
[1]

Aspect-oriented
Programming with Spring

In this chapter, we will discuss the problems with using the object-oriented
programming (OOP) methodology in developing enterprise applications, and how
to solve these problems using aspect-oriented programming (AOP). You will learn
the different terminology in AOP. Then, we will take a look at AOP support in
Spring. We will look at defining and creating pointcuts. We will also discuss advice
and their declarations using XML and annotation. We will learn about proxies and
be introduced to AspectJ.

The list of topics covered in this chapter is as follows:

•	 Problems with OOP in developing applications
•	 Introduction to AOP
•	 AOP terminology
•	 AOP support in Spring
•	 XML schema-based configuration

Aspect-oriented Programming with Spring

[2]

The problem with OOP in developing
applications
Before we look into OOP, remember that, in the C programming language, we use
procedural language. In C, we break down complex programs into few procedures.
Each procedure specifies the step the program must take, in order to reach a desired
state. The main procedure in the C programming language relates all other procedures
as black box and calls other procedures without having information about how they
are implemented.

Main

Procedure-B Procedure-CProcedure-A

Procedure-D Procedure-E

Procedural language

The problem with procedural language is that if it consists of a complex design, then
we will have a greater number of procedures and dependencies between procedures
accordingly. So we opted for a better design to solve the problem using OOP. We
encapsulated the data and associated functions inside a class that will form the
blueprint. OOP can handle very complex programs.

Chapter 10

[3]

object A
Data

Function
...

logMessage()
...

other Function

object B
Data

Function
...

logMessage()
...

other Function

object C
Data

Function
...

logMessage()
...

other Function

OOP
Communication

Common procedure across different objects in OOP

OOP language uses many features present in procedural language. In OOP, we don't
think of function when we are trying to solve a problem by writing code; we think
of individual entities as objects and we would write objects. Each object has member
variable and methods.

OOP looks good until now, but here is the problem: not all the tasks that you would
want your program to do can be classified as objects. OOP allows us to modularize
concerns into distinct packages, classes, and methods. Sometimes, it is difficult to
place some concerns within methods or classes as they cross the class' and packages'
boundaries. Let's take an example of security, which is a cross-cutting concern.
Even though displaying and managing employees on the employee list page is the
main purpose of the employee package in the payroll system, it needs to implement
security in order to authenticate and authorize users to add and delete employees in
the list. Other packages will also need to have the security functionality to protect the
Create-Update-Delete functions of employees in the list.

Aspect-oriented Programming with Spring

[4]

One way to handle this requirement is to create a separate object for it. So we can
have a security method to perform authentication and authorization within a new
object called UserSecurity object. Then, other objects will not have that method
anymore. Whenever a security method needs to be called, it would reference the
UserSecurity object. So, in this design, the UserSecurity object will appear as
an important object, as every other object that needs security is dependent on this
UserSecurity object, which is not really a part of our business problem as it's just
performing a support role, rather than a business role.

So, the main problem with OOP is that it has too many relationships to crosscutting
objects.

Crosscutting objects refers to objects that concern other objects in your problem domain.

There are two types of concerns we generally have: the first is the primary concern,
which is the core code itself, and then there is a secondary concern, for example,
the payroll system with its payroll service, employee service, and HR service, is a
primary concern. Adding security, transaction management, and logging are all
secondary concerns, also called crosscutting concerns.

Core concern

PayrollService HRService EmployeeService

C
ro

ss
cu

tt
in

g
co

nc
er

n

Security

Transaction

Logging

AOP is not just a feature that Spring provides; in fact it's a programming model itself.
An aspect refers to a crosscutting concern, such as security, transaction, or logging,
which is typically scattered across class hierarchies, and enables the modularization
of concerns in the system. The class is the key unit of modularity in OOP, whereas
the aspect is the key unit of modularity in AOP.

Chapter 10

[5]

Introduction to aspect-oriented
programming
Aspect-oriented programming (AOP) is a promising technology to separate
crosscutting concerns, something that is usually hard to do in OOP. AOP refers
to the programming paradigm that isolates supporting functions from the main
program's business logic.

It is used to provide declarative enterprise services in Spring, especially as a
replacement for EJB declarative services. Application objects do what they're supposed
to do—perform business logic—and nothing more. They are not responsible for
(or even aware of) other system concerns, such as logging, security, auditing, locking,
and event handling. AOP is the methodology of applying middleware services such as
security services, transaction management services, and so on, to a Spring application.

