
Chapter 8

[1]

Developing Glow Hockey
from Scratch in Unity 5

This chapter will show you how easy it is to develop a prototype of the most popular
game on Android Market—Glow Hockey, right from scratch in Unity 5. You will learn
how to create a camera for any screen resolutions and any screen sizes. Also, there
you will see in practice how easy it is to use physics. You will learn in practice to
design beautiful effects, animations, physical behaviors, and other different real-world
features and techniques for your Android games and applications. Also, you will learn
how to optimize your project and any other real-world projects for Android devices.
Much more useful things and features will be covered in this chapter.

Game architecture
In the beginning of development, it is very useful to understand exactly what we
need as the end result. Let's start our project from game concept, its features, and
basic ideas. We have the following states in our game example:

•	 AskToBuyFullVersion

•	 MainMenu

•	 About

•	 Settings

•	 SettingsChangePaddles

•	 SettingsChangePuck

•	 Difficulty

•	 GameStarted

•	 GamePaused

•	 GameFinished

Developing Glow Hockey from Scratch in Unity 5

[2]

Glow	Hockey's	game	states,	from	the	first	to	the	seventh,	are	implemented	as	
different menu screens. The last three states—GameStarted, GamePaused, and
GameFinished—are implemented on one single game screen. The GamePaused and
GameFinished states are shown as an overlay for the main game screen. Also, in our
Glow Hockey game clone we have different game modes:

•	 Easy

•	 Medium

•	 Hard

•	 Insane

•	 TwoPlayers

The	first	four	game	modes	(Easy, Medium, Hard, and Insane) is where a player plays
against the computer's AI. Also, in our game example, there are four different colors
that you can choose from for the two paddles and the puck: yellow, red, green, and
blue. In the game settings, you can enable or disable next options, such as sounds,
particle effects, and vibration.

The screens workflow and core game
mechanics
Now, it's time to understand the main idea behind screen transitions for different
game states. This idea is very simple because all we need to do is just to enable or
disable different game objects for different game states. Of course, we should prepare
different game objects to be children for different or same parents, just as you wish.
In our game example, we grouped game objects that are tied logically to the same
game state.

The AskToBuyFullVersion screen
Let's	start	with	reviewing	our	first	game	state,	known	as	AskToBuyFullVersion, and
let's look at its object hierarchy view, as listed here.

Let's look at the Ask To Buy Full Version game object's hierarchy:

•	 Background	(a	sprite	image)
•	 The Buy button opens the Packt Publishing web URL, as an example, in our

game clone based on original Glow Hockey from the Android market.
•	 The Continue button changes the game state from AskToBuyFullVersion

to MainMenu.

Chapter 8

[3]

The following game objects are always active in our game:

•	 Back Camera

•	 Audio Controller

•	 Main Camera

•	 Game

•	 Screen Transition

All other game objects are enabled or disabled based on the current game state.

The MainMenu screen
The MainMenu screen is based on the same game state and it is shown in the
following screenshot:

Developing Glow Hockey from Scratch in Unity 5

[4]

In order to make a transition from the AskToBuyFullVersion game state to the
MenuMain game state, we need to disable the Ask To Buy Full Version game
object and enable the Menu Main and Menu Background game objects. The Menu
Background game object must be disabled only for the following game states:

•	 AskToBuyFullVersion

•	 GameStarted

•	 GamePaused

•	 GameFinished

For	all	other	game	states	(except	the	four	states	listed	earlier	in	the	text),	the	Menu
Background game object must be activated. The Menu Main game screen has the
following game object's hierarchy:

•	 Title	(a	sprite	image)
•	 The One Player button changes the game state from MainMenu to

Difficulty.
•	 The Two Players button changes the game state from MainMenu to

GameStarted. Also, this button changes the game mode to TwoPlayers.
•	 The Settings button changes the game state from MainMenu to Settings.
•	 The More Apps button opens on the Android devices Packt Publishing

market URL as an example in our game.
•	 The About button changes the game state from MainMenu to About.

The Difficulty screen
The Difficulty screen is based on the same game state and it is shown in the
following screenshot. In order to make the transition from the MainMenu game state
to the Difficulty	game	state	(by	pressing	the	1 Player button), we need to disable
the Menu Main game object and to enable the Menu Difficulty game object which
has the following structure:

•	 The Easy button changes the game state from Difficulty to GameStarted.
Also, this button changes the game mode to Easy.

•	 The Medium button changes the game state from Difficulty to
GameStarted. Also, this button changes the game mode to Medium.

•	 The Hard button changes the game state from Difficulty to GameStarted.
Also, this button changes the game mode to Hard.

•	 The Insane button changes the game state from Difficulty to GameStarted.
Also, this button changes the game mode to Insane.

Chapter 8

[5]

•	 The Back button changes the game state from Difficulty to MainMenu.

The Settings screen
The Settings screen is based on the same game state and it is shown in the
following	figure.	In	order	to	make	the	transition	from	the	MainMenu game state to the
Settings	game	state	(by	pressing	the	Settings button), we need to disable the Menu
Main game object and to enable the Settings game object. The Settings game
object's hierarchy is listed here:

•	 The	window	(a	sprite	image)
•	 The	hockey	table	(two	paddles,	one	puck,	a	pause	icon,	and	two	scores	for	

both players)
•	 The Particles	button	(with	cross	image	to	enable	and	disable	this	setting)	

disables and enables particle effects.

Developing Glow Hockey from Scratch in Unity 5

[6]

•	 The Sounds	button	(with	cross	image	to	enable	and	disable	this	setting)	
disables and enables sounds.

•	 The Vibrate	button	(with	cross	image	to	enable	and	disable	this	setting)	
disables and enables vibration.

•	 The Change Paddles button changes the game state from Difficulty to
SettingsChangePaddles.

•	 The Change Puck button changes the game state from Difficulty to
SettingsChangePuck.

•	 The Back button changes the game state from Difficulty to MainMenu.
•	 The	preview	label	is	just	an	empty	game	object	(it	is	not	visible).	Therefore,	

you can completely remove it or you can make MeshText from it as an
example to show any desired label for your game.

