
[1]

Inversion of Control in
Spring – Using Annotation

In this chapter, we will configure Spring beans and the Dependency Injection using
annotations. Spring provides support for annotation-based container configuration.
We will go through bean management using stereotypical annotations and bean
scope using annotations. We will then take a look at an annotation called @Required,
which allows us to specify which dependencies are actually required. We will also see
annotation-based dependency injections and life cycle annotations. We will use the
autowired annotation to wire up dependencies in the same way as we did using XML
in the previous chapter. You will then learn how to add dependencies by type and by
name. We will also use qualifier to narrow down Dependency Injections. We will also
understand how to perform Java-based configuration in Spring. We will then try to
listen to and publish events in Spring. We will also see how to reference beans using
Spring Expression Language (SpEL), invoke methods using SpEL, and use operators
with SpEL. We will then discuss regular expressions using SpEL. Spring provides text
message and internationalization, which we will learn to implement in our application.

Here's a list of the topics covered in this chapter:

• Container configuration using annotations
• Java-based configuration in Spring
• Event handling in Spring
• Text message and internationalization

Inversion of Control in Spring – Using Annotation

[2]

Container configuration using annotation
Container configuration using Spring XML sometimes raises the possibility of delays
in application development and maintenance due to size and complexity. To solve
this issue, the Spring Framework supports container configuration using annotations
without the need of a separate XML definition.

From Spring 2.5, a complete set of configuration annotations has been introduced that
is related to Spring configuration XML such as Spring bean definition or Dependency
Injection. In addition, Spring 3 has also provided JSR-330 (Dependency Injection for
Java) annotation for DI as well as Spring-specialized annotation.

In this chapter, we have divided annotations into bean management, annotation-
based dependency injections, and the bean life cycle based on its usage. Let's
understand how to use each annotation.

For a Spring IoC container to recognize annotations, we need to add the following
definition to the beans.xml configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-
context-3.2.xsd">

 <context:annotation-config />
</beans>

We can start annotating our code once <context:annotation-config/> is
configured. Spring can autoscan, detect, and instantiate beans from the project
package, and thus saves us the tedious declaration of beans or components
in XML. It activates annotations in beans, which is already registered in the
ApplicationContext.

Chapter 9

[3]

XML versus annotation
Let's consider an example. We have a code snippet for the Employee class and the
configuration file that uses XML and an annotation-based configuration. For an
annotation-based configuration, we have the @Service annotation, which registers
the bean class to the container. And we eliminate the definition of the bean in the
configuration file. However, in the XML-based configuration without annotations,
we have added a definition of the bean to the configuration file.

• Annotation-based configuration: The following table shows this
configuration with annotations:

File Syntax
Employee.java package

org.packt.spring.chapter3.
annotation;
import
org.springframework.stereotype.
Service;

@Service
public class Employee {
 public String toString() {
 return "Annotation Based
Configuration";
 }
}

beans.xml <context:annotation-config />

<context:component-scan base-
package="org.packt.spring.chapter3.
annotation"/>

• XML-based configuration: The following table shows this configuration
without annotations:

File Syntax
Employee.java package org.packt.spring.chapter3.xml;

public class Employee {
 public String toString() {
 return "XML Based
Configuration";
 }
}

Inversion of Control in Spring – Using Annotation

[4]

File Syntax
beans.xml <bean id="employeeBean" class="org.packt.

Spring.chapter3.xml
.Employee ">
</bean>

For large applications, there would be more XML tags and that increases the
application's complexity. To eliminate this, we can use annotation in the Java
class and remove a few XML tags from the configuration file.

Bean management
Beans that need to be managed by Spring can be defined using the stereotype
annotation. Classes that are annotated with one of these stereotype annotations will
automatically be registered in the Spring application context if <context:component-
scan> is in the Spring XML configuration.

Stereotype annotation
@Component is a parent stereotype annotation and usually defines all beans.
Components are divided on the basis of layers by the Spring Framework and
it is recommended to use annotation as shown in the following figure:

@Component

@Controller @Service @Repository

There are four types of autocomponent scan annotations. They are as follows:

Annotation Use Description
@Component Type This is a generic stereotype annotation that can be used

for the Spring-manages component
@Repository Type This annotation is used to define a component as a

repository, and this class will handle data access logic

Chapter 9

[5]

Annotation Use Description
@Service Type This annotation is used to define a component as a

service, and this class will handle business logic
@Controller Type This annotation is used to define a component as a

Spring MVC controller

@Component
The @Component annotation is a generic stereotype annotation that defines a class as
a bean.

Employee.java
The following code snippet shows the Employee class:

import org.springframework.stereotype.Component;

@Component
public class Employee {
//…
}

Here, the @Component annotation defines the Employee class as a Spring bean.
Whenever Spring detects a class annotated with @Component, it does the equivalent
of defining the class as a bean in the configuration XML file and creating a name for
this bean, which is actually the name of the class Employee.

@Repository
We must annotate all your repository classes with the @Repository annotation,
which is a marker for a class. A repository class serves as a Data Access Object
(DAO) in the persistence layer of the application. All your database access logic
should go in these DAO classes, as shown here:

import org.springframework.stereotype.Repository;

@Repository
public class EmployeeDAO
{
 // database access logic
}

Here, the @Repository annotation defines the EmployeeDAO class as a repository
class that contains database access logic.

Inversion of Control in Spring – Using Annotation

[6]

@Service
We must annotate all your service classes with the @Service annotation, which is a
class-level annotation. All your business logic should go in the service classes:

import org.springframework.stereotype.Service;

@Service
public class EmployeeService {
 // business logic
}

In the preceding example, the EmployeeService class is annotated with the Stereotype
annotation called @Service, which represents a component of the service layer.

@Controller
The @Controller annotation indicates that the annotated class is a Spring
component of type "controller". It is a class-level annotation indicating that an
annotated class serves the role of a controller in Spring MVC:

import org.springframework.stereotype.Controller;

@Controller
public class EmployeeController {
 //...
}

In the preceding example, the EmployeeController class is annotated with
@Controller, which represents a controller component in Spring MVC.

Naming detected components
When naming components that Spring detects, it lowercases the first character
of the nonqualified class name. For example, the EmployeeService class will
be named employeeService and we can receive this component with the name
employeeService.

The EmployeeService.java file is shown in the following code snippet:

@Service
public class EmployeeService {

 // . . .
}

Chapter 9

[7]

The PayrollSystem.java file is shown in the following code snippet:

ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

// get 'employeeService' bean from application context
EmployeeService employeeService = (EmployeeService)
context.getBean("employeeService");

Custom components name
We can also explicitly define a custom component's name by specifying the desired
name in the stereotype annotation's value.

The EmployeeService.java file is shown in the following code snippet:

@Service("employeeServiceBean")
public class EmployeeService {
 // . . .
}

Here, we have specified the EmployeeService component's name as
employeeServiceBean in the @Service annotation's value. Now, we can
retrieve this component with the name employeeServiceBean.

The PayrollSystem.java file is shown in the following code snippet:

ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

EmployeeService employeeService = (EmployeeService)
context.getBean("employeeServiceBean");

Auto detecting classes and registering bean
definitions
Spring can automatically detect stereotyped classes and register their corresponding
bean definitions with the ApplicationContext. To auto detect stereotyped classes,
we need to define <context :component-scan/> in the configuration XML file.
The Spring container can identify classes with the stereotype annotation and
manage beans without separately defining them in the configuration XML file.

