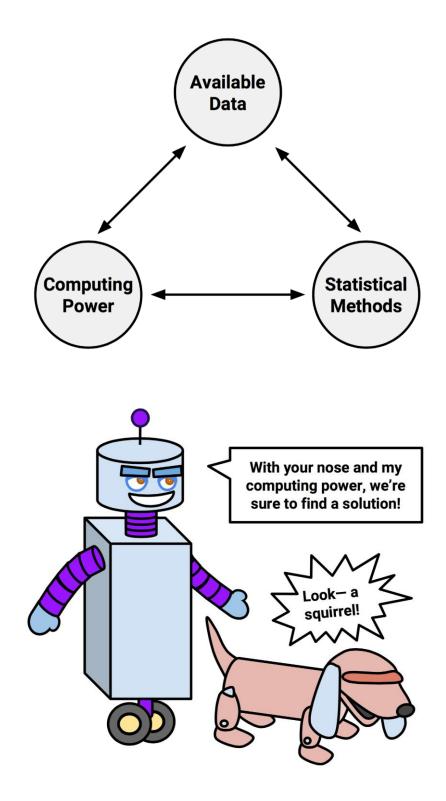
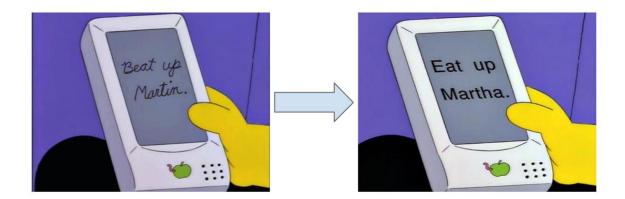
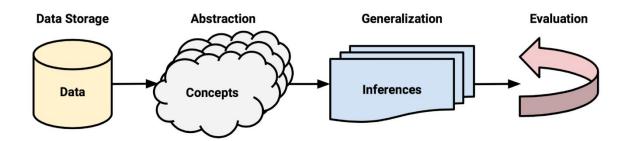
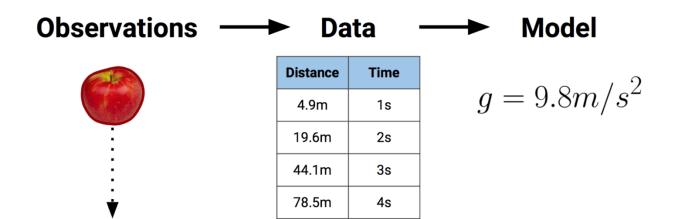
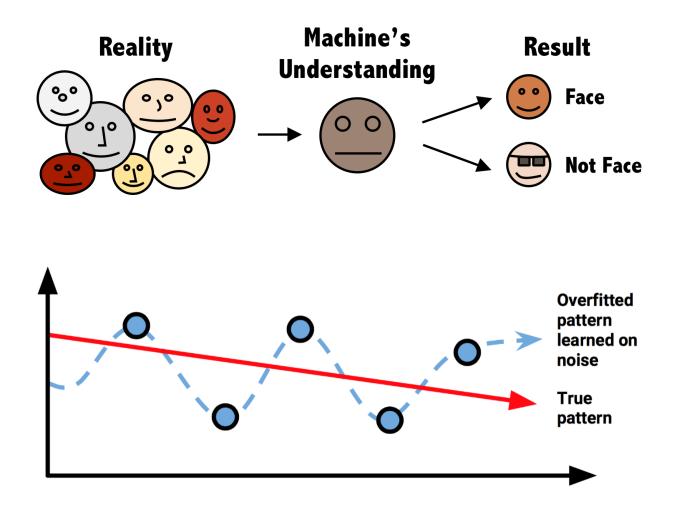
Chapter 01: Introducing Machine Learning



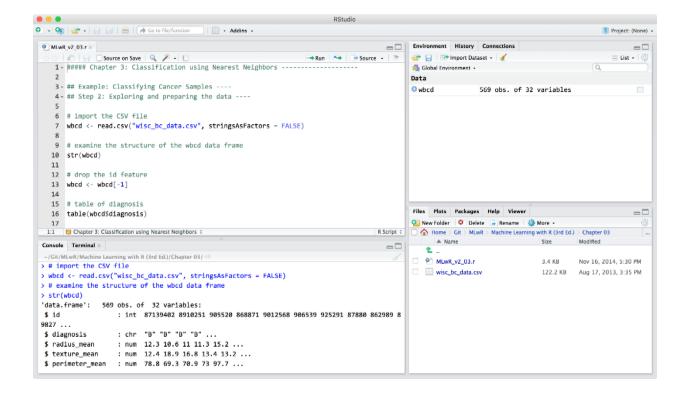




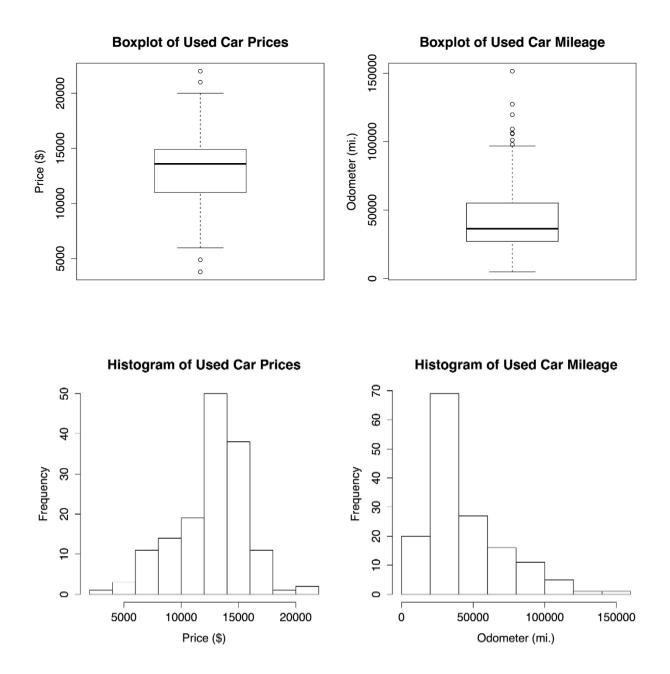


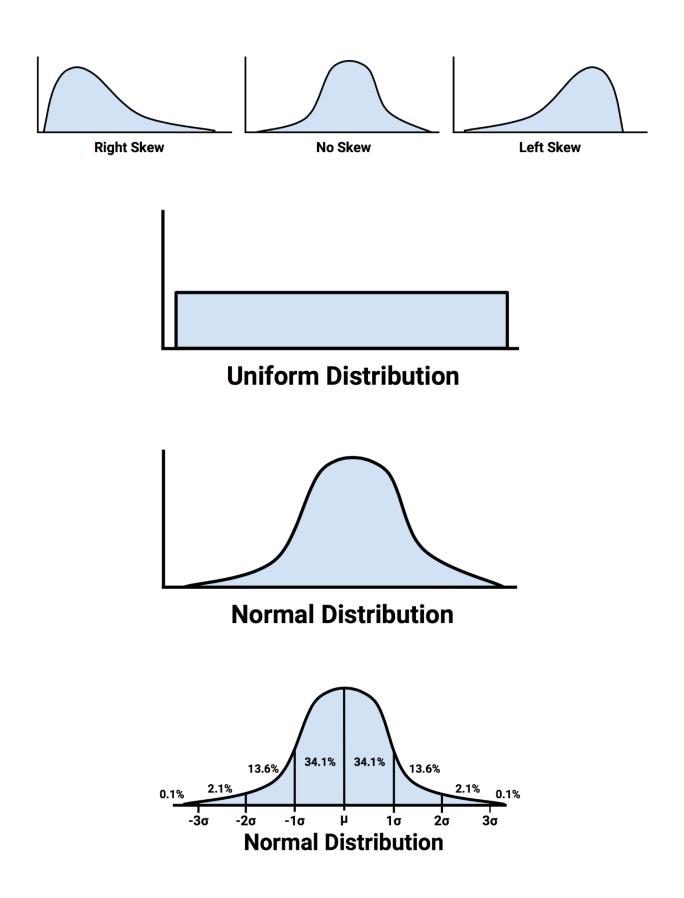


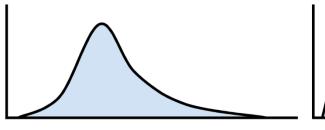
	features					
			L			
year	model	price	mileage	color	transmission	
2011	SEL	21992	7413	Yellow	AUTO	
2011	SEL	20995	10926	Gray	AUTO	
2011	SEL	19995	7351	Silver	AUTO	
2011	SEL	17809	11613	Gray	AUTO	
2012	SE	17500	8367	White	MANUAL	- examples
2010	SEL	17495	25125	Silver	AUTO	
2011	SEL	17000	27393	Blue	AUTO	
2010	SEL	16995	21026	Silver	AUTO	
2011	SES	16995	32655	Silver	AUTO	

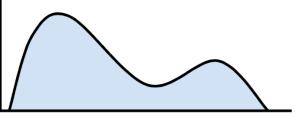


Chapter 02: Managing and Understanding Data





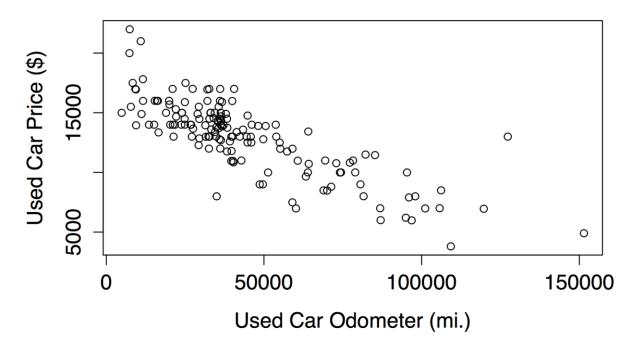




Unimodal Distribution

Bimodal Distribution

Scatterplot of Price vs. Mileage

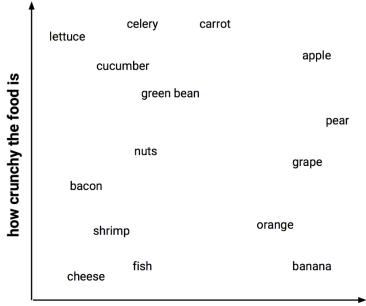


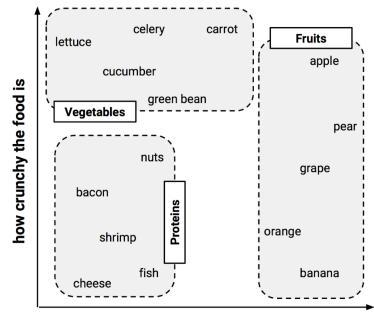
Cell Contents
-----N
Chi-square contribution
N / Row Total
N / Col Total
N / Table Total

Total Observations in Table: 150

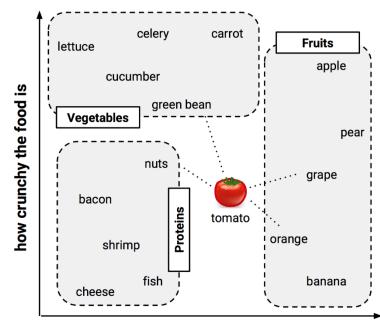
	usedcars\$conservative				
usedcars\$model	FALSE	TRUE	Row Total		
SE	27	51	78		
	0.009	0.004			
	0.346	0.654	0.520		
	0.529	0.515			
	0.180	0.340			
SEL	7	16	23		
	0.086	0.044	i i		
	0.304	0.696	0.153		
	0.137	0.162	Í		
	0.047	0.107			
SES		32	49		
	0.007	0.004	i i		
	0.347	0.653	0.327		
	0.333	0.323	Í		
	0.113	0.213			
Column Total	51	99	150		
	0.340	0.660			