Chapter 8

[7]

The ChangePaddles screen
The ChangePaddles screen is based on the same game state and it is shown in the
following screenshot. In order to make a transition from the Settings game state to
the ChangePaddles	game	state	(by	pressing	the	Change Paddles button), we need
to disable the Settings game object and to enable the Change Paddles game object.
The Change Paddles game object's hierarchy is listed as follows:

•	 The	window	(a	sprite	image)
•	 Selection Player 1	(a	sprite	image)
•	 Selection Player 2	(a	sprite	image)
•	 The	red	paddle	button	(player	1)	changes	the	Selection Player 1 game

object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

•	 The	yellow	paddle	button	(player	1)	changes	the	Selection Player 1 game
object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

•	 The	blue	paddle	button	(player	1)	changes	the	Selection Player 1 game
object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

•	 The	green	paddle	button	(player	1)	changes	the	Selection Player 1 game
object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

•	 The	red	paddle	button	(player	2)	changes	the	Selection Player 2 game
object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

•	 The	yellow	paddle	button	(player	2)	changes	the	Selection Player 2 game
object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

•	 The	blue	paddle	button	(player	2)	changes	the	Selection Player 2 game
object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

Developing Glow Hockey from Scratch in Unity 5

[8]

•	 The	green	paddle	button	(player	2)	changes	the	Selection Player 2 game
object's position to be equal to its own position. Also, it saves the current
chosen paddle type, which is displayed in the Settings and Game screens on
their hockey tables.

•	 The Back button changes the game state from ChangePaddles to Settings.

The ChangePuck screen
The ChangePuck screen is based on the same game state and is shown in the
following screenshot. In order to make the transition from the Settings game state
to the ChangePuck	game	state	(by	pressing	the	Change Puck button), we need to
disable the Settings game object and enable the Change Puck game object. The
Change Puck game object's hierarchy is listed here:

•	 The	window	(a	sprite	image)
•	 The	selection	puck	(a	sprite	image)

Chapter 8

[9]

•	 The red puck button changes the Selection Puck game object's position
to be equal to its own position. Also, it saves the current chosen puck type,
which is displayed in the Settings and Game screens on their hockey tables.

•	 The yellow puck button changes the Selection Puck game object's position
to be equal to its own position. Also, it saves the current chosen puck type,
which is displayed in the Settings and Game screens on their hockey tables.

•	 The blue puck button changes the Selection Puck game object's position
to be equal to its own position. Also, it saves the current chosen puck type,
which is displayed in the Settings and Game screens on their hockey tables.

•	 The green puck button changes the Selection Puck game object's position
to be equal to its own position. Also, it saves the current chosen puck type,
which is displayed in the Settings and Game screens on their hockey tables.

•	 The Back button changes the game state from ChangePaddles to Settings.

Developing Glow Hockey from Scratch in Unity 5

[10]

The About screen
The About screen is based on the same game state and it is shown in screenshot here.
In order to make the transition from the MainMenu game state to the About game
state	(by	pressing	the	About button), we need to disable the Menu Main game object
and enable the About game object. The About game object's hierarchy is listed here:

•	 The	version	(a	root	game	object	of	sprite	images)	shows	the	current	game	
version as an example version equal to 123.

•	 The Back button changes the game state from About to MainMenu.

Chapter 8

[11]

The Game screen
The Game screen is based on the main game state known as GameStarted, which
is shown in the following screenshot. In order to make the transition from the
MainMenu game state to the GameStarted	game	state	(by	pressing	the	2 Players
button), we need to disable the Menu Main and the Menu Background game objects
and enable the Game Table game object. Also, there is a second way to make the
transition from another game state known as the Difficulty game state to the
GameStarted game state by pressing one of the following buttons:

•	 Easy
•	 Medium
•	 Hard
•	 Insane

Thus, we have to disable the Difficulty and Menu Background game objects and
enable the Game Table game object. Also, you should remember that the Game
Table game object will only be active on the following game states and not on others:

•	 GameStarted

•	 GamePaused

•	 GameFinished

The Game Menu Pause game object and the Game Over game object will be active
only on the states GamePaused and GameFinished, respectively. The Game Table
game object's hierarchy is listed here:

•	 The	borders	(2D	physics	for	Hockey Table in conjuction with sprite images)
•	 The	goal	(a	sprite	image	in	conjuction	with	animation)
•	 The	hockey	table	(two	paddles,	one	puck,	two	scores,	two	gates,	and	two	

player buttons) game object's hierarchy is listed here:
 ° The	Player	1	button:	This	is	the	first	player	button	with	its	limits	

defined	by	the	child	game	object's	(Player	Zone)	world	scale	values:	
limit width = PlayerZone.transform.lossyScale.x
limit height = PlayerZone.transform.lossyScale.y

 ° The	Player	2	button:	This	is	the	second	player	button	with	its	limits	
defined	by	the	child	game	object's	(Player	Zone)	world	scale	values:	
limit width = PlayerZone.transform.lossyScale.x
limit height = PlayerZone.transform.lossyScale.y

 ° Player	Gate	1:	This	is	the	first	player	gate	(hidden	physics)
 ° Player	Gate	2:	This	is	the	second	player	gate	(hidden	physics)

Developing Glow Hockey from Scratch in Unity 5

[12]

 ° Paddle	Player	1:	This	is	the	first	player	paddle	(with	four	glow	
overlay images for highlighting)

 ° Paddle	Player	2:	This	is	the	second	player	paddle	(with	four	glow	
overlay images for highlighting)

 ° The	puck	(a	sprite	image	and	2D	physics	with	four	glow	overlay	
images for highlighting)

 ° Player	Score	1	(a	sprite	image)
 ° Player Score 2	(sprite	image)

•	 The Pause button changes the game state from GameStarted to GamePaused.
Notice that this button has to be touchable only on the GameStarted state.

•	 Tap	To	Pause	(a	sprite	image	with	animation)
•	 Win/Lose	(a	sprite	images	with	animation)

Chapter 8

[13]

The GamePaused screen
The GamePaused screen is based on the same game state and it is shown in the
following screenshot. In order to make the transition from the GameStarted game
state to the GamePaused game state, by pressing the Pause button, we have to enable
the Game Menu Pause game object over the Game Table game object, without any
deactivation for the Game Table game object. We did the same thing many times
earlier in this chapter. The Game Menu Pause game object's hierarchy is listed here:

•	 A	dark	screen	(a	black	transparent	image	for	a	darkness	effect	while	game	
is paused)

•	 The Pause	label	(a	sprite	image	for	title)
•	 The Resume button changes the game state from GamePaused to

GameStarted by disabling the Game Menu Pause game object.
•	 The Particles	button	(with	a	cross	image	to	enable	and	disable	this	setting)	

disables and enables particle effects.
•	 The Sounds	button	(with	a	cross	image	to	enable	and	disable	this	setting)	

disables and enables sounds.
•	 The Vibrate	button	(with	a	cross	image	to	enable	and	disable	this	setting)	

disables and enables vibration.