Inversion of Control in Spring – Using Annotation

[8]

The beans.xml file is shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-
context-3.2.xsd">

 <context:component-scan/>

</beans>

If you add this definition in a Spring configuration XML file, then the container
will scan the classes that exist in the classpath, detects stereotyped classes, and
automatically register them to the Spring Container. It scans packages to find
and register beans within the ApplicationContext. The base-package property
can be used to define the search target package as follows:

<context:component-scan base-package="..."/>

Let's consider an example to enable the Spring autoscanning feature.
The EmployeeService.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.annotationbasedconfig;

import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 @Override
 public String toString() {
 return "Annotation Based Configuration";
 }
}

Chapter 9

[9]

Here, the EmployeeService class is annotated with @Service to indicate that this
class is an autoscan component.

The PayrollSystem.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.annotationbasedconfig;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

 EmployeeService employeeService =
(EmployeeServiceImp)context.getBean("employeeService");
}

In the preceding code, we have used the name defined as property employeeService
to find the relevant bean.

The beans.xml file is shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-
context-3.2.xsd">

 <context:component-scan base-
package="org.packt.springframework.chapter3.
annotationbasedconfig"/>

</beans>

Inversion of Control in Spring – Using Annotation

[10]

We have included this definition in beans.xml to autodetect the class and register
the corresponding bean, where the base-package element is a package for the
classes. We have added the package org.packt.springframework.chapter3.
annotationbasedconfig as a value of the base-package attribute in beans.xml.
Spring will automatically scan and detect stereotyped classes inside this package
and register that bean definition to the container. Since the EmployeeService class
is annotated with @Service and resides inside this package, the employeeService
bean definition will be registered in the application context and we can get this bean
from ApplicationContext using the getBean method.

Using filters to customize scanning
Stereotyped classes are automatically detected within the search range using various
properties of <context:component-scan base-package="…">. It is also possible to
filter classes registered as beans in the container.

The <context:component-scan> can have subelements such as:

• <context:include-filter>

• <context:exclude-filter>

The following diagram illustrates these:

<context:include-filter> <context:exclude-filter>

<context:component-scan>

Each filter element needs the type and expression attributes to define the
component-scanning strategy. The filter type can be any one of these:

Filter type Expression attribute
annotation The expression attribute takes the annotation to be scanned
assignable The expression attribute takes the assignable to be scanned
regex The expression attribute takes the regular expression to be matched

by the target components' class names
aspectj The expression attribute takes the AspectJ-type expression to be

matched by the target components' class names.

Chapter 9

[11]

Filter component – include (<context:include-filter>)
When the include filter is used with type regex, the Spring Container scans and
registers the components' name that matches the defined regular expression. Even
those classes that are not stereotyped (that is, not annotated with annotations such as
@Component, @Service, @Repository, or @Controller) are scanned and registered.

The following example code snippet is trying to load the EmployeeDAO and
EmployeeService classes that match the regular expression specified in the
expression attribute of include-filter. The EmployeeDAO and EmployeeService
classes have not been annotated with the stereotype annotation.

The EmployeeDAO.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.includefilter;

public class EmployeeDAO {

 public String toString() {
 return "Implements data access logic in DAO class";
 }
}

The EmployeeService.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.includefilter;

public class EmployeeService {

 public String toString() {
 return "Implements business logic in Service class";
 }
}

The beans.xml file is shown in the following code snippet:

 <context:component-scan base-
package="org.packt.springframework.chapter3.includefilter">

 <context:include-filter type="regex"
expression="org.packt.springframework.chapter3.includefilter.*DAO.
*" />
 <context:include-filter type="regex" expression="org.packt.
springframework.chapter3.includefilter.*
Service.*" />

 </context:component-scan>

Inversion of Control in Spring – Using Annotation

[12]

Here, in this XML, all filenames contain the DAO or Service (*DAO.* or *Services.*)
syntax, which will be detected and registered in the Spring Container, as we have
provided type as regex along with the corresponding expressions.

The PayrollSystem.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.includefilter;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

 EmployeeDAO employeeDao = (EmployeeDAO) context.
getBean("employeeDAO");
 System.out.println("Employee Dao: " + employeeDao);

 EmployeeService employeeService = (EmployeeService) context.
getBean("employeeService");
 System.out.println("Employee Service: " +
employeeService);
 }
}

Here, we have called the getBean method to load the EmployeeDAO and
EmployeeService beans from the ApplicationContext. When we run the
preceding main method, the output will be generated as follows, which indicates
that the filter has scanned and registered the bean definition in the container.

The expected output will be as follows:

Employee Dao: Implements data access logic in DAO class
Employee Service: Implements business logic in Service class

Filter component – exclude (<context:exclude-filter>)
When the exclude filter is used with type regex, the Spring container scans
and prevents Spring from registering component names that match the
defined regular expression.

Chapter 9

[13]

The beans.xml file is shown in the following code snippet:

 <context:component-scan base-
package="org.packt.springframework.chapter3.excludefilter">

 <context:exclude-filter type="regex"
expression="org.packt.springframework.chapter3.
excludefilter.*DAO.*" />

 </context:component-scan>

Here, in the configuration file, the entire matched component with the regular
expression will be detected and prevent Spring from registering the component
names in the container. So, when we call the getBean("employeeDAO") method,
it will result in the following:

org.springframework.beans.factory.NoSuchBeanDefinitionException:
No bean named 'employeeDAO' is defined

Scope definition – @Scope
Singleton is the most common scope for autodetected components by default.
We can use other scopes after providing the name of scope within a new @Scope
annotation. Let's say for prototype scope, use @Scope("prototype").

The EmployeeService.java file is shown in the following code snippet:

import org.springframework.context.annotation.Scope;

@Scope("prototype")
public class EmployeeService {
 //business logic
}

Dependency checking with the @Required
annotation
Since Spring 2.5, annotation-based Spring configuration has been an alternative
to XML-based Spring configurations. XML injection is performed after annotation
injection into Spring. For properties wired through both the XML and annotation
approach, the XML-based configuration will override the annotation-based
configuration.

Inversion of Control in Spring – Using Annotation

[14]

The @Required annotation enforces the required properties of the bean. Before the
bean is used, the setter method annotated with the @Required annotation will be
called. The @Required annotation indicates that the affected bean property must
be populated in the configuration file during Spring configuration, otherwise the
Spring Container throws an exception, BeanInitializationException.

Let's take an example of the EmployeeDAO class to understand the @Required
annotation. We have imported a package named org.springframework.beans.
factory.annotation.Required to annotate the method setDatabaseUrl()
with the @Required annotation, which indicates that the affected bean property
(databaseUrl) must be populated at configuration time.

Check EmployeeDAO.java for the following code snippet:

package org.packt.spring...chapter3.requiredannotation;

import org.springframework.beans.factory.annotation.Required;

public class EmployeeDAO {

 String databaseUrl;

 @Required
 public void setDatabaseUrl(String databaseUrl) {
 this.databaseUrl = databaseUrl;
 }
}

The affected bean property must be populated either through an explicit property
value in the bean definition or through autowiring; if not populated at configuration
time, this will throw an exception and avoid NullPointerException or the like
later on.

The beans.xml file is shown in the following code snippet:

<context:annotation-config />

<bean id="employeeDao"
class="org.packt.Spring.chapter3.requiredannotation.EmployeeDAO">

 <!-- try without passing value for property and check
result -->
 <!-- property name="databaseUrl" value="..."></property
-->

</bean>

Chapter 9

[15]

Here, in beans.xml, we are not passing a value for the property databaseUrl.
When we try to use the bean employeeDao, the following error message will be
throw, because the databaseUrl property has not been set:

org.springframework.beans.factory.BeanInitializationException:
 Property 'databaseUrl' is required for bean 'employeeDao'

Annotation-based Dependency Injection
Since Spring 2.5, annotations have been introduced to automatically wire bean
properties. Annotation-based autowiring is not very different from XML-based
autowiring. Annotation wiring in the Spring Container is not turned on by default; we
need to enable it in the Spring configuration before using annotation-based autowiring.
Spring has added annotation-based configuration support for Dependency Injection:

Annotation Description Target
@Autowired This is used to define dependencies

provided in the Spring framework
Constructor, field, or method

@Resource This can be considered to be related
to a JNDI resource (datasource, Java
messaging service destination, or
environment entry)

Field or method

@Inject Constructor, field, or method Constructor, field, or method

@Autowired
The @Autowired annotation is used to define the dependency provided in the
Spring Framework. It can be used to autowire beans on the setter method or on
a constructor, property, or method. We can autowire one or more parameters
to a constructor or method. More than one constructor can be set as autowired
even though only one constructor can be marked as required. If more than one
constructor has been marked as autowired, then Spring will use the constructor
that has the most arguments matched based on the beans in the Spring Container.
When @Autowired is unable to find at least one match, an exception will be thrown,
BeanCreationException.