Chapter 03: Lazy Learning – Classification Using Nearest Neighbors

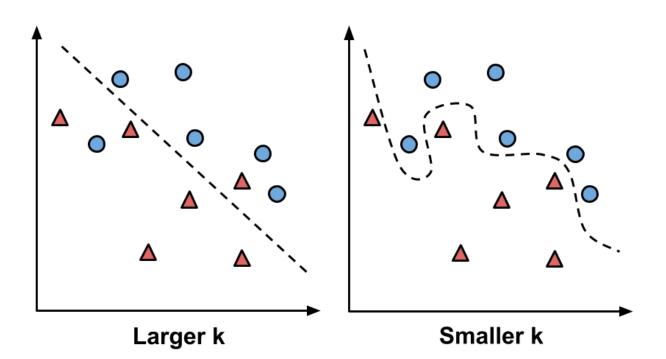


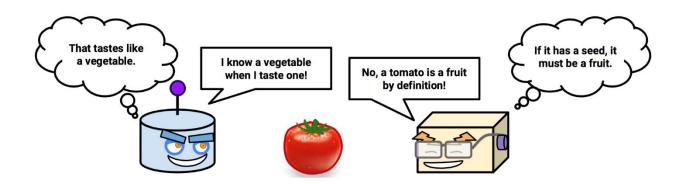


how sweet the food tastes



how sweet the food tastes





kNN classification syntax

using the knn() function in the class package

Building the classifier and making predictions:

p <- knn(train, test, class, k)</pre>

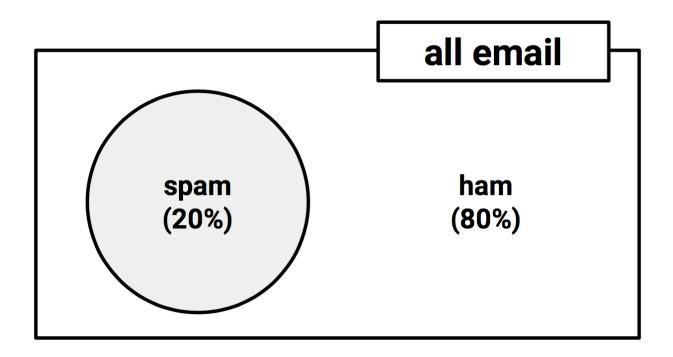
- train is a data frame containing numeric training data
- test is a data frame containing numeric test data
- **class** is a factor vector with the class for each row in the training data
- k is an integer indicating the number of nearest neighbors

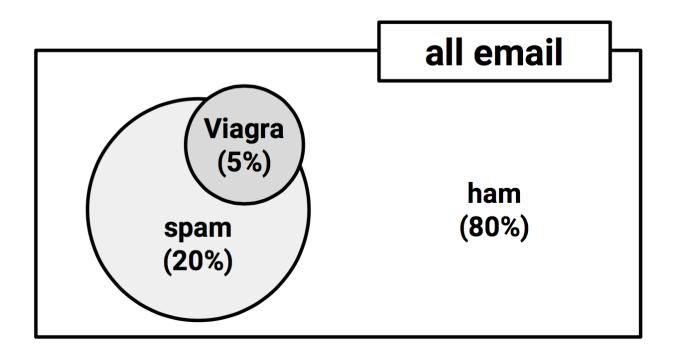
The function returns a factor vector of predicted classes for each row in the test data frame.

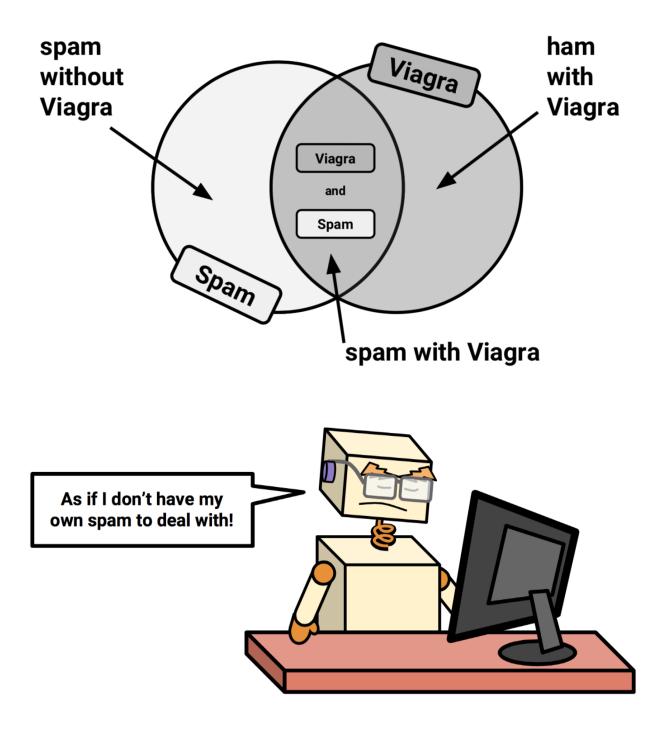
	wbcd_test_pred			
wbcd_test_labels	Benign	Malignant	Row Total	
Benign	61	0	61	
	1.000	0.000	0.610	
	0.968	0.000		
	0.610	0.000		
Malignant	2	37	39	
	0.051	0.949	0.390	
	0.032	1.000		
	0.020	0.370		
Column Total	63	37	100	
	0.630	0.370	Í	
			•	

	wbcd_test_p	ored	
<pre>wbcd_test_labels</pre>	Benign	Malignant	Row Total
Benign	61	0	61
	1.000	0.000	0.610
	0.924	0.000	
	0.610	0.000	
Malignant	5	34	39
	0.128	0.872	0.390
	0.076	1.000	
	0.050	0.340	
Column Total	66	34	100
	0.660	0.340	

Chapter 04: Probabilistic Learning – Classification Using Naive Bayes

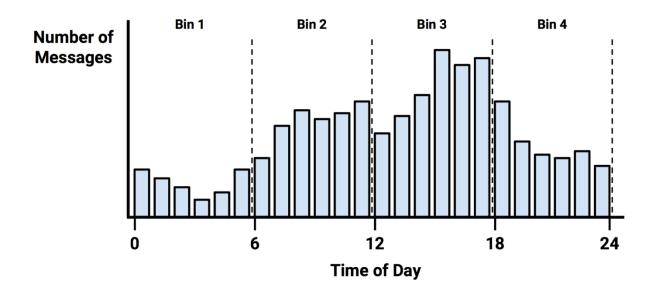






	Via	Viagra			Via	agra	
Frequency	Yes	No	Total	Likelihood	Yes	No	Total
spam	4	16	20	spam	4 / 20	16 / 20	20
ham	1	79	80	ham	1/80	79 / 80	80
Total	5	95	100	Total	5 / 100	95 / 100	100

	Viagr	a (W ₁)	Mone	y (W ₂)	Grocer	ies (W₃)	Unsubsc	ribe (W₄)	
Likelihood	Yes	No	Yes	No	Yes	No	Yes	No	Total
spam	4 / 20	16 / 20	10/20	10/20	0 / 20	20 / 20	12 / 20	8 / 20	20
ham	1/80	79 / 80	14 / 80	66 / 80	8 / 80	71/80	23 / 80	57 / 80	80
Total	5/100	95 / 100	24 / 100	76 / 100	8/100	91/100	35 / 100	65 / 100	100



message #	balloon	balls	bam	bambling	band
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

money thk start guy anyth month smile wan guarante hello even friend cos tonight person babe number reach happi claim happen tone yes live around later hope life sent someth prize dont tell won special take first pick ask need text mobil right per leor servic hey **ONE** to dear talk new time yet keep let meet lot finish som like dear buy way today e sure told late Ga said leav help say still good great cash just make _ک m هاه ما ĝ day repli win see alreadi a) tri end pleas 🚡 tree look home > wish 0 SOrri min [֎] ^{yeah} work lor well cant use _{plan} realli stop gud come txt much know msg dun thing solution lol miss want collect messag think send shop ^{stuff} also wat find thank week back phone last went mani night name sleep urgent offer chat feel wait hour give nokia ^{word} tomorrow mean minut award morn year contact alway gonna girl place peopl nice custom

bilease week phone prize draw won service free text bilease week phone prize draw won service free text bilease week phone prize draw won service free text or draw won service free

today love ant **(NOW** night lor buttell its Ο bui see I yě bhome going later O S callgot^{one} ≚ bačk stil how well day much ome так

Naive Bayes classification syntax

```
using the naiveBayes() function in the e1071 package
```

Building the classifier:

m <- naiveBayes(train, class, laplace = 0)</pre>

- train is a data frame or matrix containing training data
- **class** is a factor vector with the class for each row in the training data
- **]** ap] ace is a number to control the Laplace estimator (by default, 0)

The function will return a naive Bayes model object that can be used to make predictions.

Making predictions:

```
p <- predict(m, test, type = "class")</pre>
```

- m is a model trained by the naiveBayes() function
- **test** is a data frame or matrix containing test data with the same features as the training data used to build the classifier
- **type** is either **"class"** or **"raw"** and specifies whether the predictions should be the most likely class value or the raw predicted probabilities

The function will return a vector of predicted class values or raw predicted probabilities depending upon the value of the **type** parameter.

```
sms_classifier <- naiveBayes(sms_train, sms_type)
sms_predictions <- predict(sms_classifier, sms_test)</pre>
```

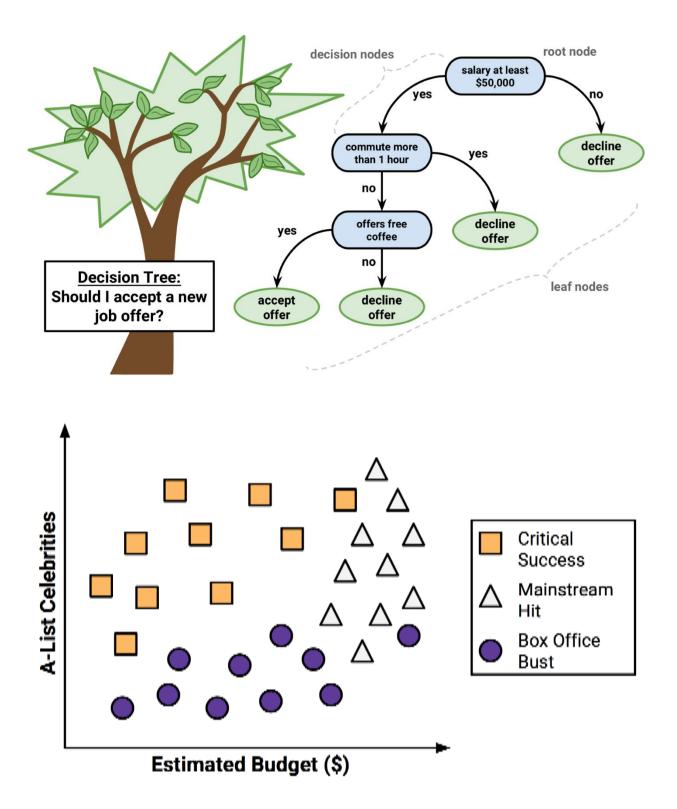
Total Observations in Table: 1390

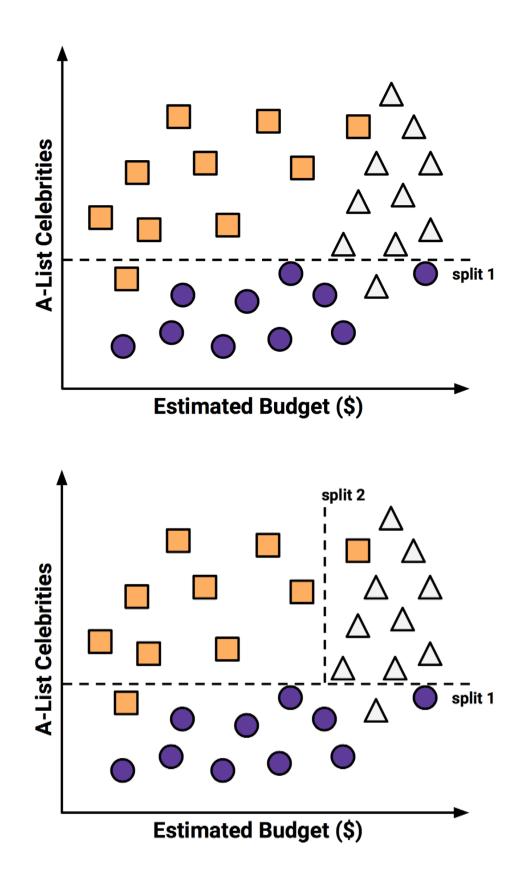
predicted	actual ham	spam	Row Total
ham	1201 0.864	30 0.022	1231
spam	6 0.004	153 0.110	159
Column Total	1207	183	1390