Developing Glow Hockey from Scratch in Unity 5

[14]

•	 The Quit button changes the game state from GamePaused to MainMenu
by disabling the Game Table and Game Menu Pause game objects and by
enabling the Menu Main and Menu Background game objects.

The GameFinished screen
The GameFinished screen is based on the same game state and it is shown in the
following screenshot. In order to make the transition from the GameStarted game
state to the GameFinished game state, by achieving the upper score limit by one of two
available player scores, we have to enable the Game Over game object over the Game
Table game object, without any deactivation of the Game Table game object just as in
the GamePaused state. The Game Over game object's hierarchy is listed here:

•	 A	dark	screen	(a	black	transparent	image	for	darkness	effect	while	the	game	
is over)

•	 The Try Again button changes the game state from GameFinished to
GameStarted by initializing the Game Table game object as you will see in
our C# code-bundle available to download from the Packt Publishing website
(here	is	a	little	bit	different	action	than	it	was	in	the	GamePaused state).

Chapter 8

[15]

•	 The Quit button changes the game state from GameFinished to MainMenu by
disabling the Game Table and Game Over game objects and by enabling the
Menu Main and Menu Background game objects as in the GamePaused state.

The project settings
The	first	step	is	to	set	up	our	project	settings.	Quality Settings and Player Settings
are the most important and useful settings for any project are. For the current Glow
Hockey game clone example, it will be enough to have the fastest preset values for
Android and all other platforms too. Choose the right values for your game by
playing and testing a little bit around them. We do not need to touch all other project
settings	(except	Quality Settings and Player Settings), and they can have all have
default values. Also, most options have default values in Quality Settings and in
Player Settings too.

An overview of the folder hierarchy
It	is	very	useful	first	to	prepare	global	project	settings	and,	after	that,	to	prepare,	
folder hierarchy for future images, fonts, sounds, scripts, prefabs, materials, physic
materials, and all other types of assets. For huge projects, it is very useful to separate
different textures from different modules in their own directories. Therefore, it
is a very good idea for huge projects to imagine different modules as completely
standalone projects with their own folder hierarchy, sounds, textures, scripts, and
many other assets.

Developing Glow Hockey from Scratch in Unity 5

[16]

The famous five
In	this	section,	you	will	discover	in	great	details	about	five	game	objects	that	are	
always active in our game example, as we mentioned them all in the previous
section.	Let's	list	these	famous	five	game	objects	that	must	be	always	
active in our game:

•	 Back Camera

•	 Audio Controller

•	 Main Camera

•	 Game

•	 Screen Transition

All other game objects are enabled or disabled based on the current game state.

The Back Camera object
Now, it is time to look into Unity Inspector, starting with the Back Camera game
object components and its parameters. In this game object, only the Camera
component attached. Therefore, this camera just renders nothing except black color,
instead of any other background image, for example, or instead of maybe some cool
and	fantastic	effects	in	conjunction	with	3D	models	and	animations,	just	as	you	wish	
and as you imagine it.

The Audio Controller object
Let's look closely at Unity Inspector, starting with the Audio Controller
game object's components and its parameters. This game object is attached to
the AudioController and AudioSource components. The AudioController
component	is	our	custom	script,	which	has	11	different	sounds	attached	to	its	list.	The	
AudioSource component is built-in the Unity component. The AudioController
component is a singleton class, which is implemented by a static instance variable as
described here:

// First of all we need to define using UnityEngine namespace,
// which is very similar to import packages in Java language.
using UnityEngine;

// Define your namespace name, as an example GlowHockey is good
enough.
namespace GlowHockey {

// Tell Unity that this script is based on AudioSource component.

Chapter 8

[17]

// So Unity will care instead of you about checking and attaching
// this component if required. Thus you can be sure that static
// AudioSource component anytime is not equal to null value,
// with the least efforts provided by you.
[RequireComponent(typeof(AudioSource))]

// Let's define AudioController class which inherits from
// MonoBehaviour base component. MonoBehaviour class allows us to
// attach our custom script on any game object in any scene,
// as all other built-in components. Also MonoBehaviour provides
// many different and very useful callbacks,
// or in other words functions,
// which Unity calls at specified time points.
// We need just a few basic callbacks from MonoBehaviour class.
public class AudioController : MonoBehaviour {

// Let's define our public list of sounds we need to use.
// In our game example we need just
// eleven sounds as is shown in figure below.
 public AudioClip[] audioClips;

// We need this private temporary sound variable,
// which will be used a bit later.
 private AudioClip _audioClip;

// Private static instance variable to implement singleton class.
 private static AudioController _instance;

// Public static instance property in order to get
// this variable from other scripts as AudioController.Instance
// call. It is a very good style to make public get/set methods
// for private variables. So you can control limits or any other
// required conditions for your variables.
// In our example we have to control nothing.
// All we need do is just to return private instance.
 public static AudioController Instance {
 get {
 return _instance;
 }
 }

// Unity calls this callback/function only once when the script
// instance is being loaded, before any other callbacks

Developing Glow Hockey from Scratch in Unity 5

[18]

// on the same script.
 void Awake() {

// First of all we should check if our game scene
// has already AudioController instance. If it has,
// then we should destroy this game object immediately
// and also immediately return from this function, because
// we must implement singleton pattern for this class.
 if (null != _instance) {
 DestroyImmediate(gameObject);
 return;
 }

// Otherwise if current game scene has not any instance of
// AudioController class then we should save this object
// in our private static instance variable,
// in order to access it further from different scripts.
 _instance = this;
 }

// Following function FindAudioClipByName finds sound by name,
// and returns that sound from our public list,
// which was defined a bit earlier. If function cannot find
// desired sound by name then it simply returns null value.
 AudioClip FindAudioClipByName(string name) {
 if (null == audioClips) return null;

 foreach (AudioClip ac in audioClips) {
 if (ac.name.Equals(name)) {
 return ac;
 }
 }

 return null;
 }

// Next public function PlaySound plays sound by name.
 public void PlaySound(string name) {

// First of all we must to check if sounds are disabled,
// then we should return immediately from this function.
// Game class also implements singleton

Chapter 8

[19]

// pattern by static instance property.
// Game class will be described a bit later.
// It is also located in this Famous Five section,
// as was mentioned earlier.
 if (false == Game.Instance.areSoundsEnabled) return;

// Now we can use our FindAudioClipByName function,
// which was described above, in order to find sound by name.
 _audioClip = FindAudioClipByName(name);

// If we cannot find sound by name in our public list,
// then our private variable will be equal to null value,
// and we will have to return from this function immediately.
 if (null == _audioClip) return;

// Static audio component variable was removed in version 5.0.0
// Property audio has been deprecated.
// So you should use GetComponent<AudioSource>() instead.
// We know that there must be attached AudioSource,
// it cannot be equal to null value, thus we can
// play sound that was found by given name as a parameter.
 GetComponent<AudioSource>().PlayOneShot(_audioClip);
 }
}

The AudioController	class	finds	a	sound	by	name,	and	returns	that	sound	from	our	
public	list	in	order	to	play	it.	If	the	function	cannot	find	the	desired	sound	by	name,	
then it simply returns a null value which means that it cannot play the sound.