@Autowired on setter methods – byType
The @Autowired annotation can be used on setter methods to get rid of the
<property> element in a Spring XML configuration file. When Spring finds a
setter method annotated with @Autowired, it autowires the bean byType. This
bean allows a property to be autowired if exactly one bean of the property type
exists in the container.

Inversion of Control in Spring – Using Annotation

[16]

Let's consider an example. We have an EmployeeService class annotated
with @Service and an EmployeeDao class annotated with @Repository. The
EmployeeService class has the property employeeDao and the setter and getter
methods. We have annotated the setEmployeeDao() method of EmployeeService
with @Autowired from org.springframework.beans.factory.annotation.
Autowired. So we don't need to specify the property in XML for this bean.

In the PayrollSystem class, we are instantiating the bean using the getBean()
method. We have done the annotation-based configuration in beans.xml.

The EmployeeService.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...onsetter;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 private EmployeeDao employeeDao;

 @Autowired
 public void setEmployeeDao(EmployeeDao employeeDao) {
 this.employeeDao = employeeDao;
 }
 public EmployeeDao getEmployeeDao() {
 return employeeDao;
 }
}

The EmployeeDao.java file is shown in the following code snippet:

package org.packt.Spring.chapter3.annotation...onsetter;

import org.springframework.stereotype.Repository;

@Repository
public class EmployeeDao {

 @Override
 public String toString() {
 return "Data Access logic will reside in DAO";
 }
}

Chapter 9

[17]

The beans.xml file is shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-
context-3.2.xsd">

 <context:annotation-config />

 <context:component-scan base-
package="org.packt.spring.chapter3.annotation...onsetter" />

</beans>

The PayrollSystem.java file is shown in the following code snippet:

package org.packt.Spring.chapter3.annotation...onsetter;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

 EmployeeService employeeService =
(EmployeeService)context.getBean("employeeService");
 System.out.println(employeeService.getEmployeeDao());
 }
}

The output is as follows:

Data Access logic will reside in DAO

Inversion of Control in Spring – Using Annotation

[18]

We can easily observe that there is no relation between the two beans
employeeService and employeeDao. The @Autowired annotation on the setter
method setEmployeeDao() in the EmployeeService class will automatically
wire the employeeDao bean on the basis of type.

Ambiguity – BeanCreationException
If more than one bean match is found in ApplicationContext when matching by
type, and they aren't the Collection class or an array, an exception will be thrown,
BeanCreationException.

Let's understand this with an example. We have an Employee class and more
definitions in beans.xml results in more than one bean in ApplicationContext.
The EmployeeService class will have the setEmployee() method annotated
with @Autowired.

The Employee.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...onsetter;

public class Employee {

 @Override
 public String toString() {
 return "From employee class";
 }
}

The EmployeeService.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...onsetter;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 private Employee employee;
 @Autowired
 public void setEmployeeDao(EmployeeDao employeeDao) {
 this.employee = employee;
 }
}

Chapter 9

[19]

The beans.xml file is shown in the following code snippet:

 <context:annotation-config />
 <context:component-scan base-
package="org.packt.Spring.chapter3.Annotation.onsetter" />

 <bean id="employeeA"
class="org.packt.Spring.chapter3.Annotation.onsetter.Employee">
 </bean>

 <bean id="employeeB"
class="org.packt.spring.chapter3.annotation.onsetter.Employee">
 </bean>

The PayrollSystem.java file is shown in the following code snippet:

ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

The output is as follows:

Error creating bean with name 'employeeService': Injection of
autowired dependencies failed; nested exception is
org.springframework.beans.factory.BeanCreationException

Since there is more than one bean definition available in ApplicationContext,
Spring cannot know which beans need to be injected.

Read on to see the solution to this problem.

The beans.xml file is shown in the following code snippet:

<bean id="employeeA"
class="org.packt.Spring.chapter3.Annotation.onsetter.Employee">
 </bean>
 <bean id="employeeB"
class="org.packt.Spring.chapter3.Annotation.onsetter.Employee">
 </bean>

 <bean id="employeeC"
class="org.packt.Spring.chapter3.Annotation.onsetter.Employee">
 </bean>

 <bean id="employee"
class="org.packt.Spring.chapter3.Annotation.onsetter.Employee">
 </bean>

Inversion of Control in Spring – Using Annotation

[20]

In the preceding beans.xml file, we have multiple definitions for the bean Employee
with different IDs: employeeA, employeeB, employeeC, and employee. When one
and only one of these IDs matches with the property name in the EmployeeService
class (in this case, only id=employee matches the property name), the dependency
will be successfully injected.

The PayrollSystem.java file is shown in the following code snippet:

ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

The output is as follows:

From employee class

So, the @Autowired annotation first looks for type, and if it finds that there is only
one bean of that type, even though the name is different, it will autowire it as there
is only one bean. If there are multiple beans of the same type, then Spring will look
to see whether there are any beans whose names match the name of the member
variable (in our case, id=employee matches employee). If any do, it will inject the
dependency of that matched bean.

But let's assume that we are restricted to changing the name of a bean defined
in XML, maybe because it was referred by other beans in XML with that name.
Another approach to solve this ambiguity is to use @Qualifier. We will see that
in the latter part of this chapter.

@Autowired on properties
When the @Autowired annotation is used on properties or fields, values are
automatically assigned to the corresponding attributes.

Let's take an example of the classes EmployeeService and Employee.
The EmployeeService class has the property employee and a method
getEmployee(), and this class has been annotated with @Service. The property
employee of the EmployeeService class has been annotated with @Autowired.

The EmployeeService.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...onproperty;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service

Chapter 9

[21]

public class EmployeeService {

 @Autowired
 private Employee employee;

 public Employee getEmployee() {
 return employee;
 }
}

The Employee.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...onproperty;

public class Employee {

 @Override
 public String toString() {
 return "From employee class";
 }
}

The beans.xml file is shown in the following code snippet:

 <context:annotation-config />
 <context:component-scan base-package="org.packt.Spring.chapter3.
Annotation.onproperty" />

 <bean id="employee"

 class="org.packt.spring.chapter3.
annotation.onproperty.Employee">
 </bean>

Here, we see that the @Autowired annotation is used for the type property without
any setter method.

@Autowired on constructors
The @Autowired annotation on a constructor specifies that that constructor should
be autowired when creating the Spring bean, even if no <constructor-arg>
elements are used in the configuration XML file while configuring the bean in it.
Let's consider an example. We have an Employee class annotated with @Component,
an EmployeeService class that has an Employee property, and a constructor that is
annotated with the @Autowired annotation and takes an argument of type Employee.

Inversion of Control in Spring – Using Annotation

[22]

The Employee.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...onconstruction;

import org.springframework.stereotype.Component;

@Component
public class Employee {

 @Override
 public String toString() {
 return "From employee class";
 }
}

The EmployeeService.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...onconstruction;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 private Employee employee;

 @Autowired
 EmployeeService(Employee employee) {
 System.out.println("Inside Employee Service
Constructor");
 this.employee = employee;
 }
}

Here, the EmployeeService class contains a constructor that is annotated with
@Autowired.