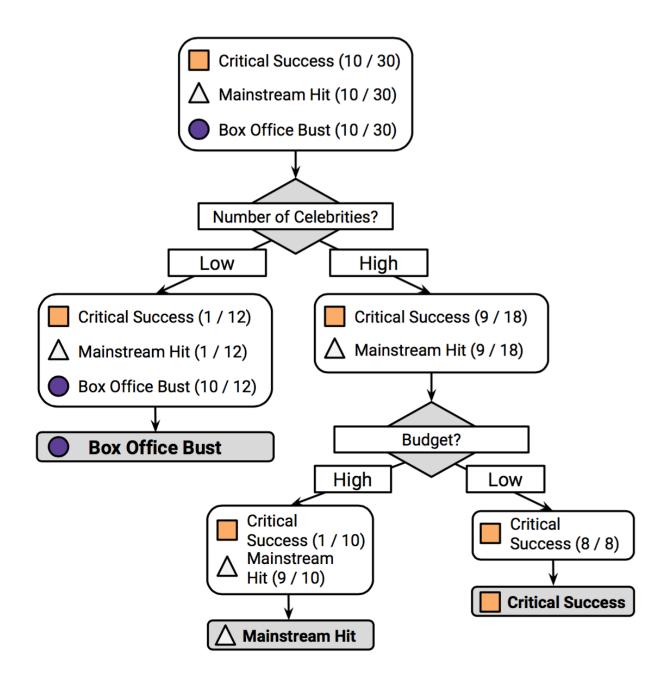
Total Observations in Table: 1390

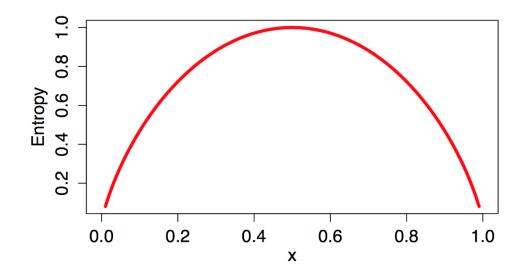
predicted	actual ham	spam	Row Total
ham	1202 0.996	28 0.153	1230
spam	5 0.004	155 0.847	160
Column Total	1207 0.868	183 0.132	1390

Chapter 05: Divide and Conquer – Classification Using Decision Trees and Rules









C5.0 decision tree syntax

using the C5.0() function in the C50 package

Building the classifier:

m <- C5.0(train, class, trials = 1, costs = NULL)</pre>

- train is a data frame containing training data
- class is a factor vector with the class for each row in the training data
- trials is an optional number to control the number of boosting iterations (set to 1 by default)
- COSTS is an optional matrix specifying costs associated with various types of errors

The function will return a C5.0 model object that can be used to make predictions.

Making predictions:

```
p <- predict(m, test, type = "class")</pre>
```

- m is a model trained by the C5.0() function
- test is a data frame containing test data with the same features as the training data used to build the classifier.
- type is either "class" or "prob" and specifies whether the predictions should be the most probable class value or the raw predicted probabilities

The function will return a vector of predicted class values or raw predicted probabilities depending upon the value of the type parameter.

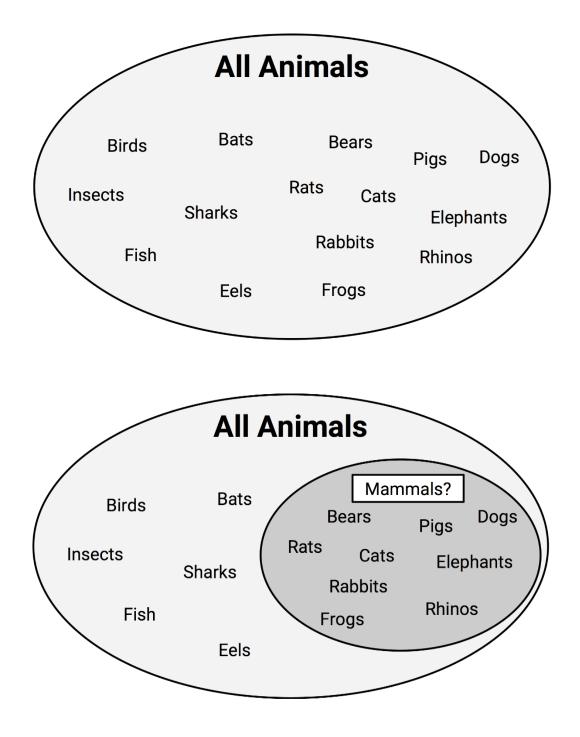
C5.0 [Release 2.07 GPL Edition]

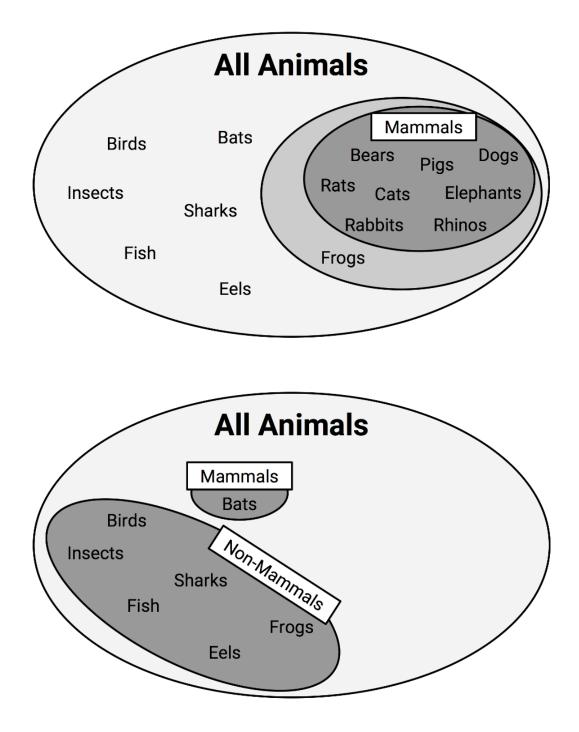
```
Class specified by attribute `outcome'
Read 900 cases (17 attributes) from undefined.data
Decision tree:
checking balance in {> 200 DM, unknown}: no (412/50)
checking_balance in {< 0 DM,1 - 200 DM}:</pre>
:...credit_history in {perfect,very good}: yes (59/18)
    credit_history in {critical,good,poor}:
    :...months loan duration <= 22:
        :...credit_history = critical: no (72/14)
           credit_history = poor:
        :
           :...dependents > 1: no (5)
        :
        :
           : dependents <= 1:
           : ....years_at_residence <= 3: yes (4/1)
        :
           :
                    years at residence > 3: no (5/1)
```

actual default	predicted on no	default yes	Row Total
no	59 0.590	8 0.080	67
yes	19 0.190	14 0.140	33
Column Total	78	22	100

	predicted of	default	
actual default	no	yes	Row Total
no	62 0.620	5 0.050	67
yes	13 0.130	20 0.200	33
Column Total	75	25	100

	predicted of	default	
actual default	no	yes yes	Row Total
no	37 0.370	30 30 300	67
yes	7 0.070	26 0.260	33
Column Total	44	56	100





Animal	Travels By	Has Fur	Mammal
Bats	Air	Yes	Yes
Bears	Land	Yes	Yes
Birds	Air	No	No
Cats	Land	Yes	Yes
Dogs	Land	Yes	Yes
Eels	Sea	No	No
Elephants	Land	No	Yes
Fish	Sea	No	No
Frogs	Land	No	No
Insects	Air	No	No
Pigs	Land	No	Yes
Rabbits	Land	Yes	Yes
Rats	Land	Yes	Yes
Rhinos	Land	No	Yes
Sharks	Sea	No	No

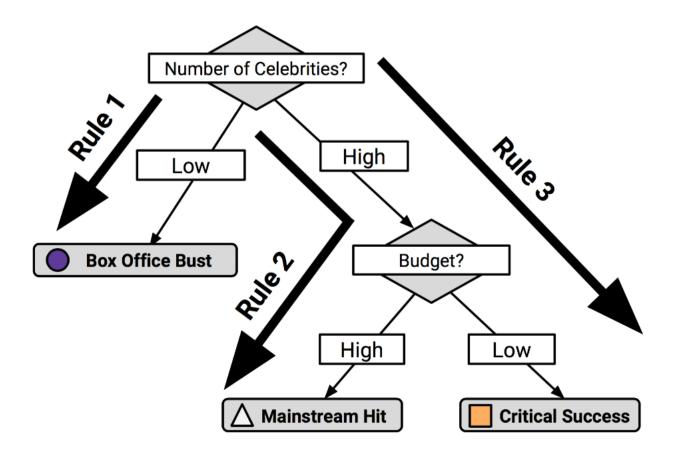
Full Dataset

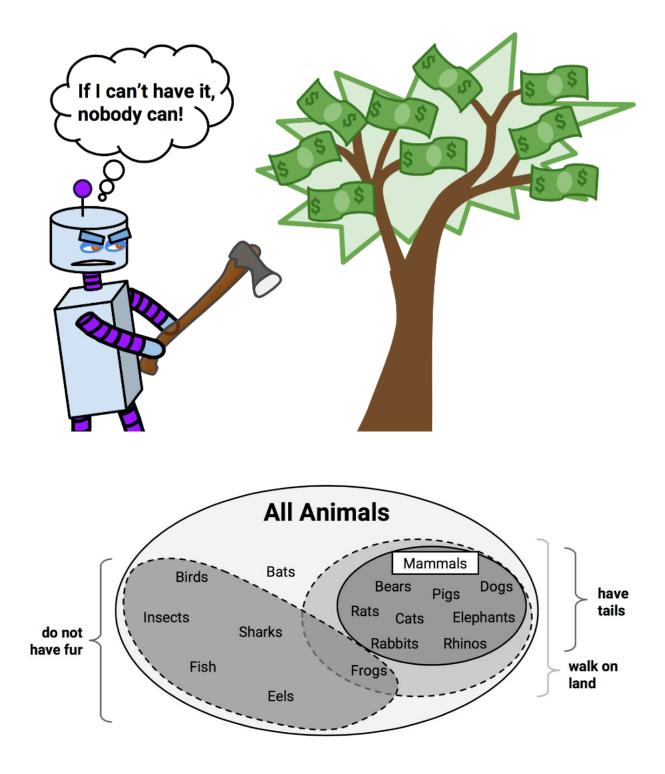
	Mammal	Predicted	Travels By
×	Yes	No	Air
	No	No	Air
	No	No	Air
	Yes	Yes	Land
×	No	Yes	Land
	Yes	Yes	Land
	No	No	Sea
	No	No	Sea
	No	No	Sea

Rule for "Travels By" Error Rate = 2 / 15

Has Fur	Predicted	Mammal	
No	No	No]
No	No	No]
No	No	Yes	×
No	No	No	1
No	No	No	1
No	No	No]
No	No	Yes	×
No	No	Yes	×
No	No	No]
Yes	Yes	Yes	1
Yes	Yes	Yes]
Yes	Yes	Yes	1
Yes	Yes	Yes]
Yes	Yes	Yes	
Yes	Yes	Yes	

Rule for "Has Fur" Error Rate = 3 / 15





1R classification rule syntax

using the OneR() function in the OneR package

Building the classifier:

- m <- OneR(class ~ predictors, data = mydata)</pre>
- **class** is the column in the **mydata** data frame to be predicted
- predictors is an R formula specifying the features in the mydata data frame to use for prediction
- data is the data frame in which class and predictors can be found

The function will return a OneR model object that can be used to make predictions.