After the AudioController game object is ready and all its component values have
the correct values, we can play any desired sound by name in any of our scripts, as
shown here:

AudioController.Instance.PlaySound("Your Sound Name");

As you can see, it is very fast and useful to write one line of code, in order to call a
function, which plays a sound by your given name. As a very convinient example
here, you should know that, for all our many different buttons and other game
objects, we play any desired sound at the required time with no effort at all and just
a single line of code.

Developing Glow Hockey from Scratch in Unity 5

[20]

The Main Camera object
Let's look closely at the Main Camera game object components and its parameters.

The following components are attached to this game object:

•	 Camera: This component is a built-in Unity component
•	 AudioListener: This component is a built-in Unity component
•	 CameraGrid:	This	is	our	custom	component	(this	class	inherits	from	

MonoBehaviour)
•	 CameraRatio:	This	is	our	custom	component	(this	class	inherits	from	

MonoBehaviour)

You can see our values for all components by downloading our C# code-bundle
available from the Packt Publishing website, therefore, it should be easy enough
to recreate the whole Main Camera	game	object	needed	our	game	example.	Do	not	
forget	to	set	the	correct	tag	(MainCamera), so we can use this camera instance using
the public static variable from the Camera	class	(Camera.main) in our different
custom scripts.

Now,	let's	discover	the	next	component	that	helps	us	fit	our	game	for	any	screen	
size and resolution correctly by keeping your target aspect ratio, so your images will
not be broken. The aspect ratio will always be the same as your desired target ratio.
You may use this script for almost all your projects, especially for all your menu
interfaces:

// As always we need to define using UnityEngine namespace,
// which is very similar to import packages in Java language.
using UnityEngine;

namespace CameraTools {
//[ExecuteInEditMode]
 public class CameraRatio : MonoBehaviour {

// Public float values by which we can control our target
// aspect ratio and how camera should render its graphics.
 public float heightKoefficient = 0.5f, widthKoefficient = 0.5f,
WIDTH = 640.0f, HEIGHT = 960.0f;

// Attached camera on this public variable.
// If there is attached no camera, then this value
// will be equal to null value, and in this case
// we have to use Camera.main static reference.

Chapter 8

[21]

 public Camera cam;

// We can tell Unity to hide this public variables.
// These four public float variables will be adjusted
// automatically right in the following code.
// But it is very useful for debug purposes to see its
// current values right in Unity Inspector window.
//[HideInInspector]
 public float targetAspect, windowAspect, scaleHeight, scaleWidth;

// Private rectangle variable we will use as a temporarily.
 private Rect _rect;

// Let's initialize our public camera variable. It was
// specially created to save reference for required camera.
// Unity calls this function just only once before
// Update function and after Awake callback.
// Unity calls Start function on the frame
// when a script is enabled.

// Awake and Start methods are called exactly
// once during their lifetime. Awake function is called only
// in event of script instance is already initialized.
// Awake is triggered when the script is enabled and disabled,
// in both situations. However, Start method is called only when
// the script is enabled, and of course when the script
// is initialized, cause initialization comes by first step.

// First of all, as was mentioned a bit earlier, will be called
// Awake method on all objects in our scene and only after that
// will be called Start method on all those objects.
// Where objects are instantiated during gameplay,
// their Awake function will naturally be called after
// the Start functions of scene objects have already completed.
 void Start() {
 if (null == cam) {
 cam = gameObject.GetComponent<Camera>();
 if (null == cam) cam = Camera.main;
 }
 }

// Unity calls Update function every frame,
// in event of the MonoBehaviour component is enabled.

Developing Glow Hockey from Scratch in Unity 5

[22]

// This function Unity calls as fast as possible.
// So on slow devices Unity calls this function less times, than
// Unity calls this function on more powerfull devices.
// FixedUpdate Unity's callback is called always the same amount
// of times on any device, without any dependence from slow or
// powerfull devices. FixedUpdate function is very useful if
// you are required to move for example your game object
// with the constant speed at any time and on any devices,
// so the speed will not depend on device's performance.
 void Update()
 {
// Let's determine our target aspect ratio, which
// is controlled by two public float values: WIDTH & HEIGHT.
 targetAspect = WIDTH / HEIGHT;

// Determine the game window's current aspect ratio.
 windowAspect = (float)Screen.width / (float)Screen.height;

// Current viewport height should be scaled by this amount.
 scaleHeight = windowAspect / targetAspect;

// If scaled height is less than current height, add letterbox
 if (scaleHeight < 1.0f)
 {
 _rect = cam.rect;

// Width is less than Height, that's why
// Width can be visible 100%, but Height is
// only visible partly, because it is bigger than
// our Width, and we can see only scaleHeight * 100%
// in percents.
 _rect.width = 1.0f;
 _rect.height = scaleHeight;

// Let's define how should be adjusted our camera's
// viewport. It can be positioned right in the center, if
// heightKoefficient will be between 0 and 1, so if it
// will be equal to 0.5 float value. 0 value means
// that camera should stay on the bottom side, and 1 value
// means that camera should stay on the top side.
// You should just to play a little bit around these values
// in real-time and this will help you to understand how

Chapter 8

[23]

// things are going behind it and how do they must work.
 _rect.x = 0;
 _rect.y = (1.0f - scaleHeight) * heightKoefficient;

 cam.rect = _rect;
 }
 else // add pillarbox
 {
// If scaleHeight is greater or equal to 1.0 float value,
// then scaleWidth float value is inversely proportional
// to scaleHeight float value, then it must be less
// than 1.0 float value.
 scaleWidth = 1.0f / scaleHeight;