The beans.xml file is shown in the following code snippet:

<context:annotation-config />

<context:component-scan base-
package="org.packt.spring.chapter3.annotation...onconstruction" />

Chapter 9

[23]

The PayrollSystem.java file is shown in the following code snippet:

EmployeeService employeeService = (EmployeeService)context.
getBean("employeeService");
System.out.println(employeeService.getEmployee());

Let's run the application. If everything goes fine with your application, the code will
print the following message:

Inside Employee Service Constructor
From employee class

Optional autowiring – @Autowired(required=false)
By default, @Autowired requires that the thing it annotates is wired, otherwise
autowired fails with the exception NoSuchBeanDefinitionException. Many times,
it's better to have Spring fail early when autowiring goes bad instead of later with
NullPointerException.

Sometimes, we need to make the property being wired an optional property that
accepts a null value. In that case, by setting the @Autowired annotation's required
attribute to false, we configure an optional autowiring.

Let's consider an example to understand this in more detail. We have the Employee
class annotated with the @Component annotation and an Address class. We have the
EmployeeService class annotated with the @Service annotation. This class has two
properties: Employee and Address.

The Employee.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...false;

import org.springframework.stereotype.Component;

@Component
public class Employee {

 @Override
 public String toString() {
 return "From employee class";
 }
}

Inversion of Control in Spring – Using Annotation

[24]

The Address.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...false;

public class Address {

 @Override
 public String toString() {
 return "From to address";
 }
}

The EmployeeService.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation.false;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 @Autowired
 private Employee employee;

 private Address address;

 public Address getAddress() {
 return address;
 }

 @Autowired(required = false)
 public void setAddress(Address address) {
 this.address = address;
 }

 public Employee getEmployee() {
 return employee;
 }
}

Here, in the EmployeeService class, we have the annotated property Employee
with @Autowired. Also, the setAddress() method has been annotated with
@autowired(required=false), which will prevent runtime exceptions when
no bean definitions are found while autowiring.

Chapter 9

[25]

The PayrollSystem.java file is shown in the following code snippet:

EmployeeService employeeService = (EmployeeService)
context.getBean("employeeService");

System.out.println(employeeService.getEmployee());

System.out.println(employeeService.getAddress());

The beans.xml file is shown in the following code snippet:

 <context:annotation-config />
 <context:component-scan base-
package="org.packt.Spring.chapter3.annotation.false" />

Here, in bean.xml, we have not added a definition for Address. So the bean will
not be available to ApplicationContext.

The following is the output:

From employee class
null

Now, even when Spring is unable to autowire because there is no definition in
ApplicationContext, no runtime exceptions will be thrown. Here we can see
that when the Address bean is not available, null will be returned.

@Qualifier
While using the @Autowired annotation, we observed some ambiguity. @Autowired
is run in a type-driven injection manner. When, in the same object type, you find
several beans, you use the @Qualifier annotation for more control over deciding
the target bean.

@Autowired
@Qualifier("qualifier_name")

The @Qualifier annotation helps us to fine-tune annotation-based autowiring.
Sometimes, we create more than one bean of the same type and wire only one of
them with a property. In that event, there is no way for @Autowired to choose which
one you really want, and hence a NoSuchBeanDefinitionException will be thrown
and wiring will fail. This can be controlled using the @Qualifier annotation along
with the @Autowired annotation.

Let's demonstrate the use of @Qualifier along with @Autowired.

Inversion of Control in Spring – Using Annotation

[26]

The beans.xml file is shown in the following code snippet:

<bean id="employeeA"
class="org.packt.Spring.chapter3.annotation.onsetter.Employee">
 </bean>
 <bean id="employeeB"
class="org.packt.Spring.chapter3.annotation.onsetter.Employee">
 </bean>
 <bean id="employeeC"
class="org.packt.Spring.chapter3.annotation.onsetter.Employee">
 </bean>

The Employee.java file is shown in the following code snippet:

Public class Employee {
 // . . .
}

The EmployeeService.java file is shown in the following code snippet:

Public class EmployeeService {

 @Autowired
 @Qualifier("employeeA")
 private Employee employee;
 // . . .
}

As you can see, I've used the @Qualifier annotation along with the
@Autowired annotation. Spring will first check for autowire by type after looking
at the configuration file for beans of that type. And, in this case, it will get multiple
beans of the same type, that is, Employee. Beans whose qualifier property value is
employeeA are injected as employee member variables. In EmployeeService.java,
I've used @Qualifier("employeeA"); it means we want to autowire the Employee
property of EmployeeService with the bean id="employeeService" in the XML
configuration file.

@Resource
The Spring Framework supports dependency injection using the JSR-250 @Resource
annotation on the bean property or the property setter methods. The @Resource
annotation is found in Java EE 5 and Java 6, which the Spring Framework supports
for Spring-managed objects as well.

Chapter 9

[27]

The @Resource annotation injects the dependency in the variables of the class. It
is from javax.annotation and isn't specific to the Spring Framework. @Resource
takes the name as attribute and Spring interprets the associated value as the bean
name to be injected.

@Resource has the name property. Due to this, a designated search name is used
by the name property to inject to the element defined by @Resource when the
Spring Container searches for the bean. If you do not specify the name attribute
in @Resource, then Spring will interpret the property name as the bean name to
be injected and will search for that bean in the configuration file.

Let's demonstrate @Resource with the following example: We have annotated
the EmployeeService class's property with @Resource, which will perform
Dependency Injection by name.

The Employee.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...resource;

public class Employee {

 @Override
 public String toString() {
 return "From employee class";
 }
}

The EmployeeService.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...resource;

import javax.annotation.Resource;

import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 @Resource(name = "employeeA")
 private Employee employee;

 public Employee getEmployee() {
 return employee;
 }
}

Inversion of Control in Spring – Using Annotation

[28]

The beans.xml file is shown in the following code snippet:

 <context:annotation-config />

 <context:component-scan base-
package="org.packt.Spring.chapter3.annotation.resource" />

 <bean id="employeeA"
class="org.packt.spring.chapter3.annotation.resource.Employee">
 </bean>

 <bean id="employeeB"
class="org.packt.spring.chapter3.annotation.resource.Employee">
 </bean>

As you can see, two beans of the same type have been defined in beans.xml.
In the EmployeeService class, we have used @Resource(name="employeeA"),
which means we want to autowire the Employee property of EmployeeService
with the bean id="employeeA" defined in the XML configuration file.

Life cycle annotation
We saw the Spring bean life cycle in the previous chapter. It is composed of
initialization, then activation, and finally destruction. When defining the lifecycle
method, the necessary action is performed at the initialization or destruction stage.
We can use the following annotation to manage the life cycle of the bean even
without an interface inheritance or XML definition:

Annotation Package Description
@PostConstruct javax.annotation.PostConstruct In Spring, the @

PostConstruct
annotation is used for
a method defined in a
bean. The annotated
method will be
called just after the
constructor is called.
It is an alternate to an
initialization callback.

Chapter 9

[29]

Annotation Package Description
@PreDestroy javax.annotation.PreDestroy In Spring, the @

PreDestroy
annotation is used for
a method defined in a
bean. The annotated
method will be called
just before the object
is garbage-collected.
It is an alternate to a
destruction callback.

The @PostConstruct and @PreDestroy annotations are located in the Java EE
library (common-annotation.jar) and are not a part of Spring.

Let's take a scenario where the Properties file gets loaded as soon as a bean gets
initialized and the properties file gets cleared when the bean gets destroyed. If the
properties file gets loaded for first client request, it means it will take time on first
request. To overcome these issues, the properties file should get loaded on bean
initialization itself and get destroyed once the bean is destroyed.