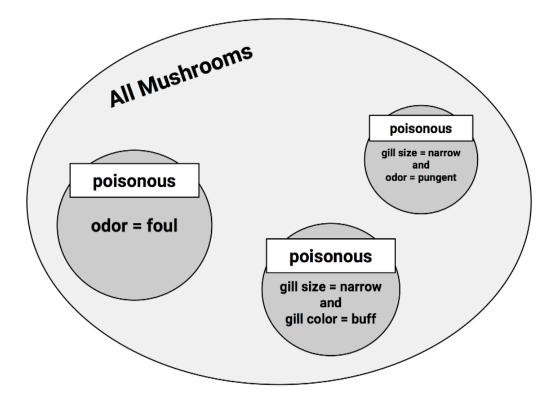
Making predictions:

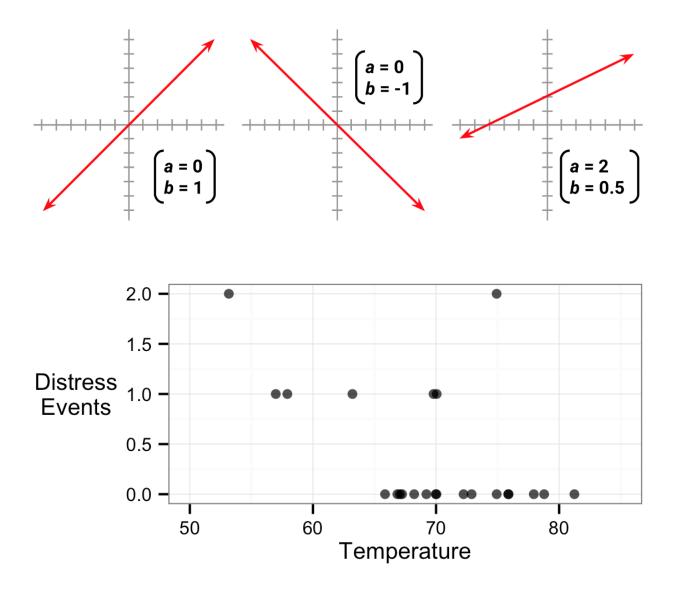
- p <- predict(m, test)</pre>
- **m** is a model trained by the **OneR()** function
- test is a data frame containing test data with the same features as the training data used to build the classifier.

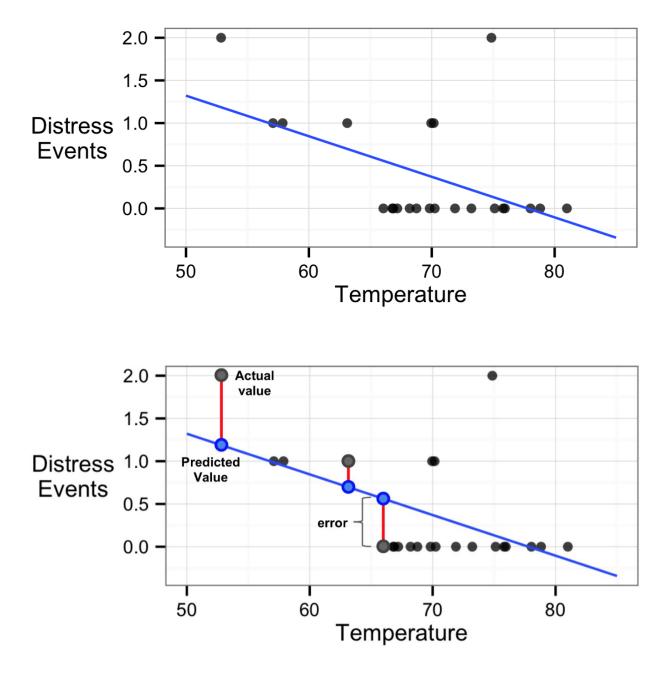
The function will return a vector of predicted class values.

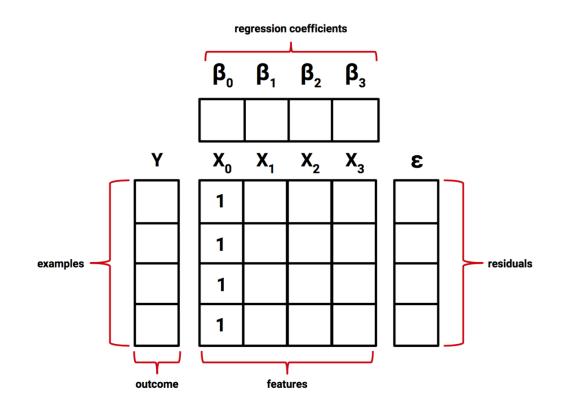
Example:

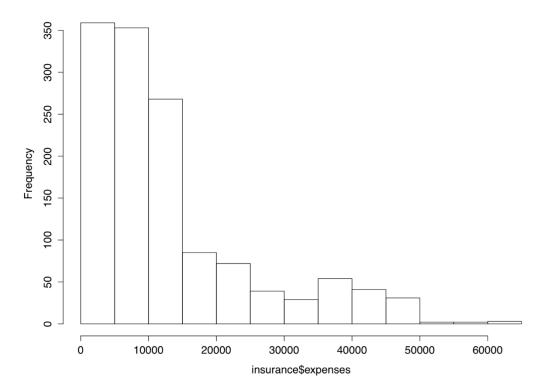
RIPPER classification rule syntax		
using the JRip() function in the RWeka package		
Building the classifier:		
m <- JRip(class ~ predictors, data = mydata)		
 class is the column in the mydata data frame to be predicted predictors is an R formula specifying the features in the mydata data frame to use for prediction data is the data frame in which class and predictors can be found 		
The function will return a RIPPER model object that can be used to make predictions.		
Making predictions:		
p <- predict(m, test)		
 m is a model trained by the JRip() function test is a data frame containing test data with the same features as the training data used to build the classifier. 		
The function will return a vector of predicted class values.		
Example:		
<pre>mushroom_classifier <- JRip(type ~ odor + cap_color,</pre>		
mushroom_test)		

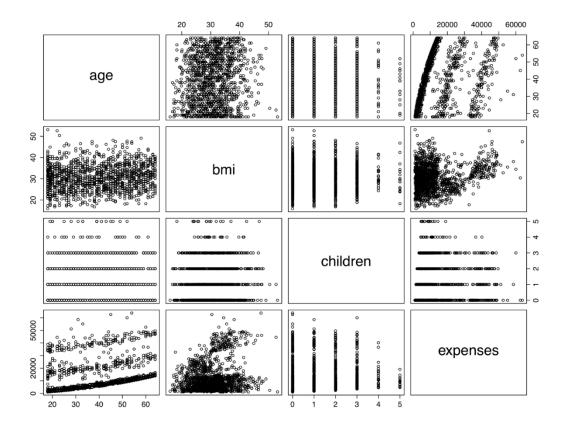


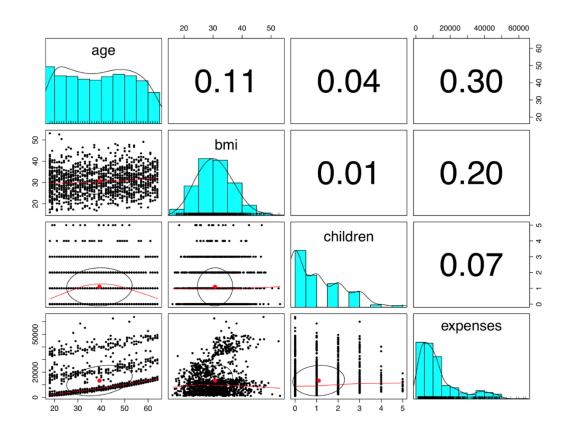












Multiple regression modeling syntax

using the lm() function in the stats package

Building the model:

m <- lm(dv ~ iv, data = mydata)

- dv is the dependent variable in the mydata data frame to be modeled
- iv is an R formula specifying the independent variables in the mydata data frame to use in the model
- data specifies the data frame in which the dv and iv variables can be found

The function will return a regression model object that can be used to make predictions. Interactions between independent variables can be specified using the * operator.

Making predictions:

```
p <- predict(m, test)</pre>
```

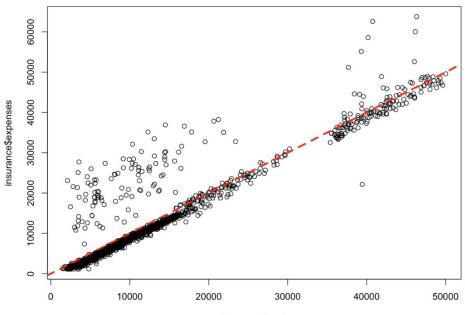
- **m** is a model trained by the **lm**() function
- test is a data frame containing test data with the same features as the training data used to build the model.

The function will return a vector of predicted values.

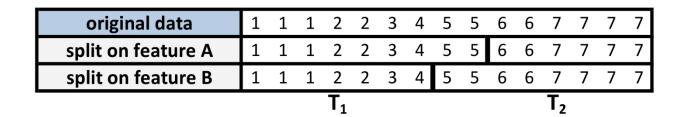
```
Call:
lm(formula = expenses ~ ., data = insurance)
Residuals:
                   Median
    Min
              10
                               30
                                       Max
                   -979.6
-11302.7 -2850.9
                           1383.9 29981.7
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                             987.8 -12.089 < 2e-16 ***
               -11941.6
                             11.9 21.586 < 2e-16 ***
                  256.8
age
                 -131.3
                             332.9 -0.395 0.693255
sexmale
                  339.3
                             28.6 11.864 < 2e-16 ***
bmi
                            137.8 3.452 0.000574 ***
children
                  475.7
                            413.1 57.723 < 2e-16 ***
                23847.5
smokeryes
regionnorthwest
                -352.8
                             476.3 -0.741 0.458976
regionsoutheast -1035.6
                             478.7 -2.163 0.030685 *
regionsouthwest
                -959.3
                             477.9 -2.007 0.044921 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6062 on 1329 degrees of freedom
Multiple R-squared: 0.7509, Adjusted R-squared: 0.7494
F-statistic: 500.9 on 8 and 1329 DF, p-value: < 2.2e-16
```

Call: lm(formula = exp smoker + rep	-	-		+ bmi + :	sex + bmi30 *
Residuals: Min	1Q Median	ЗQ	Max		
-17297.1 -1656	.0 -1262.7	-727.8	24161.6		
Coefficients:	Ectimato	Std. Error		Bn () +)	
(Intercept)	139.0053			0.918792	
age	-32.6181			0.585690	
age2	3.7307			6.54e-07	***
children	678,6017			2.03e-10	
bmi		34.2796			
sexmale	-496.7690			0.042267	
bmi30	-997.9355	422.9607	7 -2.359	0.018449	*
smokeryes	13404.5952	439.9591		< 2e-16	
regionnorthwest	-279.1661	349.2826	5 -0.799	0.424285	
regionsoutheast			4 -2.355	0.018682	*
regionsouthwest	-1222.1619	350.5314	4 -3.487	0.000505	***
bmi30:smokeryes	19810.1534	604.6769	32.762	< 2e-16	***
Signif. codes:	0 (***' 0.0	001 '**' 0.	.01'*'0	.05'.'0	.1''1

Residual standard error: 4445 on 1326 degrees of freedom Multiple R-squared: 0.8664, Adjusted R-squared: 0.8653 F-statistic: 781.7 on 11 and 1326 DF, p-value: < 2.2e-16



insurance\$pred



Histogram of wine\$quality

9

Regression trees syntax

using the **rpart()** function in the **rpart** package

Building the model:

m <- rpart(dv ~ iv, data = mydata)</pre>

- dv is the dependent variable in the mydata data frame to be modeled
- iv is an R formula specifying the independent variables in the mydata data frame to use in the model
- data specifies the data frame in which the dv and iv variables can be found

The function will return a regression tree model object that can be used to make predictions.