 _rect = cam.rect;

// Height is less than Width, that's why
// Height can be visible 100%, but Width is
// only visible partly, because it is bigger than
// our Height, and we can see only scaleWidth * 100%
// in percents.
 _rect.width = scaleWidth;
 _rect.height = 1.0f;

// Let's define how should be adjusted our camera's
// viewport. It can be positioned right in the center, if
// widthKoefficient will be between 0 and 1, so if it
// will be equal to 0.5 float value. 0 value means
// that camera should stay on the left side, and 1 value
// means that camera should stay on the right side.
// You should just to play a little bit around these values
// in real-time and this will help you to understand how
// things are going behind it and how do they must work.
 _rect.x = (1.0f - scaleWidth) *
widthKoefficient;
 _rect.y = 0;

 cam.rect = _rect;
 }
 }
 }
}

Developing Glow Hockey from Scratch in Unity 5

[24]

The Core Game objects
As mentioned earlier, the Core Game objects are listed here. If you have any ideas on
how to improve this game or how to make any other type of game from this project,
then you can easily adjust and edit all the required states, as well as all the other
properties:

public enum State {
 AskToBuyFullVersion,
 MainMenu,
 About,
 Settings,
 SettingsChangePaddles,
 SettingsChangePuck,
 Difficulty,
 GameStarted,
 GamePaused,
 GameFinished
}

In order to determine when our game's state was changed, we need to have one
private variable known as _currGameState. Also, we need another private variable
known as _prevGameState in order to save the previous game state, which will be
used	later	in	this	script	to	define	if	it	is	required	to	initialize	the	Game Table instance.

As mentioned earlier, there are also different game modes:

public enum Mode {
 Easy, Medium, Hard, Insane, TwoPlayers
}

Also, we have just four different types of colour for the two paddles and puck:

public enum PaddlePuckType {
 Yellow, Red, Green, Blue
}

In our game, we have three different settings that can be enabled or disabled in the
Settings or GamePaused game states:

public enum Settings {
 Particles, Sounds, Vibrate
}

Chapter 8

[25]

We made a Game singleton implementation via a public static instance getter
property, as you will see in our C# codebundle available to download from Packt
Publishing website. We need a sprite renderer's reference to use animation with its
alpha	channel	in	co-routines,	a	float	value	to	control	its	speed,	and	just	a	temporary	
private color variable. This sprite renderer's reference must be attached to the Screen
Transition game object from our game scene. There are different possible solutions
and the simplest way is just to drag and drop the required game object to the right
property slot in the Unity editor.

The Screen Transition object
We use screen transition each time the game state is changed. As you can see in the
C# code bundle available to download from the Packt Publishing website, this screen
transition is needed to smoothly show the menu background.

The buttons implementation
The	first	two	scripts	are	core	for	all	buttons.	You	can	use	them	in	any	project.	Also,	it	
is not a problem to extend next scripts because they are pretty simple and very useful
at the same time. We hope that the following scripts, like any other code examples
from this book, will be very helpful for your projects.

The InputController.cs script
The following script/component is as simple as the others, as the InputController
component calls the button's functions, and after that, the Button component
calls the ButtonAction function. Only when it is required, you will see our C#
codebundle available to download from Packt Publishing website.

The Button.cs script
The following script/component is as simple as the others, as the InputController
component calls the button's functions, and after that, the Button component calls
the ButtonAction	function	when	it	is	required	(as	we	discovered	one	step	ago).

Developing Glow Hockey from Scratch in Unity 5

[26]

The EnableInputOnState.cs script
Next, we need a public game state variable for this component in order to adjust it with
the correct value in Unity Inspector without extending the code for many different
buttons. The private variable is a reference to the instance of your InputController
component attached to the same game object, where this component is attached too.
Anytime, Unity will care for us, that this instance of InputController will not be
equal to a null value. We should use this script just for the players' buttons and the
Pause button, as you can see in the C# code bundle available to download from Packt
Publishing website.

The ButtonBuyFullVersion.cs script
The following script/component is as simple as many others, as the
InputController component calls the button's functions, and after that the Button
component calls the ButtonAction function, only when it is required. We can adjust
different URLs for different buttons in Unity Inspector without having to write new
code or to extend current code. The Button component calls the next function shown
in the following code snippet via the SendMessage method:

void ButtonAction() {
 // The main idea of this button is just to open url.
 Application.OpenURL(openUrl);
}

We should use this script just for one button, as you will see in the current Unity C#
project available for downloading from Packt Publishing website.

The ButtonChangeGameState.cs script
We can adjust different states for different buttons in Unity Inspector without having
to	write	the	new	code	or	to	extend	current	code	by	defining	the	next	public	variable	
with different values for different buttons as we made for many of our buttons:

public Game.State changeGameState = Game.State.MainMenu;

The Button component calls this function via the SendMessage method:

void ButtonAction() {
 // The main idea behind this button is just to change current game
state.
 Game.Instance.gameState = changeGameState;
}

Chapter 8

[27]

We	should	use	this	script	for	21	different	buttons	as	listed	here:

•	 The menu main screen shows the following buttons:
 ° The 1 Player button
 ° The 2 Players button
 ° The Settings button
 ° The About button

•	 The Ask to buy full version screen:
 ° The Continue button

•	 The Settings screen:
 ° The Change paddles button
 ° The Change puck button
 ° The Back button

•	 The settings change paddles screen:
 ° The Back button

•	 The settings change puck screen:
 ° The Back button

•	 The game menu pause screen:
 ° The Resume button
 ° The Quit button

•	 The Menu difficulty screen:
 ° The Easy button
 ° The Medium button
 ° The Hard button
 ° The Insane button
 ° The Back button

•	 The Game over screen:
 ° The Try again button
 ° The Quit button

Developing Glow Hockey from Scratch in Unity 5

[28]

•	 The game screen
 ° The Pause button

•	 The menu about screen

 ° The Back button

The ButtonChangeGameMode.cs script
We can adjust different modes for different buttons in Unity Inspector without
having to write the new code or to extend current code:

public Game.Mode changeGameMode = Game.Mode.Easy;

The Button component calls this function via the SendMessage method:

void ButtonAction() {
 // The main idea of this button is just to change current game mode.
 Game.Instance.gameMode = changeGameMode;
}

We	have	just	five	buttons,	where	this	script	is	attached.	Let's	list	all	them:

•	 The menu main screen:
 ° The 2 Players button

•	 The menu difficulty screen:

