'default'}, inplace=True)
        # Base values: female, other_education, not_married
        default['grad_school'] = (default['education'] == 1).astype('int')
        default['university'] = (default['education'] == 2).astype('int')
        default['high_school'] = (default['education'] == 3).astype('int')
        default.drop('education', axis=1, inplace=True)
        default['male'] = (default['sex']==1).astype('int')
        default.drop('sex', axis=1, inplace=True)
        default['married'] = (default['marriage'] == 1).astype('int')
        default.drop('marriage', axis=1, inplace=True)
        # For pay_n features if >0 then it means the customer was delayed on that month
        pay_features = ['pay_' + str(i) for i in range(1,7)]
        for p in pay_features:
            default[p] = (default[p] > 0).astype(int)
```

```
In [3]: target_name = 'default'
X = default.drop('default', axis=1)
feature_names = X.columns
robust_scaler = RobustScaler()
X = robust_scaler.fit_transform(X)
y = default[target_name]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=12, stratify=y)
```

```
In [5]: X_placeholder = tf.placeholder(X_train.dtype, shape=X_train.shape)
    y_placeholder = tf.placeholder(y_train.dtype, shape=y_train.shape)

dataset = tf.contrib.data.Dataset.from_tensor_slices((X_placeholder, y_placeholder))
    dataset = dataset.shuffle(buffer_size=10000)
    dataset = dataset.batch(batch_size)
    iterator = dataset.make_initializable_iterator()
    next_element = iterator.get_next()
```

```
In [21]: def DNN(X_values):
    hidden1 = fully_connected(X_values, n_hidden1, activation_fn=tf.nn.elu)
    hidden2 = fully_connected(hidden1, n_hidden2, activation_fn=tf.nn.elu)
    hidden3 = fully_connected(hidden2, n_hidden3, activation_fn=tf.nn.elu)
    logits = fully_connected(hidden3, n_outputs, activation_fn=None)
    return tf.cast(logits, dtype=tf.float32)
```

```
In [22]: logits = DNN(X)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits
    loss = tf.reduce_mean(cross_entropy)
```

```
In [23]: probs = tf.nn.softmax(logits) softmax(x_i) = \frac{e^{x_i}}{\sum_{i=1}^n e^{x_i}}
```

```
In [24]: optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
    training_op = optimizer.minimize(loss)
```

```
In [26]: y_pred = (probabilities > 0.16).astype(int)
print('Recall: {:0.2f}'.format(100*recall_score(y_true=y_test, y_pred=y_pred)))
print('Precision: {:0.2f}'.format(100*precision_score(y_true=y_test, y_pred=y_pred)))
print('Accuracy: {:0.2f}'.format(100*accuracy_score(y_true=y_test, y_pred=y_pred)))

Recall: 82.53
Precision: 34.02
Accuracy: 60.70
```