Let's take an example where we implement the @PostConstruct and @PreDestroy
annotations:

The EmployeeService.java is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...lifecycle;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;

import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 @PostConstruct
 public void initializeEmployeeService() {
 System.out.println("Init of EmployeeService");
 }

 @PreDestroy
 public void destroyEmployeeService() {
 System.out.println("Destroy Of EmployeeService");
 }
}

Inversion of Control in Spring – Using Annotation

[30]

Here, we have custom methods named initializeEmployeeService and
destroyEmployeeService annotated with @PostConstruct and @PreDestroy
respectively. We have not configured them in the XML configuration file as we
did in previous chapter during init and destroy method in beans.xml.

The method initializeEmployeeService gets executed when the bean is just
initialized and the method destroyEmployeeService gets executed when the
bean is about to be destroyed.

The PayrollSystem.java is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...lifecycle;

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ConfigurableApplicationContext context = new
ClassPathXmlApplicationContext(
 "beans.xml");
 context.close();
 }
}

Here, in the PayrollSystem class, we have used ConfigurableApplicationContext,
which will have a close() method to perform shutdown.

The beans.xml file is shown in the following code snippet:

 <context:annotation-config />

 <context:component-scan base-
package="org.packt.spring.chapter3.annotation...lifecycle" />

The output will be as follows:

Init of EmployeeService
Destroy Of EmployeeService

Chapter 9

[31]

Java-based configuration in Spring
Traditionally, Spring is configured using XML-based Spring configurations to
create beans and manage their dependencies. Spring 3.0 introduces a new feature
that allows the entire configuration of Spring in Java just by adding some core
features of the Spring Java configuration project. The Java-based configuration
option enables most of our configurations in Spring without XML. The Java-based
configuration also allows bean management using Java code and annotations.

This configuration guarantees type safety. As it is mainly implemented using
Java code, if there is any type error in the Dependency Injection, the compile itself
is not executed. It also takes out the dependency from Spring and beans can be
implemented with pure Java code.

@Configuration annotation
A class annotated with @Configuration is the central artifact of Java-based Spring
configuration. A class annotated with the @Configuration annotation can be used
by a Spring Container as a source of bean definitions. This class will contain one or
more Spring bean declarations. Let's see how to use the @Configuration annotation.

The SpringConfig.java is shown in the following code snippet:

import org.springframework.context.annotation.Configuration;

@Configuration
public class SpringConfig {
 // bean declaration methods
}

In the preceding code snippet, we have annotated a class with the @Configuration
annotation:

• An application can use one or more class that has been annotated with
@Configuration.

• The @Configuration annotation is meta-annotated as a @Component
annotation.

• Classes annotated with @Configuration are candidates for component
scanning. These classes can also take advantage of @Autowired annotations
at the field and method levels, but not at the constructor level.

• Classes annotated with @Configuration must also have a
default constructor.

• The @Value annotation can be used to wire externalized values into
classes annotated with @Configuration.

Inversion of Control in Spring – Using Annotation

[32]

@Bean annotation
The @Bean annotation is a method-level annotation that is a direct analog of the XML
<bean/> element and is used to wire beans using Spring's Java-based configuration.
This annotation supports some of the attributes offered by the <bean/> tag in XML,
such as init-method, destroy-method, autowiring, and name. It can be used in a
class either annotated with @Configuration or @Component.

Declaring a bean
We can declare a bean by annotating a method with @Bean. This annotated method
is used to register a bean definition of the type specified as the method's return value
within an ApplicationContext.

The bean name, by default, will be taken from the method name. Let's understand how
to use the @Bean annotation to wire beans using Spring's Java-based configuration.
The object returned from this annotated method will be registered as a bean in the
Spring ApplicationContext:

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class SpringConfig {

 @Bean
 public Employee employee() {
 return new Employee();
 }
}

The preceding method is the Java configuration equivalent of the following
Spring XML:

<beans>
 <bean name="employee"
class="org.packt.Spring.chapter3.Employee"/>
</beans>

Both declarations register a bean named employee in ApplicationContext, bound
to an object instance of type Employee.

Chapter 9

[33]

Customizing bean naming
By default, the bean name will be taken from a method's name annotated with
@Bean. This functionality can be overridden with the name attribute. Here, the bean
named employeeBean will be registered in ApplicationContext.

The SpringConfig.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.javabased;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class SpringConfig {

 @Bean(name="employeeBean")
 public Employee employee() {
 return new Employee();
 }
}

The MainApp.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.javabased;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.
AnnotationConfigApplication
Context;

public class MainApp {

 public static void main(String[] args) {

 ApplicationContext context = new
AnnotationConfigApplicationContext(
 SpringConfig.class);
 Employee employee = (Employee)
context.getBean("employeeBean");
 }
}

Inversion of Control in Spring – Using Annotation

[34]

Injecting dependencies
Injecting dependencies using Java-based Spring configuration is as simple as having
one bean method call another:

@Configuration
public class SpringConfig {

 @Bean
 public EmployeeService employeeService() {
 return new EmployeeDao(employeeDao());
 }

 @Bean
 public EmployeeDao employeeDao() {
 return new EmployeeDao();
 }
}

In this example, the employeeService bean receives a reference to employeeDao
via constructor injection.

@Import annotation
To load @Bean definitions from another configuration class, we can use the @Import
annotation.

Let's consider a configuration class ConfigA:

@Configuration
public class ConfigA {

 @Bean
 public EmployeeService employeeService() {
 return new EmployeeService();
 }
}

You can import the bean declaration from the ConfigA class to another configuration
class as shown here:

@Configuration
@Import(ConfigA.class)
public class ConfigB {

 @Bean

Chapter 9

[35]

 public HrService hrService() {
 return new HrService();
 }
}

Only ConfigB needs to be supplied when instantiating the context:

public static void main(String[] args) {

 ApplicationContext context =
 new AnnotationConfigApplicationContext(ConfigB.class);

 // now both beans A and B will be available...
 ConfigA a = context.getBean(ConfigA.class);
 ConfigB b = context.getBean(ConfigB.class);
}

Life cycle callbacks
The regular life cycle callbacks are supported by beans created in a class annotated
with @Configuration. The @PostConstruct and @PreDestroy annotations from
JSR-250 can be used by any class defined within the @Bean annotation. The Java-based
configuration fully supports Spring life cycle callbacks.

The initialization and destruction callback methods are supported by the @Bean
annotation, which is same as XML's init-method and destroy-method attributes
to the bean element:

public class EmployeeService {

 public void init() {
 // initialization logic
 }

 public void cleanup() {
 // destruction logic
 }
}

@Configuration
public class SpringConfig {
 @Bean(initMethodName = "init" , destroyMethod = "cleanup")
 public EmployeeService employeeService() {
 return new EmployeeService();
 }
}

Inversion of Control in Spring – Using Annotation

[36]

@Scope annotation
The beans defined with the @Bean annotation is by default singleton, but you can
override this with the @Scope annotation as follows:

@Configuration
public class AppConfig {

 @Bean
 @Scope("prototype")
 public EmployeeService employeeService() {
 // ...
 }
}

Event handling in Spring
Sometimes, it requires reacting to an event that happened in the Spring Container.
Spring provides a way to listen to the events that may allow you to react on the
context. Spring allows you to handle events triggered by the framework. An event
is triggered because of a state change or some activities within the container.

ApplicationContext manages the complete life cycle of the beans of singleton
type and publishes certain types of events on bean loading. For example, when
the application context is started, then the ContextStartedEvent is published.
Similarly, when the context is stopped, then the ContextStoppedEvent is published.

Event handling is the important feature provided by ApplicationContext.
It consists of three core components:

• ApplicationListener: A class that listens to an event has to implement
the ApplicationListener interface. Every time the ApplicationEvent
gets published, the bean that implemented the ApplicationListener
will be notified. It is required to implement the onApplicationEvent()
method while implementing this interface.

• ApplicationEventPublisher: A class that publishes an event has to
implement the ApplicationEventPublisher interface. By calling an
application event publisher's publishEvent() method, a bean can
publish an event.