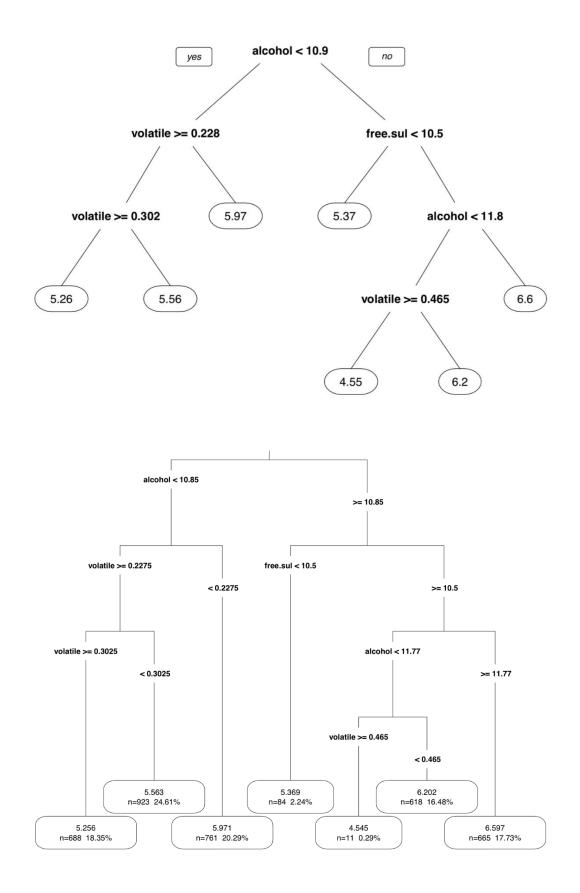
Making predictions:

p <- predict(m, test, type = "vector")</pre>

- **m** is a model trained by the **rpart()** function
- **test** is a data frame containing test data with the same features as the training data used to build the model
- type specifies the type of prediction to return, either "vector" (for predicted numeric values), "class" for predicted classes, or "prob" (for predicted class probabilities)

The function will return a vector of predictions depending on the type parameter.

Example:



Model trees syntax

using the cubist() function in the Cubist package

Building the model:

m <- cubist(train, class)</pre>

- train is a data frame or matrix containing training data
- **class** is a factor vector with the class for each row in the training data

The function will return a cubist model tree object that can be used to make predictions.

Making predictions:

```
p <- predict(m, test)</pre>
```

- **m** is a model trained by the **cubist()** function
- **test** is a data frame containing test data with the same features as the training data used to build the model

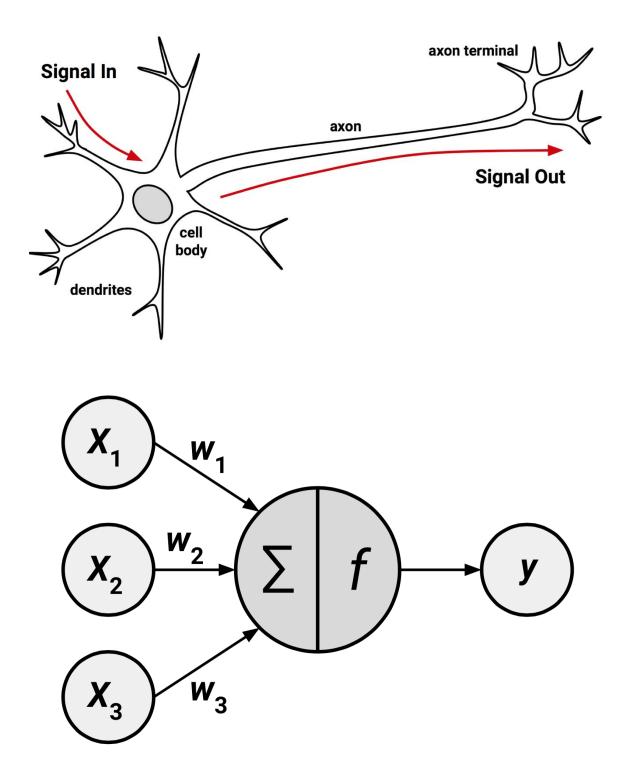
The function will return a vector of predicted numeric values.

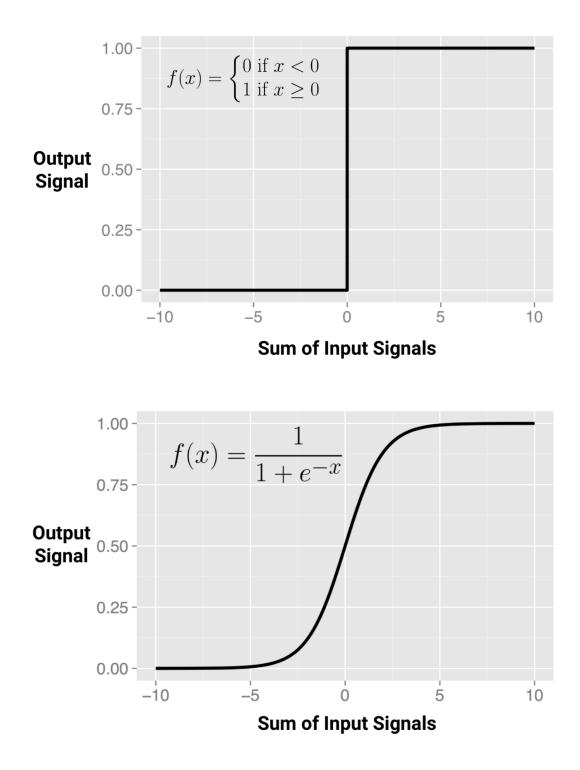
Example:

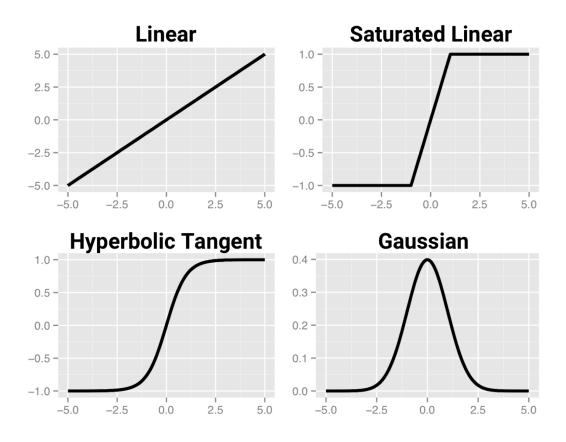
```
wine_model <- cubist(wine_train, wine_quality)</pre>
```

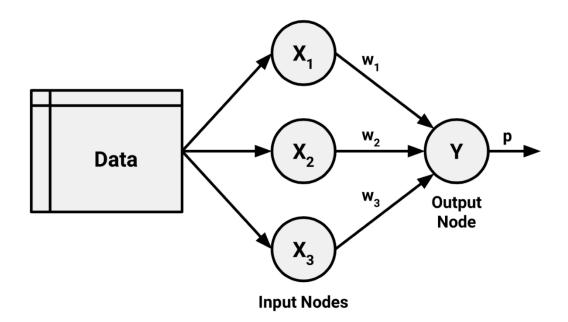
wine_predictions <- predict(wine_model, wine_test)</pre>

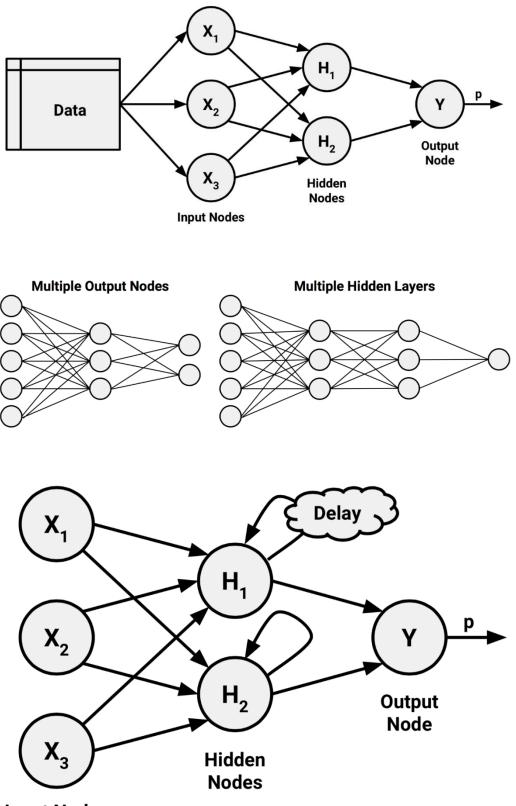
Chapter 07: Black Box Methods – Neural Networks and Support Vector Machines



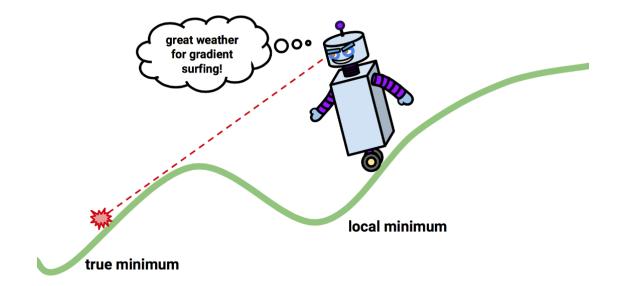








Input Nodes



Neural network syntax

using the neuralnet() function in the neuralnet package

Building the model:

- target is the outcome in the mydata data frame to be modeled
- predictors is an R formula specifying the features in the mydata data frame to use for prediction
- data specifies the data frame where the target and predictors are found
- hidden specifies the number of neurons in the hidden layer (by default, 1) note: use an integer vector to specify multiple hidden layers, e.g., c(2, 2)
- act.fct specifies the activation function, either "logistic" or "tanh" note: a differentiable custom activation function can also be supplied

The function will return a neural network object that can be used to make predictions.

Making predictions:

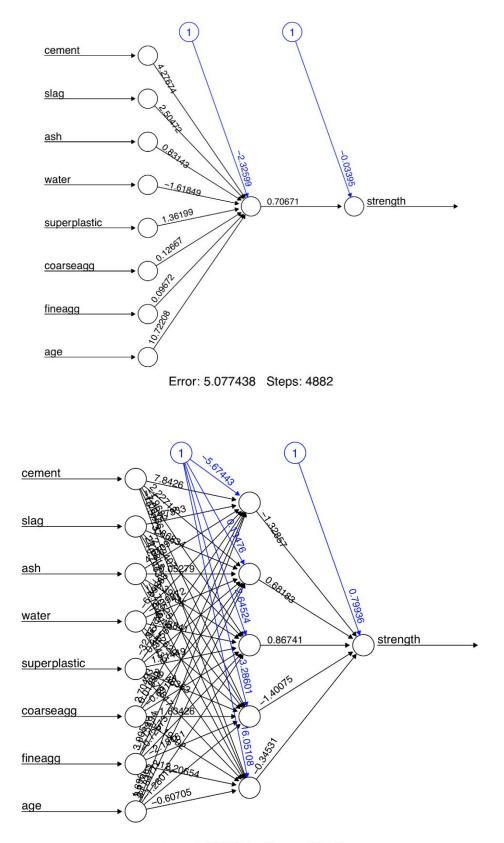
p <- compute(m, test)</pre>

- m is a model trained by the neuralnet() function
- **test** is a data frame containing test data with the same features as the training data used to build the classifier

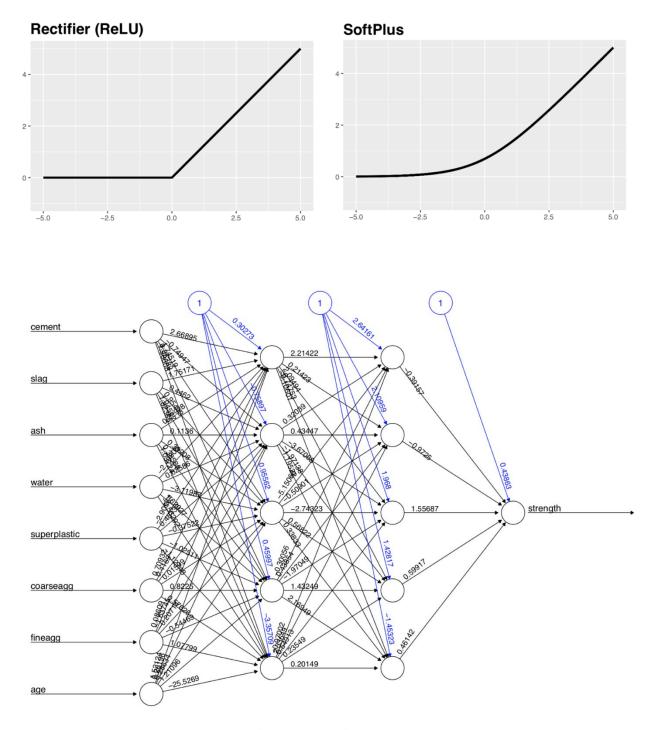
The function will return a list with two components: **\$neurons**, which stores the neurons for each layer in the network, and **\$net.result**, which stores the model's predicted values.