 ° The Easy button
 ° The Medium button
 ° The Hard button
 ° The Insane button

The ButtonChangePaddle.cs script
The	first	public	transform variable in this class must be attached to the Unity
Inspector by transform, which will be positioned over the chosen paddle to show
the current selection in Settings. The second variable will differentiate four paddle
types; thus, we can attach this script to four objects at the same time and adjust
different paddle types for them:

 public Game.PaddlePuckType paddleType;

Chapter 8

[29]

The next variable will differentiate two players; thus, we can attach this script to
two objects at the same time and adjust different players for them. Therefore, we can
choose two different paddles for two players in the Settings menu:

 public Game.Player player;

The next variable's value controls how fast the selection transform has to move:

 public float speed = 11.17f;

The following functions describe this component in more detail:

 void Start() {
 // Here we should check if attached player has this paddleType
 // then we have to be sure that the selection transform is
 // over this game object position, so players can see
 // which type of paddle is selected for first or second player.
 if (Game.Instance.GetPaddleType(player) == paddleType) {
 selection.position = transform.position;
 }
 }

 // Button component calls this function via SendMessage method.
 void ButtonAction() {
 // In event of pressed button we should save paddleType
 // for our player.
 Game.Instance.SetPaddleType(player, paddleType);
 // Next code line is commented to make smooth transition later.
 //selection.position = transform.position;
 }

 void FixedUpdate() {
 // Selection transform smoothly moves here to its target place.
 if (Game.Instance.GetPaddleType(player) == paddleType) {
 selection.position = Vector3.Lerp(selection.position,
transform.position, Time.fixedDeltaTime * speed); // with acceleration
 }
 }

There are eight buttons where this script is attached.

Developing Glow Hockey from Scratch in Unity 5

[30]

The ButtonChangePuck.cs script
The next public transform variable must be attached to the Unity Inspector by the
transform component, which will be positioned over the chosen puck to show the
current selection in Settings:

 public Transform selection;

The following variable will differentiate the four types of puck; thus, we can attach this
script to four objects at the same time and adjust different types of puck for them:

 public Game.PaddlePuckType puckType;

The next variable's value controls how fast a selection transform has to move:

 public float speed = 11.17f;

The following functions describe this component in more detail:

 void Start() {
 // Here we should check if puck has the same puckType
 // then we have to be sure that the selection transform is
 // over this game object position, so players can see
 // which type of puck is selected now.
 if (Game.Instance.puckType == puckType) {
 selection.position = transform.position;
 }
 }

 // Button component calls this function via SendMessage method.
 void ButtonAction() {

 // In event of pressed button we should save puckType.
 Game.Instance.SetPuckType(puckType);

 // Next code line is commented to make smooth transition later.
 //selection.position = transform.position;
 }

 void FixedUpdate() {
 // Selection transform smoothly moves here to its target place.
 if (Game.Instance.puckType == puckType) {
 selection.position = Vector3.Lerp(selection.position,
transform.position, Time.fixedDeltaTime * speed); // with acceleration
 }
 }

There are four buttons where this script is attached.

Chapter 8

[31]

The ButtonChangeSettings.cs script
As we mentioned earlier, we have just three different settings: sounds, effects,
and vibration. Thus, we can use this script for three different buttons with three
different settings:

 public Game.Settings settingType;

We have to initialize the following public variable in the Unity Inspector. We should
disable this renderer when this setting is enabled and should enable this renderer
when this setting is disabled:

 public SpriteRenderer crossXrenderer;

The private	flag	is	used	to	keep	this	value	for	the	setting:

 private bool _isEnabled;

The following functions describe this component in more detail:

 void OnEnable() {
 // Firstly we should get the latest
 // saved value for this setting and initialize our
 // private variable with returned value.
 _isEnabled = Game.Instance.GetSetting(settingType);
 // We should disable this renderer in event of this setting is
enabled.
 // We should enable this renderer in event of this setting is
disabled.
 crossXrenderer.enabled = !_isEnabled;
 }

 // Button component calls this function via SendMessage method.
 void ButtonAction() {
 // In event of pressed button we should revert
 // current setting value to the opposite Boolean value.
 _isEnabled = !_isEnabled;
 // Next step is to save current setting.
 Game.Instance.SetSetting(settingType, _isEnabled);
 // Following step is to visualize if current setting is enabled or
disabled.
 crossXrenderer.enabled = !_isEnabled;
 }

There are six buttons where this script is attached.

Developing Glow Hockey from Scratch in Unity 5

[32]

The ButtonMoreApps.cs script
The Button component calls this function via the SendMessage method:

 void ButtonAction() {
 // The main idea of this button is just to open market url.
 Application.OpenURL("market://search?q=" + marketSearch);
 }

There is just one single button where this script is attached.

The gameplay and game world
implementation
Let's see in practice how easy it is to use physics for our game world. Also, you will
see how easy it is in Unity 5 to design beautiful effects, animations, behaviors, and
other very useful and effective features and techniques for our game world.

The GameTable.cs script
This value controls how fast the computer AI is:

 public static float gameSpeedAI;

The following variables control AI speed for different game modes:

 public float
 gameSpeedEasyAI = 5.0f,
 gameSpeedMediumAI = 7.0f,
 gameSpeedHardAI = 11.0f,
 gameSpeedInsaneAI = 17.0f;

Also,	we	need	different	animators	to	play	them	in	the	game	at	specified	times.	
The tap to pause animation appears each time before a game starts. The goal
animation appears after each goal event. The you win and you lose animations
appear at the end of each game to declare the winner and the loser accordingly:

 public Animator tapToPauseAnimator, goalAnimator, youWinAnimator,
youLoseAnimator;

We have just two player buttons, which we need to initialize each time before the
game starts:

 private ButtonPlayer[] _playerButtons;

Chapter 8

[33]

We need to be sure that the border's glowing effect is turned off by disabling the
border's SpriteRenderer component:

 private Border[] _borders;

The singleton implementation is as follows:

 private static GameTable _instance;
 public static GameTable Instance {
 get {
 return _instance;
 }
 }

The next method is our public custom function. This method is called each time
before a game starts. We call this function only from the Game.cs script and just from
one single place in the GameStartedState function. If the previous game state was
the GamePaused state, then we should not initialize our Game Table instance, since we
want to continue playing after the GamePaused	state.	In	all	other	circumstances	(except	
the GamePaused state), we must initialize our Game Table instance, as shown here:

public void Init() {
 // Let's play sound here if sounds setting is enabled.
 AudioController.Instance.PlaySound("game_start");