• ApplicationEvent: This class is used when we are writing our own
custom event and adding additional functionality and additional
metadata about the event.

Chapter 9

[37]

Standard events in Spring
The following table shows the standard events in Spring:

Event Description
ContextRefreshedEvent When ApplicationContext is either initialized or

refreshed, ContextRefreshedEvent is published.
Here, initialized means when all beans are loaded into
the container and the ApplicationContext object is
ready for use. A refresh using the refresh() method
can be triggered multiple times as long as the context has
not been closed and the chosen ApplicationContext
actually supports refreshes. For example,
GenericApplicationContext does not support
refreshes whereas XmlWebApplicationContext does.

ContextStartedEvent This is published on starting ApplicationContext
using the start() method on the
ConfigurableApplicationContext interface. When
ApplicationContext starts, the life cycle of beans
receive an explicit start signal. This event can be used to
restart beans after an explicit stop. This event can also be
used to start components that have not been configured
for autostart.

ContextStoppedEvent When ApplicationContext is
stopped using the stop() method on the
ConfigurableApplicationContext interface, this
event is published and the life cycle of beans receive an
explicit stop signal.

ContextClosedEvent This is published when ApplicationContext
is closed using the close() method on the
ConfigurableApplicationContext interface. It
indicates that all singleton beans are destroyed and
cannot be refreshed or restarted as it reaches the end of
its life.

RequestHandledEvent This is an event specific to the Web, telling all beans that
an HTTP request has been serviced. After the request is
complete, this event is published. Only web applications
that use Spring's DispatcherServlet can apply this
event.

Inversion of Control in Spring – Using Annotation

[38]

Listening to standard events in Spring
To listen to all events generated by ApplicationContext, a class needs to implement
the ApplicationListener interface that is provided by the Spring Framework.
The ApplicationListener interface can be found in the Spring Context package.

We need to implement the onApplicationEvent() method while implementing
this interface, which is called by Spring when the application event is published.
This method takes a parameter of type ApplicationContextEvent, and Spring
will send the ApplicationEvent object to this method.

Creating listeners
The first step to creating listeners is to create some beans that can listen to events.

The MyApplicationEventListener.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...listenevent;

import org.springframework.context.ApplicationListener;
import org.springframework.context.event.ContextStartedEvent;
import org.springframework.stereotype.Component;

@Component
public class MyApplicationEventListener implements
 ApplicationListener<ContextStartedEvent> {

 @Override
 public void onApplicationEvent(ContextStartedEvent arg0) {
 System.out.println("Context Started Event Received");
 }
}

Here, when an ApplicationContext will start, an event will be published in the
Spring Framework and the onApplicationEvent() method will get executed.
The presence of generics in the ApplicationListener interface allows us to listen
for very specific events. In this case, our listener listens to ContextStartedEvent
of type ApplicationEvent.

The beans.xml is shown in the following code snippet:

 <context:annotation-config />
 <context:component-scan base-
package="org.packt.spring.chapter3.annotation...listenevent" />

Chapter 9

[39]

The MainApp.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...listenevent;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;
public class MainApp {

 public static void main(String[] args) {

 ConfigurableApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");
 context.start();
 }
}

Here, the start() method will propagate the start signal to component.

Publishing an event in Spring
Spring allows us to create a bean that can publish an event. Events may be framework
events (such as RequestHandledEvent) or application-specific events.

Creating a custom event
To enable event-based communication, let's first define an event. In Spring, an event
is created by extending the abstract class ApplicationEvent and passing the event
source as the constructor argument.

The LoginEvent.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...publishevent;

import org.springframework.context.ApplicationEvent;

public class LoginEvent extends ApplicationEvent{

 public LoginEvent(Object source) {
 super(source);
 }

 public String toString() {
 return "Hello World";
 }
}

Inversion of Control in Spring – Using Annotation

[40]

Publishing an event
To publish an event, a class has to implement the ApplicationEventPublisherAware
interface. The ApplicationEventPublisher interface notifies all registered listeners
of this application. A class that implements the ApplicationListener interface can
handle published events. Pass an instance of the event to the publishEvent() method.

The LoginEventPublisher.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...publishevent;

import org.springframework.context.ApplicationEventPublisher;
import org.springframework.context.ApplicationEventPublisherAware;
import org.springframework.stereotype.Component;

@Component
public class LoginEventPublisher implements
ApplicationEventPublisherAware {

 private ApplicationEventPublisher publisher;

 @Override
 public void
setApplicationEventPublisher(ApplicationEventPublisher publisher)
{
 this.publisher = publisher;
 }

 public void publish() {
 LoginEvent loginEvent = new LoginEvent(this);
 publisher.publishEvent(loginEvent);
 }
}

Handling custom event
The LoginEventListener.java is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...publishevent;

import org.springframework.context.ApplicationListener;

Chapter 9

[41]

import org.springframework.stereotype.Component;

@Component
public class LoginEventListener implements
ApplicationListener<LoginEvent> {

 @Override
 public void onApplicationEvent(LoginEvent event) {
 if (event instanceof LoginEvent) {
 System.out.println(event);
 }
 }
}

We need to filter the events that the listener needs to handle. Here, in the
LoginEventListener class, we use an instance of check to filter on the non-generic.

The MainApp.java file is shown in the following code snippet:

package org.packt.spring.chapter3.annotation...publishevent;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class MainApp {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(
 "beans.xml");

 LoginEventPublisher loginEventPublisher =
(LoginEventPublisher) context
 .getBean("loginEventPublisher");

 loginEventPublisher.publish();
 }

}

Inversion of Control in Spring – Using Annotation

[42]

Benefits of event in Spring
The following are the benefits of using events in Spring:

• The ApplicationContext in Spring supports event-based communication
based between its beans.

• In event-based communication, without knowing who the receiver will be,
the sender component just publishes the event.

• The receiver doesn't need to know who is publishing the event. It can listen
to multiple events from different senders at the same time.

• Sender and receiver are loosely coupled.

Spring Expression Language
Spring Expression Language (SpEL) is a powerful expression language that
supports features to query and manipulate an object graph at runtime. SpEL can
be used to dynamically evaluate properties and use them as a value configured in
the IoC controller. SpEL supports mathematical, logical, and relational operators.
Regular expressions are also supported in SpEL using the matches operator.

SpEL provides dynamic bean wiring at runtime. SpEL picks the right bean or value
to dependency-inject at runtime. We can also use SpEL to inject a bean or a bean
property in another bean, or even to invoke a bean method in another bean.

Here are the features of SpEL:

• To reference beans using a bean's ID
• To inject methods and properties on beans
• To perform mathematical, logical, and relational operations on values
• To match regular expressions
• To manipulate collections

SpEL expressions can be used either with XML- or annotation-based configuration
metadata for defining bean definitions. In both cases, the syntax to define the
expression is of the form #{<expression string>}, which is evaluated when the
bean is created and not when the ApplicationContext is initialized. The #{} part
of the syntax indicates that it contains a SpEL expression. For example, to wire a
string literal into a bean property, express it like this:

<property name="publisher" value="#{'Packt'}">
</property>

Chapter 9

[43]

Bean reference using SpEL
Let's consider an example to get an idea how the wiring of beans can become very
dynamic using SpEL. SpEL allows you to reference an already defined bean or one
of its properties and dependency-inject it into another object. Here, we will inject
addressBean into another customerBean. The #{addressBean} expression is used
to inject addressBean into the customerBean bean's address property, whereas the
{addressBean.country} is used to inject the country property of addressBean
into the country property of customerBean. Use dot notation to reference properties
of a bean in SpEL.