Example:

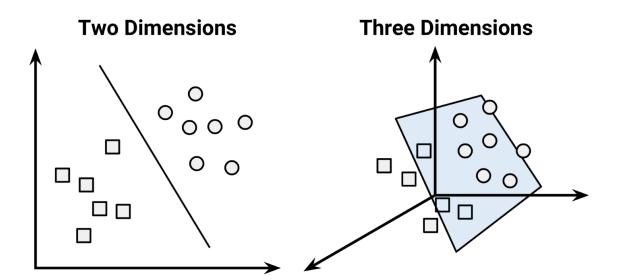
```
concrete_model <- neuralnet(strength ~ cement + slag + ash,
    data = concrete, hidden = c(5, 5), act.fct = "tanh")
model_results <- compute(concrete_model, concrete_data)
strength_predictions <- model_results$net.result</pre>
```

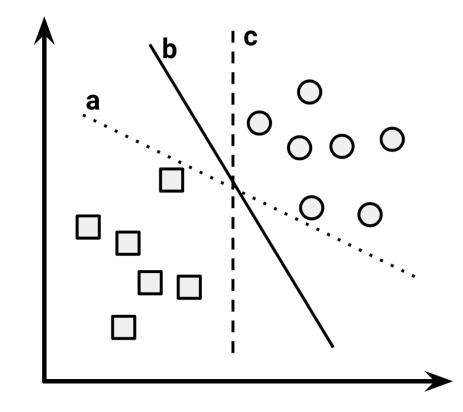


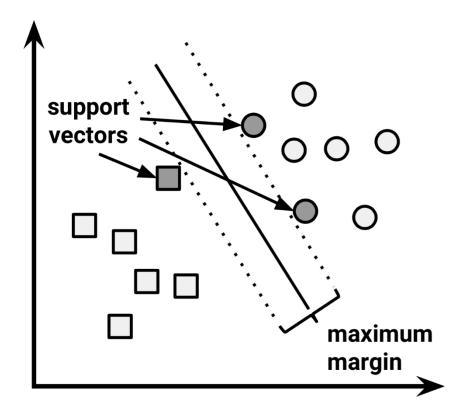
Error: 1.626684 Steps: 86849

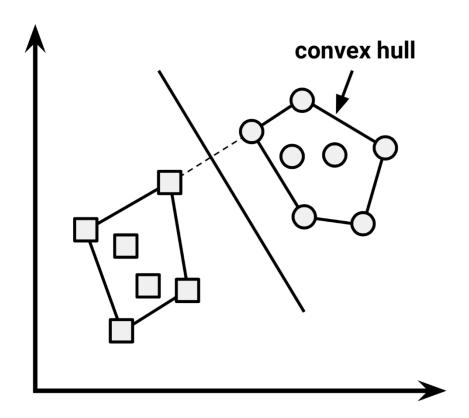


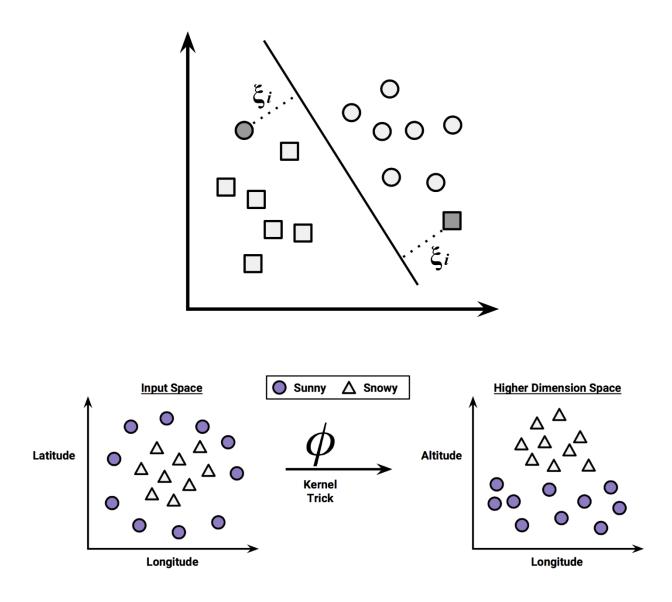
Error: 1.666068 Steps: 88240











A AMA $\Delta A \Delta A$ B CCCcCccCQ FFQFFFFFF ?(G,

Support vector machine syntax

using the **ksvm()** function in the **kernlab** package

Building the model:

m <- ksvm(target ~ predictors, data = mydata,</pre>

kernel = "rbfdot", C = 1)

- target is the outcome in the mydata data frame to be modeled
- **predictors** is an R formula specifying the features in the **mydata** data frame to use for prediction
- data specifies the data frame in which the target and predictors variables can be found
- kernel specifies a nonlinear mapping such as "rbfdot" (radial basis), "polydot" (polynomial), "tanhdot" (hyperbolic tangent sigmoid), or "vanilladot" (linear)
- **C** is a number that specifies the cost of violating the constraints, i.e., how big of a penalty there is for the "soft margin." Larger values will result in narrower margins

The function will return a SVM object that can be used to make predictions.

Making predictions:

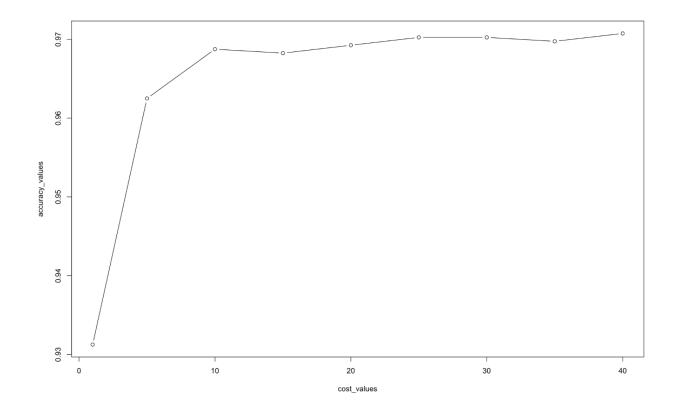
```
p <- predict(m, test, type = "response")</pre>
```

- **m** is a model trained by the **ksvm()** function
- **test** is a data frame containing test data with the same features as the training data used to build the classifier
- type specifies whether the predictions should be "response" (the predicted class) or "probabilities" (the predicted probability, one column per class level).

The function will return a vector (or matrix) of predicted classes (or probabilities) depending on the value of the type parameter.

Example:

```
letter_classifier <- ksvm(letter ~ ., data =
    letters_train, kernel = "vanilladot")
letter_prediction <- predict(letter_classifier,
    letters_test)</pre>
```

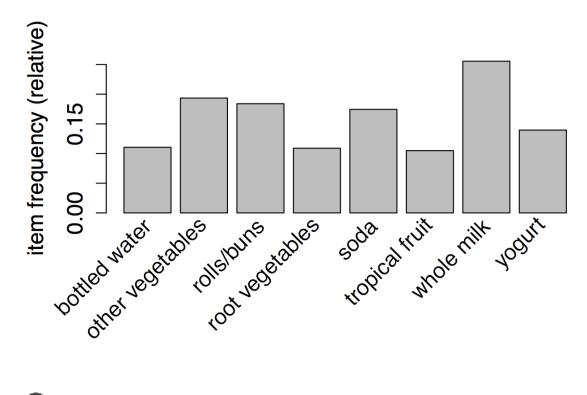


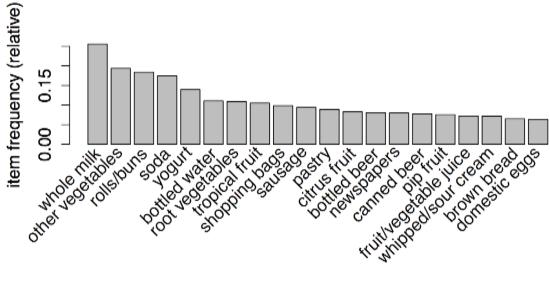
Chapter 08: Finding Patterns – Market Basket Analysis using Association Rules

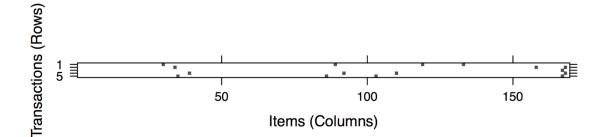
transaction ID	items purchased
1	{flowers, get well card, soda}
2	{plush toy bear, flowers, balloons, candy bar}
3	{get well card, candy bar, flowers}
4	{plush toy bear, balloons, soda}
5	{flowers, get well card, soda}

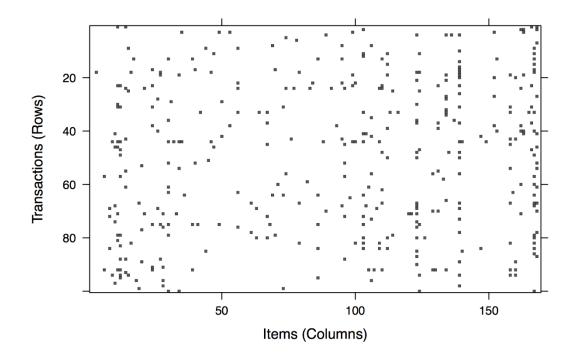
iteration	must evaluate	frequent itemsets	infrequent itemsets
1	{A}, {B}, {C}, {D}	{A}, {B}, {C}	{D}
2	{A, B}, {A, C}, {B, C} {A, D}, {B, D}, {C, D}	{A, B}, {B, C}	{A, C}
3	{A, B, C}		
4	{A, B, C, D}		

	V1	V2	V3	V4
1	citrus fruit	semi-finished bread	margarine	ready soups
2	tropical fruit	yogurt	coffee	
3	whole milk			
4	pip fruit	yogurt	cream cheese	meat spreads
5	other vegetables	whole milk	condensed milk	long life bakery product









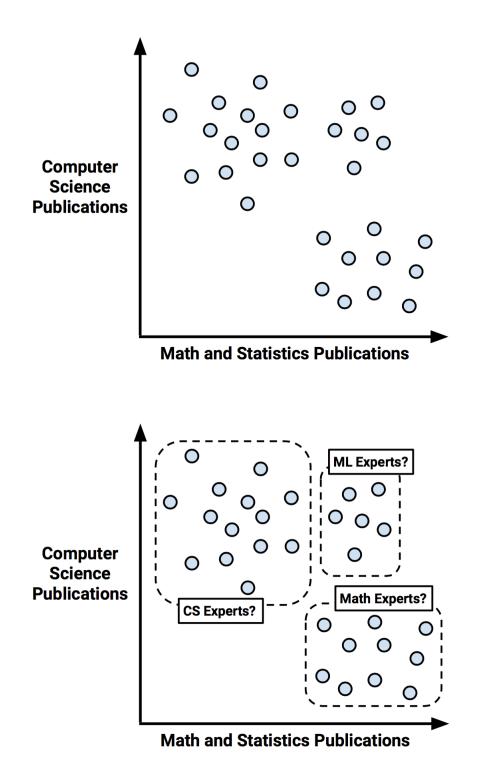
Association rule syntax using the apriori() function in the arules package Finding association rules: myrules <- apriori(data = mydata, parameter = list(support = 0.1, confidence = 0.8, minlen = 1)) data is a sparse item matrix holding transactional data support specifies the minimum required rule support confidence specifies the minimum required rule confidence minlen specifies the minimum required rule items The function will return a rules object storing all rules that meet the minimum criteria. **Examining association rules:** inspect(myrules) myrules is a set of association rules from the apriori() function ٠ This will output the association rules to the screen. Vector operators can be used on myrules to choose a specific rule or rules to view. **Example:** groceryrules <- apriori(groceries, parameter =</pre> list(support = 0.01, confidence = 0.25, minlen = 2)) inspect(groceryrules[1:3])