 // Because this function is called each time before game starts
 // then here we need to reset to 0 values both player scores.
 Game.playerOneScore = Game.playerTwoScore = 0;

 // Also each time before game starts we need to
 // correctly place two paddles and one puck, the same is true
 // each time after goal event happens. Also we need to
 // initialize physics for two paddles and one puck.
 InitPaddlesAndPuck(true);

 // Let's disable glowing effect for all our borders.
 foreach (Border b in _borders) {
 b.SetSpriteRenderer(false);
 }

 // Depending on the current game mode we should
 // adjust right computer AI speed value.
 switch (Game.Instance.gameMode) {
 case Game.Mode.Easy:
 gameSpeedAI = gameSpeedEasyAI;
 break;

Developing Glow Hockey from Scratch in Unity 5

[34]

 case Game.Mode.Medium:
 gameSpeedAI = gameSpeedMediumAI;
 break;
 case Game.Mode.Hard:
 gameSpeedAI = gameSpeedHardAI;
 break;
 case Game.Mode.Insane:
 gameSpeedAI = gameSpeedInsaneAI;
 break;
 case Game.Mode.TwoPlayers:
 gameSpeedAI = 0.0f;
 break;
 }
 // Before starting tap to pause animation
 // we have to be sure it is not playing now.
 StopCoroutine("TapToPauseAnimation");
 // Here we can start our tap to pause animation.
 StartCoroutine(TapToPauseAnimation());
 // It's time to find one of two player gates and to
 // call its co-routine animation in event of placing puck
 // each time before game starts, or also each time after
 // goal happens as we will see just a bit later.
 PlayerGate _gate = GameObject.FindObjectOfType(typeof(PlayerGate))
as PlayerGate;
 _gate.StartPlacingPuck();
}

Each time before a game starts, we need to correctly place two paddles and one puck,
the same is true each time after every goal event happens. Also, we need to initialize
physics for two paddles and one puck. The following function does all the required
initialization:

public void InitPaddlesAndPuck(bool initButton) {
 // initButton equals to true each time before game starts.
 // initButton equals to false each time after goal occurs.
 Puck.Instance.Init();
 foreach (ButtonPlayer bp in _playerButtons) {
 // ButtonPlayer initialization happens here each time before game
starts.
 if (initButton) bp.Init();
 else bp.InitPaddle();
 }
}

Chapter 8

[35]

Our co-routine tap to pause animation is where we only need to notify its
animator to change the animator's state by adjusting its Boolean CanPlayAnim
variable to a true value within a short period of time:

IEnumerator TapToPauseAnimation() {
 tapToPauseAnimator.SetBool("CanPlayAnim", true);
 yield return new WaitForSeconds(0.1f);
 tapToPauseAnimator.SetBool("CanPlayAnim", false);
}

Before playing our goal animation, we should rotate its animator's parent object to
make it readable for the player who made this goal:

public void StartGoalAnimation(float degrees) {
 goalAnimator.transform.parent.rotation = Quaternion.Euler(new
Vector3(0, 0, degrees));
 StopCoroutine("GoalAnimation");
 StartCoroutine(GoalAnimation());
}

Our co-routine goal animation is where we need to notify its animator to change the
animator's state by adjusting its Boolean IsGoal variable to a value of true within a
short period of time:

IEnumerator GoalAnimation() {
 goalAnimator.SetBool("IsGoal", true);
 yield return new WaitForSeconds(0.1f);
 goalAnimator.SetBool("IsGoal", false);
}

There is just one single game object where this script is attached.

The ButtonPlayer.cs script
This	2D	rigid	body	variable	is	initialized	in	the	Unity	Inspector.	We	need	to	use	it	to	
control	the	player's	paddle	2D	physics:

 public Rigidbody2D rigidBodyPaddle;

The following variable controls how fast the paddle moves to a touch:

 public float speedMoveTouch = 255.0f;

We need this private variable for our input touches:

 private InputController.InputTouch _inputTouch;

Developing Glow Hockey from Scratch in Unity 5

[36]

The	initial	position	is	saved	the	first	time	only,	after	that,	we	will	use	this	initial	
position in order to correctly place the paddle at the start of each game or after each
goal. Also, we need temporary vectors _v3 and _v2:

 private Vector3 _initialPosition, _v3;
 private Vector2 _v2;

Next, the index	variable	is	for	input:	the	touch	finger	ID	or	mouse	button	ID.	This	
integer	value	keeps	the	current	touch	ID:

 private int _index;

The paddle should be controlled by this script:

 private Paddle _paddle;

Next, the _isComputerAI Boolean tells us if the computer AI should play instead of
the second player or not:

 private bool _isComputerAI;

This is the child game object as we saw earlier. We need to use this game object in
order to have limits for two paddle movements, so they will not be placed outside
our hockey table:

 private Transform _playerZone;

Next, the following two variables control the width of our player zone which was
discussed earlier in text:

 private float _widthLeft, _widthRight;

There are two player buttons where this script is attached.

The Paddle.cs script
The forceDelta variable is used to control applied force to puck:

 public static float forceDelta = 0.1f;

The following force value is applied to the puck:

 public float force = 500.0f;

The next variable keeps the initial force:

 public float forceInit;

Chapter 8

[37]

We have to play sound on any paddle's collision with puck or with the border too, as
shown here:

 public string soundNameOnCollision = "paddle_hit";

This determines how long the glowing effect duration stays for the concrete paddle
object where this script is attached:

 public float secondsToWaitGlow = 0.17f;

Glowing childs for our paddle object:

 public List<SpriteRenderer> glowOverlays;

The current sprite renderer where this script is attached:

 private SpriteRenderer _spriteRenderer;

There are two game objects where this script is attached.

The PaddleTypeView.cs script
The following four sprites are used for the paddle's representation in menu settings
and in gameplay too:

 public Sprite yellowPaddle, redPaddle, greenPaddle, bluePaddle;

The	attached	player	determines	whether	this	is	the	first	or	second	paddle:

 public Game.Player player;

The current paddle's type is as follows:

 private Game.PaddlePuckType _paddleType;

The next variable keeps reference for our sprite renderer component, which is
attached to this game object; thus, we can change the paddle's view if its type was
changed in menu settings:

 private SpriteRenderer _spriteRenderer;

There	are	10	game	objects	where	this	script	is	attached.	Both	are	the	game	objects	that	
we discovered earlier: Paddle Player 1 and Paddle Player 2 from Game screen
(the	Game Table object). All glow overlay renderers must be disabled at the start.

