Chapter 1: Getting Ready

rustup is an installer for

the systems programming language Rust

Run the following in your terminal, then follow
the onscreen instructions.

curl https sh.ristopsrs =S5t

You appear to be running Unix. If not, display all supporied installers.

Need help? Ask on Hrust-beginners.

@ rustup is an official Rust project.

$ cargo build
Compiling chapter®2 v0.1.0 (file:///home/djarb/writing/RustQSG/Rust-Quick-Start-Guide/chapterd2)
warning: unused variable: “cons_invalid®
src/structs_and_behavior.rs:65:13

let mut cons_invalid = new constrained(1l€0, 0, 0)7?;
annannannnn” help: consider using ~_cons_invalid® instead

note: #[warn(unused variables)] on by default

warning: variable does not need to be mutable
src/structs_and_behavior.rs:65:9

let mut cons_invalid = new_constrained(1€0, 0, 0)7?;

N

note: #[warn(unused mut)] on by default

warning: unused arithmetic operation which must be used
src/expressions.rs:54:37

println! ("Block result {:?}", { 2 + 2; 19 % 3; println!("In a block"); true});

AAAAA

note: #[warn(unused must use)] on by default

warning: unused arithmetic operation which must be used
src/expressions.rs:54:44

println!("Block result {:?}", { 2 + 2; 19 % 3; println!("In a block"); true});

E P A

Finished dev [unoptimized + debuginfo] target(s) in 4.51s

s 1

Chapter 3:
The Big Ideas — Ownership and Borrowing

: use of moved value: “point.x’
src/main.rs:18:50

receive ownership(point);

println!("point is Point2D{{x: {}, y: {}}}", point.x, point.y};

note: move occurs because ‘point’ has type 'Point2D’, which does not implement the Copy’

: use of moved value: “point.y’
src/main.rs:18:59

receive ownership(point);

println!{"point is Point2D{{x: {}, y: {}}}", point.x, point.y};

note: move occurs because 'point’ has type 'Point2D’, which does not implement the 'Copy’

: mismatched types
src/main.rs:42:13

value =

note: expected type '&mut u32’
found type "{integer}’

\/x2 +y2

Chapter 4:
Making Decisions by Pattern Matching

warning: floating-point types cannot be used in patterns
src/main.rs:127:61

Ok (DemoStruct {id: 38, name: ref name, probability: 57.3}) => {

note: #[warn(illegal floating point_literal_pattern)] on by default
warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
note: for more information, see issue #41620 <https://github.com/rust-lang/rust/issues/41620=>

: irrefutable if-let pattern
src/main.rs:138:12

if let DemoStruct { id: x, name: _, probability: _ } = sourceé {

: aborting due to previous error

For more information about this error, try “rustc --explain E8162° .
Could not compile "“chapter@4’.

To learn more, run the command again with --verbose.

Chapter 5:
One Data Type Representing Multiple Kinds
of Data

: mismatched types
src/traitobjs.rs:54:9

&Turn{ slight: true, right: false },

note: expected type "&traitobjs::Forward’
found type "&traitobjs::Turn’

: aborting due to previous error

For more information about this error, try “rustc --explain E@308°.
Could not compile “chapter®5’.

Trait object-style driving directions:
Go forward 5 blocks

Turn slightly left

Go forward 1 blocks

Turn right

Go forward 2 blocks

You have reached your destination
Turn 180 degrees

Go forward 2 blocks

Turn left

Go forward 1 blocks

Turn slightly right

Go forward 5 blocks

“wrong® does not live long enough
src/any.rs:25:37

&DoesNotHaveAnyTrait{ name: wrong.as str(), count: 16},

note: borrowed value must be valid for the static lifetime...

type annotations needed
src/any.rs:32:17

if step.is() {

aborting due to previous error
For more information about this error, try ‘"rustc --explain E6282°

Could not compile “chapter@5’.

non-exhaustive patterns: “&Reverse’ not covered
src/enums.rs:31:15

match step {

aborting due to previous error

For more information about this error, try “rustc --explain EG004 .
Could not compile “chapterd5’.

Chapter 6: Heap Memory and Smart Pointers

: recursive type “boxes::TreeNode' has infinite size
src/boxes.rs:6:1

pub struct TreeNode {

pub value: 132,
pub left: TreeNode,

pub right: TreeNode,

help: insert indirection (e.g., a "Box', 'Rc’, or &) at some point to make 'boxes::TreeNode' representable

: mismatched types
src/vectors.rs:5:17

vector.push("nope");

note: expected type " {float}’
found type "&'static str’

: aborting due to previous error

For more information about this error, try “rustc --explain E0308° .
Could not compile “chapterd6’.

[llAdall , IIMe‘LII , IIAdaII IIAdaII IIMe‘LII , IIAdaIl , IIMe‘LII]
Remove which: 3

[‘IAdall , IlMe'LH , IlAdall llMe‘Lll llAdall , IlMe'LH]
Remove which: 5

[tlAdaI' s I'Me‘LN , I'Adaﬂ 'IMe‘LII 'IAdaI']

Remove which: 2

["Ada", "Mel", "Mel", "Ada"

Remove which: 3

[llAdall , IIMe‘LII , IIMe‘LII]

Remove which: 2

["Ada", "Mel"]

Remove which: 1

[1!AdaI|]

Remove which: ©

: use of moved value: “cell’
src/cell _and refcell.rs:9:20

println!("{}", cell.into_inner());

println!("{}", cell.replace("I still didn't do anything.".to string()));

note: move occurs because ‘cell’ has type “std::cell::Cell<std::string::String>", which does not implement the “Copy’ trait

Chapter 7: Generic Types

: wrong number of type arguments: expected 1, found 0O
src/main.rs:2:12

let x: Option = None;

: no method named °get_ref’ found for type "Tree<NotOrdered, f32>" in the current scope
src/main.rs:145:62

pub struct Tree<K, V> where K: PartialOrd + PartialEq {
println!("tree.get ref(\"third key\") is {}", match tree.get ref("third key") {

note: the method "get ref’ exists but the following trait bounds were not satisfied:
"NotOrdered : std::cmp::PartialOrd’
"NotOrdered : std::cmp::PartialEq’

: can't compare “NotOrdered® with *NotOrdered’
src/main.rs:138:19

let mut tree: Tree<NotOrdered, 32> = Tree::new();

help: the trait ‘std::cmp::PartialOrd’ is not implemented for “NotOrdered®
note: required by "Tree’
src/main.rs:88:1

pub struct Tree V> where PartialOrd + PartialEq {

: mismatched types
src/main.rs:155:16

return "0h no";

note: expected type “{integer}’
found type "&'static str’

cannot borrow data mutably in a captured outer variable in an "Fn" closure
src/main.rs:185:9

y.push('X"');

help: consider changing this closure to take self by mutable reference
src/main.rs:184:18

higher order(|x: u32| {

y.push('X');
println!("In the closure, y is now {}", ¥);
X