XML-based configuration
The beans.xml file is shown in the following code snippet, which will define the
addressBean and customerBean beans, and then we will inject addressBean into
another customerBean:

<bean id="addressBean" class="Address">
 <property name="id" value="12345"></property>
 <property name="streetName" value="24th Main"></property>
 <property name="country" value="India"></property>
</bean>

<bean id="customerBean" class="Customer">
 <property name="custName" value="Ravi"></property>
 <property name="address"
 value="#{addressBean}">
 </property>
 <property name="country"
 value="#{addressBean.country}">
 </property>
</bean>

Annotation-based configuration
The Address.java is shown in the following code snippet, which will define the
addressBean bean using annotation:

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component("addressBean")
public class Address {

Inversion of Control in Spring – Using Annotation

[44]

 @Value("12345")
 private Long id;

 @Value("24th Main")
 private String streetName;

 @Value("India")
 private String country;

 // setter & getter
}

The Customer.java is shown in the following code snippet, which will define the
customerBean bean using annotation:

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component("customerBean")
public class Customer {

 @Value("Ravi")
 private String custName;

 @Value("#{addressBean}")
 private Address address;

 @Value("#{addressBean.country}")
 private String country;

 // setter & getter
}

Method invocation using SpEL
You can invoke a method with SpEL to execute the method and inject the
method's returned value into a property. We'll use the expression Language
to execute a method in addressBean and inject the result into customerBean.
The #{addressBean.getFullAddress()} is used to execute a method
of addressBean and return the value into the fullAddress property of
customerBean. Use dot notation to reference the method of a bean in SpEL.

Chapter 9

[45]

XML-based configuration
The beans.xml is shown in the following code snippet, which will use the
expression Language to execute a method in addressBean and inject the
result into customerBean:

<bean id="addressBean" class="Address">
 <property name="id" value="12345"></property>
 <property name="streetName" value="24th Main"></property>
 <property name="country" value="India"></property>
</bean>
<bean id="customerBean" class="Customer">

 <property name="custName" value="Ravi"></property>
 <property name="fullAddress"
 value="#{addressBean.getFullAddress()}">
 </property>
</bean>

Annotation-based configuration
The Address.java file is shown in the following code snippet, which will create
the addressBean bean using annotation:

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component("addressBean")
public class Address {

 @Value("12345")
 private Long id;

 @Value("24th Main")
 private String streetName;

 @Value("India")
 private String country;

 public String getFullAddress() {
 return streetName + " " + country;
 }

 // setter & getter
}

Inversion of Control in Spring – Using Annotation

[46]

The Customer.java file is shown in the following code snippet, which will create
the customerBean bean with annotation:

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component("customerBean")
public class Customer {

 @Value("Ravi")
 private String custName;

 @Value("#{addressBean.getFullAddress()}")
 private String fullAddress;

 // setter & getter
}

Operators with SpEL
SpEL supports most of the standard mathematical, logical, or relational operators
that you can use to manipulate the values of an expression. Here's a list:

Operator Function Sign
Relational operator equal ==, eq

not equal !=, ne

less than <, lt

greater than >, gt

less than or equal <=, le

greater than or equal >=, ge

Logical operator and
or
not !

Mathematical
operator

addition +

subtraction -

multiplication *

division /

modulus %

exponential power ^

Chapter 9

[47]

XML-based configuration
In XML, symbols like < are not supported. We must instead use the textual equivalents
shown in the table; for example, use lt instead of < and le instead of <=.

The beans.xml file is shown in the following code snippet:

<bean id="numberBean"
class="org.packt.springframework.chapter3.SpEL.operator.Number">
 <property name="no" value="999" />
</bean>
<bean id="calculatorBean"
class="org.packt.springframework.chapter3.SpEL.operator.Calculator
">
<!--------------------------------------->
<! -------- Relational Operator --------->
<!--------------------------------------->

 <property name="isEqual" value="#{1 == 1}" />
 <property name="isNotEqual" value="#{1 != 1}" />
 <property name="isLessThan" value="#{1 lt 1}" />
 <property name="isLessThanOrEqual" value="#{1 le 1}" />
 <property name="isGreaterThan" value="#{1 > 1}" />
 <property name="isGreaterThanOrEqual" value="#{1 >= 1}" />

<!--------------------------------------->
<! --------- Logical Operator ----------->
<!--------------------------------------->

 <property name="isAnd" value="#{numberBean.no == 999 and
numberBean.no lt 900}" />
 <property name="isOr" value="#{numberBean.no == 999 or
numberBean.no lt 900}" />
 <property name="isNot" value="#{numberBean.no != 999}"
/>

<!--------------------------------------->
<! -------- Mathematical Operator ------->
<!--------------------------------------->

 <property name="addition" value="#{1 + 1}" />
 <property name="subtraction" value="#{1 - 1}" />

Inversion of Control in Spring – Using Annotation

[48]

 <property name="multiplication" value="#{1 * 1}"/>
 <property name="division" value="#{10 / 2}" />
 <property name="modulus" value="#{10 % 10}" />

</bean>

Annotation-based configuration
The Number.java is shown in the following code snippet:

package org.packt.springframework.chapter3.SpEL.operator;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component("numberBean")
public class Number {

 @Value("999")
 private int no;

 // setter & getter
}

The Calculator.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.SpEL.operator;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component
public class Calculator {

 /* Relational operators */

 @Value("#{1 == 1}")// true
 private boolean isEqual;

 @Value("#{1 != 1}") // false
 private boolean isNotEqual;

 @Value("#{1 < 1}") // false

Chapter 9

[49]

 private boolean isLessThan;

 @Value("#{1 <= 1}") // true
 private boolean isLessThanOrEqual;

 @Value("#{1 > 1}")// false
 private boolean isGreaterThan;

 @Value("#{1 >= 1}")// true
 private boolean isGreaterThanOrEqual;

 /* Logical operators , numberBean.no == 999 */

 @Value("#{numberBean.no == 999 and numberBean.no < 900}")
// false
 private boolean isAnd;

 @Value("#{numberBean.no == 999 or numberBean.no < 900}")// true
 private boolean isOr;

 @Value("#{!(numberBean.no == 999)}")// false
 private boolean isNot;

 /* Mathematical operators */

 @Value("#{1 + 1}")// 2.0
 private double addition;

 @Value("#{1 - 1}")// 0.0
 private double subtraction;

 @Value("#{1 * 1}")// 1.0
 private double multiplication;

 @Value("#{10 / 2}") // 5.0
 private double division;

 @Value("#{10 % 10}")// 0.0
 private double modulus;

 // setter & getter
}

Inversion of Control in Spring – Using Annotation

[50]

Collections with Spring EL
Spring Expression Language can be used to get the values of a map and a list.

XML-based configuration
The beans.xml file is shown in the following code snippet:

<bean id="employeeBean"
class="org.packt.springframework.chapter3.SpEL.collection.
Employee">
</bean>

<bean id="employeeServiceBean" class="
org.packt.springframework.chapter3.SpEL.collection.
EmployeeService">

 <property name="mapElement"
 value="#{employeeBean.map['emp1']}"/>
 <property name="listElement"
 value="#{employeeBean.list[0]}"/>

</bean>

Annotation-based configuration
The Employee.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.SpEL.collection;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.springframework.stereotype.Component;

@Component("employeeBean")
public class Employee {

 private Map<String, String> map;
 private List<String> list;

 Employee() {

Chapter 9

[51]

 map = new HashMap<String, String>();
 map.put("emp1", "Employee 1");
 map.put("emp2", "Employee 2");

 list = new ArrayList<String>();
 list.add("employee-1");
 list.add("employee-2");
 }

 // getter & Setter
}

The EmployeeService.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.SpEL.collection;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component
public class EmployeeService {

 @Value("#{employeeBean.map['emp1']}")
 private String mapElement;

 @Value("#{employeeBean.list[0]}")
 private String listElement;
 // getter & Setter
}

Regular expressions with Spring EL
Spring EL supports regular expressions using the keyword "matches". It is used to
check whether text matches a certain pattern:

Operator Result Condition

matches
return true If the given value matches the regular expression.
return false If the given value doesn't match the regular expression.