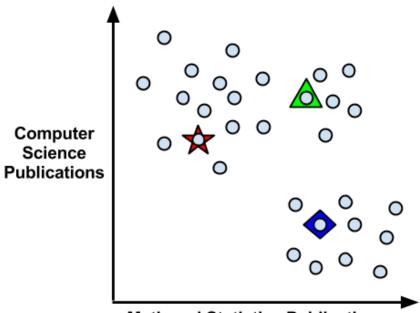
```
lhsrhssupport confidencelift1 {potted plants} => {whole milk}0.0069140820.40000001.5654602 {pasta}=> {whole milk}0.0061006610.40540541.5866143 {herbs}=> {root vegetables}0.0070157600.43125003.956477
```

```
lhs
                                                support confidence
                                                                       lift
                       rhs
                    => {root vegetables}
1 {herbs}
                                            0.007015760 0.4312500 3.956477
2 {berries}
                    => {whipped/sour cream} 0.009049314 0.2721713 3.796886
3 {other vegetables,
  tropical fruit,
                    => {root vegetables}
  whole milk}
                                            0.007015760 0.4107143 3.768074
4 {beef,
  other vegetables} => {root vegetables}
                                            0.007930859 0.4020619 3.688692
5 {other vegetables,
  tropical fruit >> {pip fruit}
                                            0.009456024 0.2634561 3.482649
```

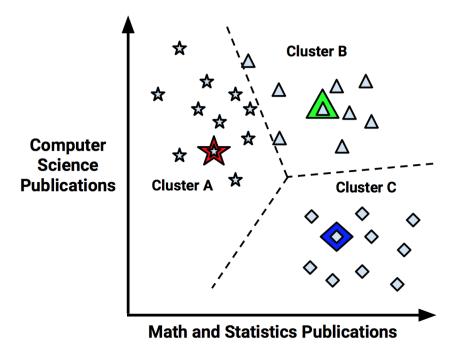
lhs rhs support confidence lift
1 {berries} => {whipped/sour cream} 0.009049314 0.2721713 3.796886
2 {berries} => {yogurt} 0.010574479 0.3180428 2.279848
3 {berries} => {other vegetables} 0.010269446 0.3088685 1.596280
4 {berries} => {whole milk} 0.011794611 0.3547401 1.388328

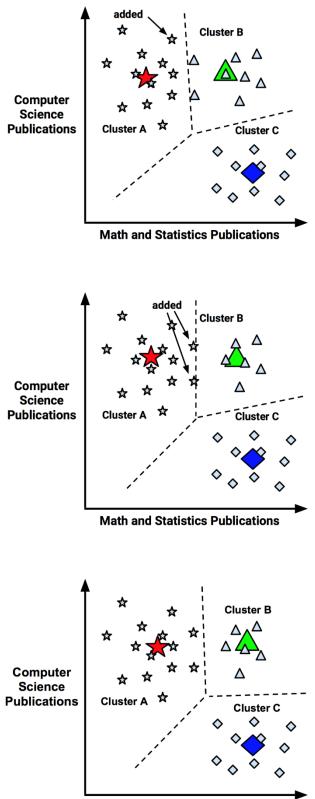
Chapter 09: Finding Groups of Data – Clustering with kmeans



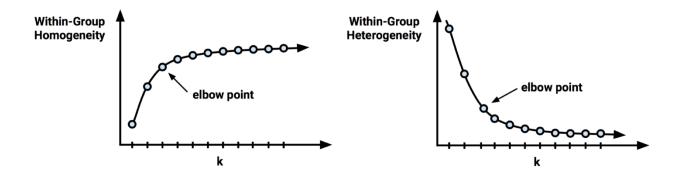


Math and Statistics Publications





Math and Statistics Publications



Clustering syntax

using the kmeans() function in the stats package

Finding clusters:

```
myclusters <- kmeans(mydata, k)</pre>
```

- mydata is a matrix or data frame with the examples to be clustered
- **k** specifies the desired number of clusters

The function will return a cluster object that stores information about the clusters.

Examining clusters:

- myclusters\$cluster is a vector of cluster assignments from the kmeans() function
- myclusters\$centers is a matrix indicating the mean values for each feature and cluster combination
- myclusters\$size lists the number of examples assigned to each cluster

Example:

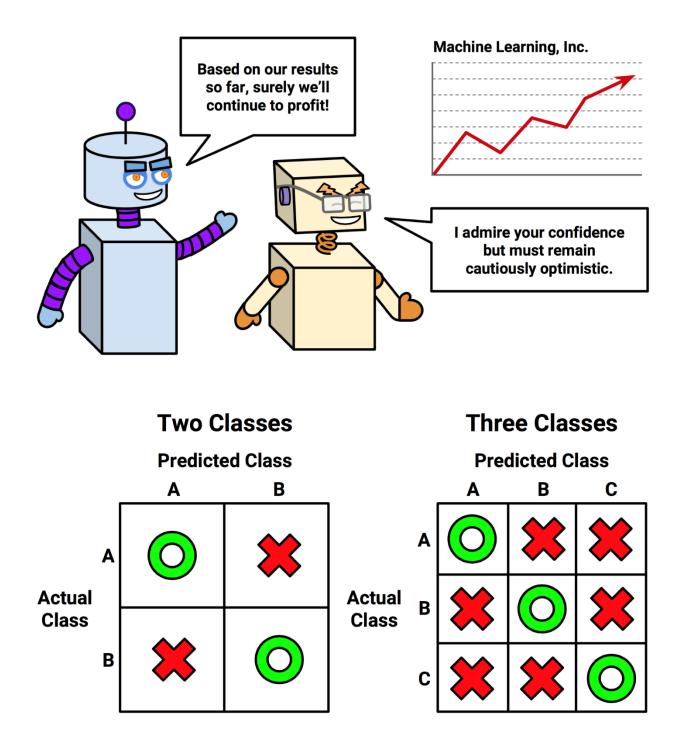
teen_clusters <- kmeans(teens, 5)</pre>

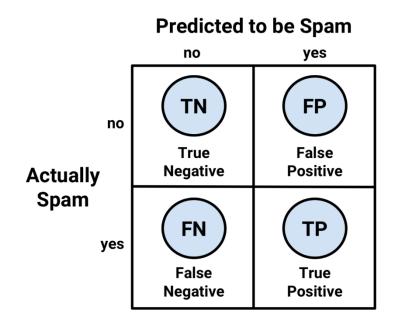
teens\$cluster_id <- teen_clusters\$cluster</pre>

<pre>> teen_clusters\$centers</pre>
basketball football soccer softball volleyball swimming
1 0.16001227 0.2364174 0.10385512 0.07232021 0.18897158 0.23970234
2 -0.09195886 0.0652625 -0.09932124 -0.01739428 -0.06219308 0.03339844
3 0.52755083 0.4873480 0.29778605 0.37178877 0.37986175 0.29628671
4 0.34081039 0.3593965 0.12722250 0.16384661 0.11032200 0.26943332
5 -0.16695523 -0.1641499 -0.09033520 -0.11367669 -0.11682181 -0.10595448
cheerleading baseball tennis sports cute sex
1 0.3931445 0.02993479 0.13532387 0.10257837 0.37884271 0.020042068
2 -0.1101103 -0.11487510 0.04062204 -0.09899231 -0.03265037 -0.042486141
3 0.3303485 0.35231971 0.14057808 0.32967130 0.54442929 0.002913623
4 0.1856664 0.27527088 0.10980958 0.79711920 0.47866008 2.028471066
5 -0.1136077 -0.10918483 -0.05097057 -0.13135334 -0.18878627 -0.097928345
sexy hot kissed dance band marching music
1 0.11740551 0.41389104 0.06787768 0.22780899 -0.10257102 -0.10942590 0.1378306
2 -0.04329091 -0.03812345 -0.04554933 0.04573186 4.06726666 5.25757242 0.4981238
3 0.24040196 0.38551819 -0.03356121 0.45662534 -0.02120728 -0.10880541 0.2844999
4 0.51266080 0.31708549 2.97973077 0.45535061 0.38053621 -0.02014608 1.1367885
5 -0.09501817 -0.13810894 -0.13535855 -0.15932739 -0.12167214 -0.11098063 -0.1532006

Cluster 1 (N = 3,376)	Cluster 2 (N = 601)	Cluster 3 (N = 1,036)	Cluster 4 (N = 3,279)	Cluster 5 (N = 21,708)
swimming cheerleading cute sexy hot dance dress hair mall hollister abercrombie shopping clothes	band marching music rock	sports sex sexy hot kissed dance music band die death drunk drugs	basketball football soccer softball volleyball baseball sports god church Jesus bible	???
Princesses	Brains	Criminals	Athletes	Basket Cases

Chapter 10: Evaluating Model Performance





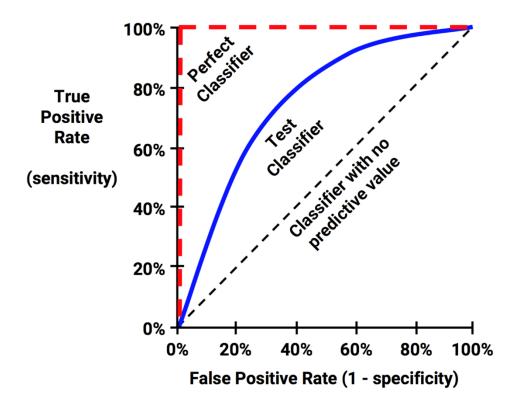
Cell Contents ------N Chi-square contribution N / Row Total N / Col Total N / Table Total

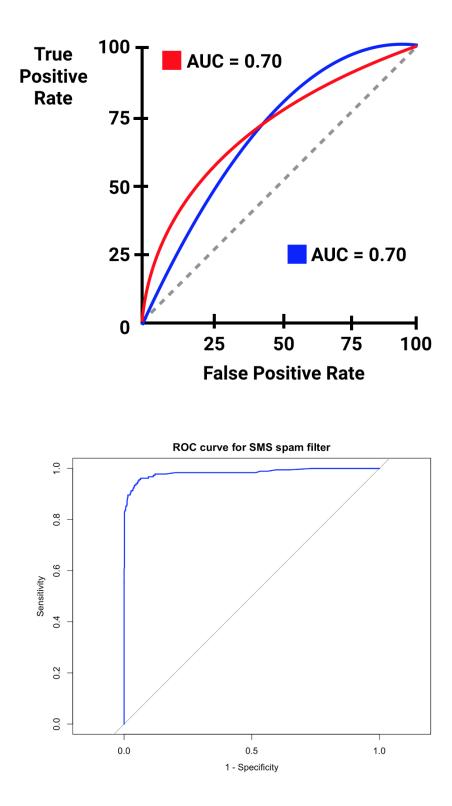
Total Observations in Table: 1390

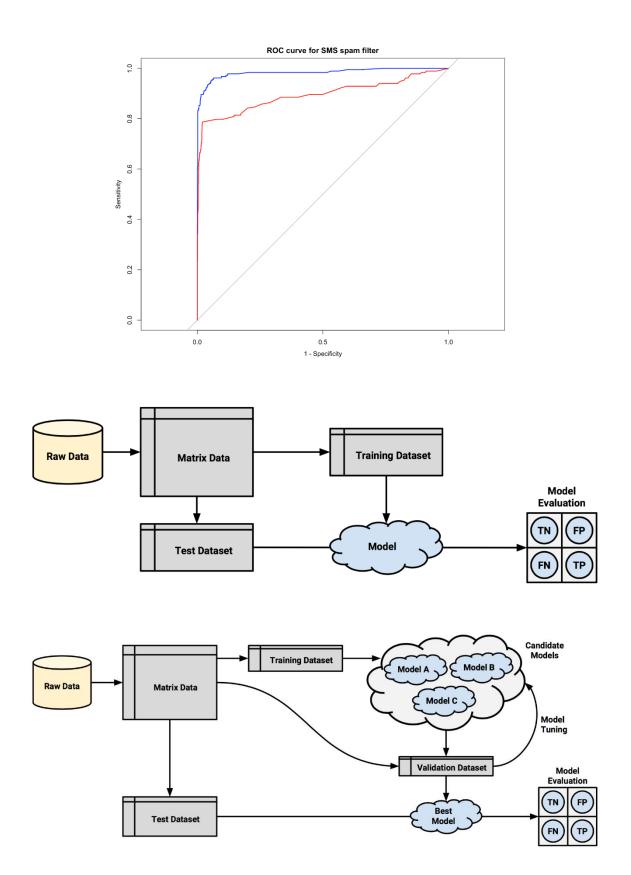
	sms_results	s\$predict_typ	be
<pre>sms_results\$actual_type</pre>	ham	spam	Row Total
ham	1203	4	1207
	16.128	127.580	
	0.997	0.003	0.868
	0.975	0.026	
	0.865	0.003	
spam	31	152	183
	106.377	841.470	
	0.169	0.831	0.132
	0.025	0.974	
	0.022	0.109	
Column Total	1234	156	1390
	0.888	0.112	