Developing Glow Hockey from Scratch in Unity 5

[38]

The Puck.cs script
We have to limit puck's value for the maximum velocity and also its position in
order not to go further than it is allowed. The puck's Y coordinate in the middle
zone	(while	its	X coordinate is between the values of leftCenterPosX and
rightCenterPosX as shown here in Update callback) can go further than in the right
or in the left zones because the puck has to go till the gates:

 public float
 velocityMaxLimit = 45.0f,
 leftLimitPosX = -2.59f,
 rightLimitPosX = 2.59f,
 leftCenterPosX = -1.5f,
 rightCenterPosX = 1.5f,
 downLimitPosY = -4.22f,
 upLimitPosY = 4.22f;

We have to play sound on any puck collision with the paddle or with the border too,
as shown here:

 public string soundNameOnCollision = "puck_hit";

This determines how long the glowing effect duration lasts for the puck object where
this script is attached:

 public float secondsToWaitGlow = 0.17f;

Glowing childs for our puck object:

 public List<SpriteRenderer> glowOverlays;

The current sprite renderer where this script is attached:

 private SpriteRenderer _spriteRenderer;

The puck's current velocity is:

 private Vector2 _velocity;

The puck's current angular velocity and angular rotation values are:

 private float _angularVelocity, _angularDrag;

This	is	our	flag	to	save	the	current	state	of	puck's	2D	rigid	body:

 private bool _isSleeping;

Chapter 8

[39]

The singleton pattern implementation:

 private static Puck _instance;
 public static Puck Instance {
 get {
 return _instance;
 }
 }

There is just a single game object where this script is attached.

The PuckTypeView.cs script
The following four sprites are used for puck's representation in menu settings and in
the gameplay too:

 public Sprite yellowPuck, redPuck, greenPuck, bluePuck;

The following variable keeps reference for our spriteRenderer component, which
is attached to this game object; thus, we can change the puck's view if its type was
changed in the menu settings:

 private SpriteRenderer _spriteRenderer;

There are six game objects where this script is attached. The puck object was shown a
little earlier.

The PlayerGate.cs script
We need to use the next public variable just once in the ButtonPlayer script for its
TouchMove function. The variable indicates whether the placing puck animation is
currently playing. The placing puck animation should be played after each goal
or each time before the game starts:

 public static bool isPlacingPuckNow = false;

The	attached	player	determines	whether	this	is	the	first	or	second	player	gate:

 public Game.Player player;

The game continues till this maximum limit of goals is reached:

 public int maxGoals = 7;

This variable is used to control the initial paddle Y position coordinate after each
goal and not if the game starts state is activated:

 public float puckDeltaDistanceAfterGoal = 3.5f;

Developing Glow Hockey from Scratch in Unity 5

[40]

A temporary variable should keep puck's size:

 private Vector3 _initPuckScale;

There are two game objects where this script is attached.

The PlayerScoreView.cs script
The	next	class'	member	player	determines	whether	this	is	the	first	or	second	
player's score:

 public Game.Player player;

An array of sprites for digits from 0 to 7 numbers:

 public Sprite[] spriteDigits;

We	need	the	following	two	variables	to	control	flash	animation	duration	and	interval	
for this player's score view:

 public float totalSecondsFlash = 2.3f, deltaSecondsFlash = 0.3f;

The	next	two	variables	are	temporary,	which	are	used	to	manage	flash	animation	for	
this player's score view:

 private float _timeStartFlash, _timeDeltaFlash;

The	following	Boolean	flag	indicates	whether	the	flash	animation	is	playing	or	not	
for this player's score view:

 private bool _isFlashing;

We use this variable further just to know when the current player's score was
changed, it is a very basic example of logic optimization with the main idea to make
any actions only when they are required:

 private int _lastScore;

We need a variable to keep the current score view's sprite renderer component:

 private SpriteRenderer _spriteRenderer;

There are two game objects where this script is attached.

Chapter 8

[41]

The Border.cs script
This script uses trigger and collision callbacks in order to work for both options
independently from how the trigger option was adjusted in the Unity Inspector. The
next public variable determines the length of the glowing effect duration for this
border where this script is attached:

 public float secondsToWaitGlow = 0.17f;

We have to play sound on any border's collision with the puck or with paddles too,
as shown here:

 public string soundNameOnCollision = "border_hit";

The current border's sprite renderer component:

 private SpriteRenderer _spriteRenderer;

There are eight game objects where this script is attached.

The BorderReflect.cs script
We	need	this	script	just	to	reflect	puck	from	the	hockey	table	borders.	The	normal
variable	is	the	first	variable	that	we	should	adjust	in	the	Unity	Inspector:

 public Vector2 normal;

The	second	variable	keeps	our	calculation	about	reflected	velocity:

 private Vector2 _reflectedVelocity;

There are two game objects where this script is attached.

The CornerTrigger.cs script
We need this script just to know when puck is in the corner in order to avoid a bug
while the computer AI can stop the puck in any corner. We just have four corners:

 public enum Type {LeftDown, LeftUp, RightDown, RightUp};
 public Type type;

We	should	have	a	Boolean	flag	for	each	corner:

 public static bool
 isLeftDownTriggered,
 isLeftUpTriggered,
 isRightDownTriggered,
 isRightUpTriggered;

There are four game objects where this script is attached.

Developing Glow Hockey from Scratch in Unity 5

[42]

Effects and animations
It is not a problem to create very beautiful effects and animations in Unity 5.
Therefore, here we will show you how to create some effects and animations for our
Glow Hockey game. We will show you just a few effects and animations. It will be
good homework for you to create your own effects and animations for this game.
Also, we did not create vibration and effects to be played after each goal, thus we are
sure that this homework will be very helpful for you to improve functionality. You
can	download	this	Unity	5	project	(written	in	C#)	from	the	Packt	Publishing	website	
and you will see which effects and animations are ready and which aren't yet. Also,
you	can	see	how	to	configure	beautiful	and	very	simple	effects	and	animations	right	
in Unity Editor.

Summary
In this chapter, you discovered how easy it is to develop a prototype of the game
Glow Hockey in Unity 5 from scratch. The actual game Glow Hockey has about
100,000,000–500,000,000	downloads	and	can	be	downloaded	from	https://play.
google.com/store/apps/details?id=com.natenai.glowhockey&hl=en. You saw
how to create a camera for any screen resolution and any screen size. Also, you saw
in practice how easy it is to use physics.