Let's consider an example to check whether a string contains a valid e-mail address
using the matches operator.

Inversion of Control in Spring – Using Annotation

[52]

XML-based configuration
The beans.xml file is shown in the following code snippet:

<bean id="emailBean"
class="org.packt.springframework.chapter3.SpEL.regularexpression
.Email">
 <property name="emailAddress" value="spam@abc.com"/>
</bean>
<bean id="clientBean" class="org.packt.springframework.chapter3.SpEL.
regularexpression
.Client">

 <property name="validEmail"
 value="#{emailBean.emailAddress matches '
[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.com' }" />

</bean>

Annotation-based configuration
The Email.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.SpEL.regularexpression;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component("emailBean")
public class Email {

 @Value("spam@abc.com")
 String emailAddress;

 //getter and setter methods
}

The Client.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.SpEL.regularexpression;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component("clientBean")

Chapter 9

[53]

public class Client {

 // email regular expression
 String emailRegEx = "^[_A-Za-z0-9-]+(\\.[_A-Za-z0-9-]+)"
 + "*@[A-Za-z0-9]+(\\.[A-Za-z0-9]+)*
(\\.[A-Za-z]{2,})$";

 // emailBean.emailAddress contains valid email address?
 @Value("#{emailBean.emailAddress matches
clientBean.emailRegEx}")
 private Boolean validEmail;
 //getter and setter methods
}

Text message and internationalization
The ApplicationContext has an additional functionality over a BeanFactory
support for messaging and internationalization. The MessageSource interface is
used to retrieve messages out of property files. If you have messages that need to
be displayed in different places in your application UI, you would not want to have
those messages inside the code either in the Java class or JSP. You want to take all
messages out and keep them in a common properties file and all referred text inside
the properties file and print out that text instead of having the text itself reside in the
source code.

Spring provides support for text messages and internationalization. You can have
a file that consolidates all these key-value pairs and then you can specify the key
itself in your application and refer to the text that is assigned to the key in the
properties file.

Here, we will see how to implement support for messaging using Spring.
We will create a simple properties file, messages.properties, and add all the
key-value pairs to store all messages inside the properties file. Let's say we use
user.welcome=Hello, Welcome to Spring!, where user.welcome is the key
and Hello, Welcome to Spring! is the value. We will then use this key to print
the value associated with this key in our program.

The messages.properties is shown here:

user.welcome=Hello, Welcome to Spring!

Inversion of Control in Spring – Using Annotation

[54]

In order to have messaging support enabled, we need to have a MessageSource
bean defined in my application:

<bean id="messageSource"
class="org.springframework.context.support.
ResourceBundleMessageSource"/>

Here, the org.springframework.context.support.ResourceBundleMessageSource
class provided by Spring helps to pick messages out of the properties files. It needs to
map the properties file to the ResourceBundleMessageSource class.

For the property named basename, we will provide a list of all the properties files
where we have stored all the messages. The list will have a value tag that will take
the properties filename without extension.

The beans.xml file is shown in the following code snippet:

<bean id="messageSource"
class="org.springframework.context.support.
ResourceBundleMessageSource">
 <property name="basenames">
 <list>
 <value>messages</value>
 </list>
 </property>
</bean>

So, a messageSource bean knows the properties files to read, as the class will
look for the file with the extension .properties, that is, messages.properties
in the classpath.

The ApplicationContext has a method called getMessage with different
signatures. Here, we will use a method that takes four arguments:

String org.springframework.context.MessageSource.getMessage
(String code, Object[] args, String defaultMessage, Locale
locale)

The following are the different arguments covered in the previous line of code:

• code: This will take the key from the messages.properties file, that is,
user.welcome.

• args: This will take an array of objects in case the message takes some
parameter like dynamic value. Since we aren't passing any parameter now,
we will set it as null.

Chapter 9

[55]

• defaultMessage: This will be returned in case it does not find the message
we are looking for, that is, default message. So, when arg0 does not match
the key in the properties file, this default value will be printed.

• locale: This indicates the locale for which we need to get the message.
Here, we are passing null, as we have not defined any locale now.
We will looks at locales later in this chapter.

The PayrollSystem.java file is shown in the following code snippet:

ApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

System.out.println(context.getMessage("user.welcome", null,
"Default Greeting", null));

If the code executes successfully, it will print the value from the properties file,
as shown here:

Hello, Welcome to Spring!

In beans.xml, we defined a bean named messageSource of the class
ResourceBundleMessageSource and it implements an interface called
messageSource that has a method getMessage. So, as long as we have a member
variable of the message source inside our bean, let's say EmployeeService.java,
and we can do Dependency Injection and we can get messageSource bean inside
EmployeeService class, and we can perform getMessage for that bean.

The EmployeeService.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.messaging;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.MessageSource;
import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 @Autowired
 private MessageSource messageSource;

 @Override
 public String toString() {

Inversion of Control in Spring – Using Annotation

[56]

 return messageSource.getMessage("user.welcome", null,
 "Default Greeting", null);
 }

}

Internationalization (i18n) in Spring
Internationalization refers to the process in which you design a software application
so that it can be adapted, without any engineering changes, to various languages and
regions. Spring 3 provides classes for i18n support.

If you have multiple locales to supply messages to, let's say messages_en.properties
for English and messages_de.properties for Deutsch, we can pass the corresponding
locale to the last parameter of the method getMessage. And the corresponding
message picked up from the right properties file.

This is shown here:

user.welcome=Hello, Welcome to Spring!

The messages_de.properties is shown here:

user.welcome=Hallo, Herzlich Willkommen Frühling!

The EmployeeService.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.internationalization;

import java.util.Locale;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.MessageSource;
import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 @Autowired
 private MessageSource messageSource;

 public String toGerman() {
 return messageSource.getMessage("user.welcome", null,
 "Default Greeting", Locale.GERMAN);

Chapter 9

[57]

 }

 public String toEnglish() {
 return messageSource.getMessage("user.welcome", null,
 "Default Greeting", Locale.ENGLISH);
 }
}

Here, we have passed Locale.English, which will match with the key in the file
messages_en.properties. We have also passed Local.German, which will match
with the key in the file messages_de.properties.

The PayrollSystem.java file is shown in the following code snippet:

package org.packt.springframework.chapter3.internationalization;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(
 "beans.xml");

 EmployeeService employeeService = (EmployeeService)
context
 .getBean("employeeService");

 System.out.println("English: " +
employeeService.toEnglish());
 System.out.println("German: " +
employeeService.toGernam());
 }
}

When we run the preceding code, the output will printed as follows:

English: Hello, Welcome to Spring!
German: Hallo, Herzlich Willkommen Frühling!

Inversion of Control in Spring – Using Annotation

[58]

Exercise
Q1. What are Stereotype annotations?

Q2. Explain the different components of event handling.

Q3. What is Spring Expression Language (SpEL)?

Summary
In this chapter, we minimized the XML configurations in Spring. We configured
containers using annotations and compared XML configuration with annotation-based
configuration.

We then covered bean management using the stereotype annotation. We understood
the different stereotype annotations such as @Component, @Repository, @Service, and
@Controller to define stereotyped classes. We used the @Configuration annotation
to define a configuration class that can have methods annotated with the @Bean
annotation to define beans.

Then we created a custom event and published that event in Spring. We discussed
Spring Expression Language (SpEL) to dynamically evaluate properties and use
them as values configured in the IoC controller using XML and annotations.
Then we implemented text messaging and internationalization (i18n) in Spring.

In the next chapter, we will take a look at Aspect Oriented Programming in Spring.
We will define aspect using XML and annotations in Spring. We will also understand
proxies in Spring.