Confusion Matrix and Statistics Reference Prediction ham spam ham 1203 31 4 152 spam Accuracy : 0.9748 95% CI : (0.9652, 0.9824) No Information Rate : 0.8683 P-Value [Acc > NIR] : < 2.2e-16 Kappa : 0.8825 Mcnemar's Test P-Value : 1.109e-05 Sensitivity : 0.8306 Specificity : 0.9967 Pos Pred Value : 0.9744 Neg Pred Value : 0.9749 Prevalence : 0.1317 Detection Rate : 0.1094 Detection Prevalence : 0.1122 Balanced Accuracy : 0.9136 'Positive' Class : spam

	sms_results	s\$predict_typ	be
<pre>sms_results\$actual_type</pre>	ham	spam	Row Total
ham	1203	4	1207
	16.128	127.580	
	0.997	0.003	0.868
	0.975	0.026	
	0.865	0.003	
spam	31	152	183
	106.377	841.470	
	0.169	0.831	0.132
	0.025	0.974	
	0.022	0.109	
Column Total	1234	156	1390
	0.888	0.112	l İ







Chapter 11: Improving Model Performance

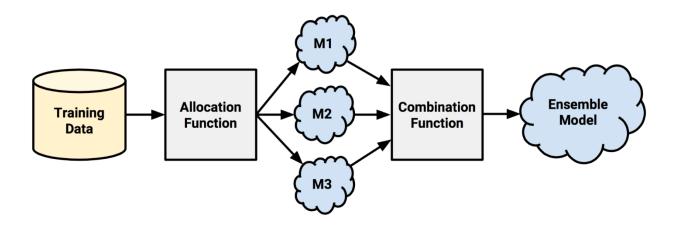
1000 samples 16 predictor 2 classes: 'no', 'yes' No pre-processing Resampling: Bootstrapped (25 reps) Summary of sample sizes: 1000, 1000, 1000, 1000, 1000, 1000, ... Resampling results across tuning parameters: model winnow trials Accuracy Kappa rules FALSE 1 0.6960037 0.2750983 rules FALSE 10 0.7147884 0.3181988 rules FALSE 20 0.7233793 0.3342634 1 rules TRUE 0.6849914 0.2513442 0.7126357 0.3156326 rules TRUE 10 rules TRUE 20 0.7225179 0.3342797 FALSE 0.6888248 0.2487963 tree 1 tree FALSE 10 0.7310421 0.3148572 20 0.7362375 0.3271043 tree FALSE tree TRUE 1 0.6814831 0.2317101 tree TRUE 10 0.7285510 0.3093354 TRUE tree 20 0.7324992 0.3200752

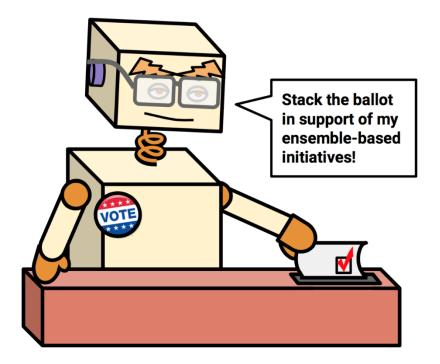
Accuracy was used to select the optimal model using the largest value. The final values used for the model were trials = 20, model = tree and winnow = FALSE.

```
1000 samples
 16 predictor
  2 classes: 'no', 'yes'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...
Resampling results across tuning parameters:
 trials Accuracy
                    Kappa
          0.735
  1
                    0.3243679
  5
          0.722
                    0.2941429
  10
          0 705
                    0 2054264
```

10	0.725	0.2954364
15	0.731	0.3141866
20	0.737	0.3245897
25	0.726	0.2972530
30	0.735	0.3233492
35	0.736	0.3193931

Tuning parameter 'model' was held constant at a value of tree Tuning parameter 'winnow' was held constant at a value of FALSE Kappa was used to select the optimal model using the one SE rule. The final values used for the model were trials = 1, model = tree and winnow = FALSE.





Random forest syntax

using the randomForest() function in the randomForest package

Building the classifier:

m <- randomForest(train, class, ntree = 500, mtry = sqrt(p))</pre>

- **train** is a data frame containing training data
- class is a factor vector with the class for each row in the training data
- ntree is an integer specifying the number of trees to grow
- mtry is an optional integer specifying the number of features to randomly select at each split (uses sqrt(p) by default, where p is the number of features in the data)

The function will return a random forest object that can be used to make predictions.

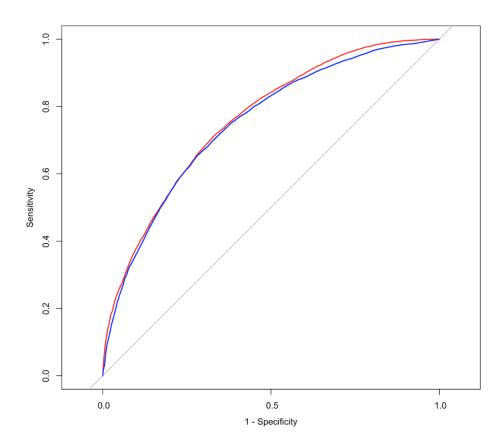
Making predictions:

- p <- predict(m, test, type = "response")</pre>
- m is a model trained by the randomForest() function
- test is a data frame containing test data with the same features as the training data used to build the classifier
- **type** is either "**response**", "**prob**", or "**votes**" and is used to indicate whether the predictions vector should contain the predicted class, the predicted probabilities, or a matrix of vote counts, respectively.

The function will return predictions according to the value of the type parameter.

Example:

```
credit_model <- randomForest(credit_train, loan_default)
credit_prediction <- predict(credit_model, credit_test)</pre>
```



Chapter 12: Specialized Machine Learning Topics

> credit_tbl

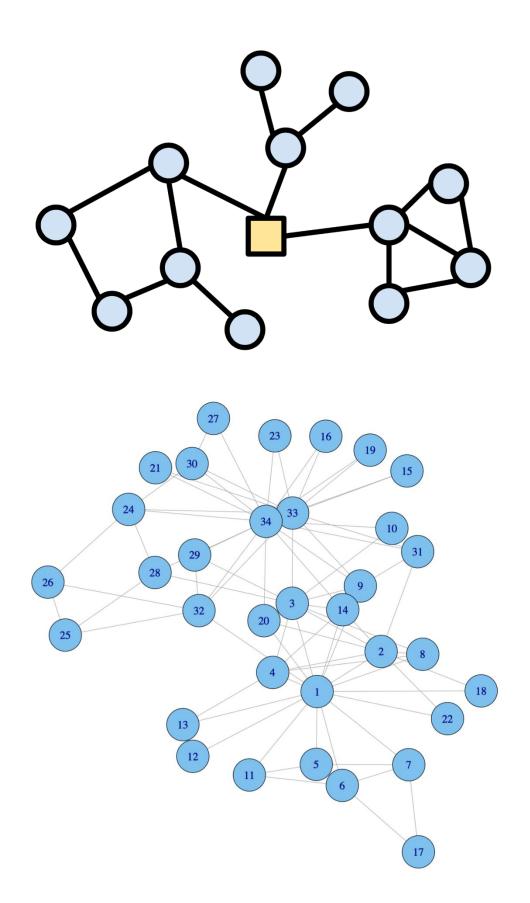
```
# A tibble: 1,000 x 17
```

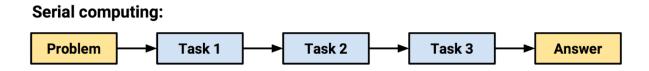
	checking_balance	months_loan_dura	<pre>credit_history</pre>	purpose	amount	<pre>savings_balance</pre>	employment_dura
	<fct></fct>	<int></int>	<fct></fct>	<fct></fct>	<int></int>	<fct></fct>	<fct></fct>
1	< 0 DM	6	critical	furnitur…	<u>1</u> 169	unknown	> 7 years
2	1 - 200 DM	48	good	furnitur…	<u>5</u> 951	< 100 DM	1 - 4 years
3	unknown	12	critical	education	<u>2</u> 096	< 100 DM	4 - 7 years
4	< 0 DM	42	good	furnitur…	<u>7</u> 882	< 100 DM	4 - 7 years
5	< 0 DM	24	poor	car	<u>4</u> 870	< 100 DM	1 - 4 years
6	unknown	36	good	education	<u>9</u> 055	unknown	1 - 4 years
7	unknown	24	good	furnitur…	<u>2</u> 835	500 - 1000 DM	> 7 years
8	1 - 200 DM	36	good	car	<u>6</u> 948	< 100 DM	1 - 4 years
9	unknown	12	good	furnitur…	<u>3</u> 059	> 1000 DM	4 - 7 years
10	1 - 200 DM	30	critical	car	<u>5</u> 234	< 100 DM	unemployed
	with 000 mono	nous and 10 mana	veniebles, see	cont of ind	ama di	the warme of mar	idoneo cinti

... with 990 more rows, and 10 more variables: percent_of_income <int>, years_at_residence <int>,

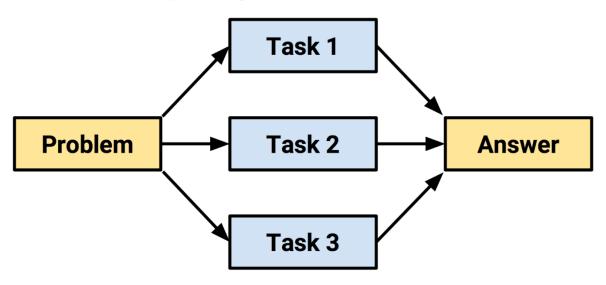
age <int>, other_credit <fct>, housing <fct>, existing_loans_count <int>, job <fct>,
dependents <int>, phone <fct>, default <fct>

New Connection	
Connect to Existing Data Sources	
🐒 Hive	>
Microsoft SQLServer	>
MySQL	>
omate Oracle	>
PostgreSQL	>
☐ SQLite	>
Livy	>
🛠 Spark	>
⑦ Using RStudio Connections	Cancel

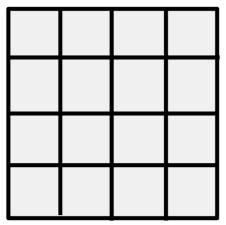




Parallel computing:



	FLOW FI	ow - Cell - Data - Model - Score -	Admin - Help -		
– Intitl	ed Flow				
		X D 2 D H > > 0			
ass	sist			Ø	OUTLINE FLOWS CLIPS
				122ms	Ω Help 👘
_					
8	Assistance				Using Flow for the first t
	Routine	Description			Quickstart Videos
C	importFiles	Import file(s) into H ₂ O			E Quickstairt Hideos
⊞	importSqlTable	Import SQL table into H ₂ O			
⊞	getFrames	Get a list of frames in H ₂ O			Or, view example Flows to explore a H ₂ O.
×	splitFrame	Split a frame into two or more frames			
	mergeFrames	Merge two frames into one			STAR H2O ON GITHUB!
æ	0	Get a list of models in H ₂ O			O Star 3,858
	0	Get a list of grid search results in H ₂ O			
•	0	Get a list of predictions in H ₂ O			GENERAL
	getJobs	Get a list of jobs running in H ₂ O			Flow Web UI
	runAutoML	Automatically train and tune many models			Importing Data
-		Build a model			Building Models Making Predictions
		Import a saved model			Using Flows
•	predict	Make a prediction			Troubleshooting Flow



CPU with 16 cores