Let us consider a payroll management application (as shown in the following
figure) where there will be employee service, HR service, and payroll service,
which will perform some functional requirements in the system, such as adding/
updating employee details, removing employees, browsing through employee-wise
salary details, and many more functions. Implementing business functionality also
requires taking care of non-functional requirements, such as role-based access to
UI, maintaining logging details, and so on. AOP leaves the application component
to focus on business functionality. Here, the core application implements business
functionality and is covered with layers of functionality, such as security, logging,
and transaction, provided by AOP:

Aspect-oriented Programming with Spring

[6]

You can add or remove aspects, as required, without changing any code. You can use
the IoC container to configure the Spring aspects. Spring AOP includes advisors that
contain advice and pointcuts filtering.

aspect

Weaver

...

Source Code

Without AOP

Complier

Complier
...

With AOP

Source Code

As shown in the preceding diagram, without AOP, we have source code that is given
to the compiler and got executable. But with AOP, we now have source code and
aspect, which are injected together as return in weaved class, which is given to the
compiler which gives us executable.

AOP terminology
Before we discuss AOP and its usage further, you should learn its terminology.

Joinpoint
A joinpoint refers to a point in the execution flow of an application, such as class
initialization, object instantiation, method invocation, field access, or throwing an
exception. Aspect code can be inserted at a joinpoint to add a new behavior into the
application. The crosscutting concern is automatically added before/after a joinpoint
by AOP.

As shown in the following diagram, we have methods within applications where
the advice needs to be applied. S is the point before the method execution and E is
the point after the method execution. These points are called joinpoints where the
advices will be applied:

Chapter 10

[7]

Joinpoints
ADVICE

Advisor

Advisor

MethodS E

Logger

MethodS EMethodS E

Transaction Manager

Advice
Advice represents code that is executed at a joinpoint. It includes API invocation to
the system-wide concern.

As shown in the preceding diagram, we want to log the details of each and every
method before it is invoked in the application, so we will choose the joinpoint S that
is points before the method. Then, we also want to apply transaction functionality to
all the methods before and after method execution. Here, Logger and Transaction
Manager are called advisors and the code from advisor that is executed at these
joinpoints is called advice.

There are different types of advice:

•	 Before advice: Before advice is executed before a joinpoint. Using it, we can
execute the advisor code before the method is invoked.

•	 After-returning advice: After-returning advice is used to apply advice after
the method successfully finishes its execution.

•	 Throws advice: During execution, when a method throws an exception,
throws-advice can be applied.

•	 Around advice: Before and after a method execution, around-advice can
be applied.

Aspect-oriented Programming with Spring

[8]

Pointcut
A pointcut represents a collection of joinpoints that specify where an advice is to be
applied. For instance, in the preceding diagram, the collection of the joinpoints S and
E would be a pointcut. The next step after identifying the joinpoints in the system is to
apply the aspect. Instead of applying an aspect for each and every joinpoint, we can
use pointcut to apply the aspect. For example, in the payroll system, the executions
of all methods in classes that accept employeeId as a parameter can be considered
to be pointcuts.

Aspect
The combination of pointcut and advice is referred to as an aspect, which is a
crosscutting functionality that should be included in the application.

Introduction
An introduction allows you to introduce new methods or attributes to existing
classes without having to change them, giving them a new behavior and state.
By using an introduction, a specific interface can be implemented to an object,
without needing that object's class to implement the interface explicitly.

Target
A target is either a class you write or a third-party class that is advised to add
custom behavior. The target object is referred to as the advice object.

Proxy
Proxy represents an object that is created after an advice is applied to the target object.

Chapter 10

[9]

Weaving
Weaving is the process of inserting aspects into the application at the appropriate
point. The weaving can take place at different stages in the target class's lifetime:

•	 Compile time: Injecting the byte code of the advice into the joinpoint during
the compile time is called compile time weaving.

•	 Classload time: This injects the byte code at the when the class is loaded.
During this, the byte code is injected into the loaded class to have the advice
code at the joinpoint.

•	 Runtime – Spring way: The target object is shielded with the proxy bean,
which is created by the Spring Framework. Whenever the caller calls the
method on the target bean, the Spring Framework invokes the proxy and
applies advices to the target method. Once the method execution is over,
Spring applies advices to the target method again, if required, and the
response returns to the caller.

Spring uses this kind of weaving. Runtime weaving is an effective method as it keeps
code clean:

Caller Proxy Target

Weaver
The weaver is the actual processor that performs the weaving.

Aspect-oriented Programming with Spring

[10]

AOP implementations
AOP is implemented by a variety of frameworks, as explained here:

•	 AspectJ: AspectJ is well known in AOP language; it provides specialized
syntax to express concerns. It also provides tools to add a concern into the
system and enables crosscutting concern and modularization, such as logging,
error checking and handling, and so on. It can be downloaded from http://
www.eclipse.org/aspectj/downloads.php, where we can get the latest
version of the jar file. In this book, we have used the latest version of AspectJ,
which is 1.8. Double-clicking the downloaded jar file will automatically
launch the installation window, where we will need to specify the installation
directory by clicking on Next, as shown in the following screenshot:

From the C:\aspectj1.8\lib folder, we can find aspectjrt.jar and
aspectjweaver.jar, which we can add in the classpath of the project.

•	 JBoss AOP: JBoss provides its own AOP implementation known as
JBoss AOP, which is a pure Java implementation.

•	 Spring AOP: Spring provides its own implementation of AOP, which is
slightly different from the AspectJ implementation.

Let's discuss AOP support in the Spring Framework.

Chapter 10

[11]

AOP support in Spring
The implementation of AOP in the Spring Framework is proxy-based and supports
autoproxying. By autoproxying, we mean that if a bean is advised by one or more
aspects, Spring will automatically generate a proxy for that bean to intercept the
method invocation and ensure that the required advice is properly executed. The
proxy is used to authenticate the access of the fields and methods. The request is first
transferred to the proxy. Thereafter, it is the responsibility of the proxy to forward it
to the concerned sources to process it. The principle of proxy design is to wrap the
object with a proxy and use it as a substitution for the original object. Due to these
features, proxies are used to implement crosscutting concerns in Spring AOP. The
following figure represents a proxy in a Spring AOP implementation:

Proxy

Advice1 Advice 2

Target

Pointcut

Caller

In the preceding figure, a method is called on a proxy-based system; method is called
on the Plain Old Java Object (POJO). In the Spring Framework, POJO is extensively
used as it neither enforces any particular interface to be implemented nor extends any
class in order to create the class. Instead of a direct call to the object, the method is first
called on the proxy, which forwards the method call to the actual object.

The Spring Framework doesn't follow any particular implementation, similar to the
popular framework, AspectJ. A Spring programmer can select any implementation.
The two Spring AOP implementations are:

•	 AspectJ annotation style
•	 Spring XML configuration style

Each implementation style has advantages and disadvantages. Next, we will discuss
these implementations.

Aspect-oriented Programming with Spring

[12]

AspectJ annotation style
AspectJ provides the @AspectJ annotation. A class can be converted to an aspect
by annotating @AspectJ. The following is the list of annotations declared in the
org.aspectj.lang.annotation package:

AspectJ annotation Description
@Aspect This allows us to declare an aspect in a Java class
@Pointcut This allows us to declare a pointcut along with

an expression
@Before This specifies the before-advice declaration
@After This specifies the after-advice declaration
@AfterReturning This specifies the after-returning advice declaration
@AfterThrowing This specifies the after-throwing declaration
@Around This specifies the around-advice declaration

We need to configure the Spring Framework before using the AspectJ annotation.

AspectJ annotation configuration in Spring
Some configuration is required to implement the @AspectJ annotation. The first step
is to include JAR files in the classpath.

Chapter 10

[13]

Next, add the AspectJ support to Spring using an auto-proxy declaration in
the <aop:aspectj-autoproxy/> configuration file. The Spring Container creates
proxies for the beans that match the aspect declaration details. Finally, add the AOP
schema definition to the configuration file. The Spring configuration, file after proper
configuration, looks similar to the following code snippet, which shows the contents
of the beans.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.
springframework.org/schema/aop/spring-aop-4.1.xsd
 http://www.springframework.org/schema/context http://www.
springframework.org/schema/context/spring-context-
4.1.xsd">

 <aop:aspectj-autoproxy />
 <context:component-scan base-
package="org.packt.Spring.chapter4.aspectJ" />
</beans>

The preceding code snippet represents the configured XML file after the AOP
schema and autoproxy declaration have been added. The <aop:aspectj-
autoproxy/> syntax is used here to enable @AspectJ support in Spring.

Component scan is used in the beans.xml file to auto-detect
the aspect like any other managed bean.

Now, after the initial setting has been made, we can declare the AOP concept using
the @AspectJ annotation.

Declaring an aspect – @AspectJ
An aspect can be declared by annotating a POJO class with the @Aspect annotation
and required to import org.aspectj.lang.annotation.Aspect package. The
following code snippet represents the aspect declaration in the @AspectJ form:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.annotation.Aspect;

Aspect-oriented Programming with Spring

[14]

import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {	
 // ...
}

Here, an aspect is declared using the @Aspect annotation, which indicates that
the class is being declared as an aspect. We have an annotated class with another
annotation @Component, which allows the LoggingAspect class to be auto-detected.
Otherwise we will have to configure it in XML like any other bean, as follows:

The following code snippet shows the beans.xml file:

<bean name="loggingAspect"
 class="org.packt.Spring.chapter4.aspectJ.aspect.
LoggingAspect" >
</bean>

Let's define the pointcut by using the @Pointcut annotation.

Declaring pointcut
A pointcut declaration determines the execution of a method on which an advice
is applied. The pointcut is declared using the @Pointcut annotation defined under
org.aspectj.lang.annotation.Pointcut. A pointcut declaration contains two parts:

•	 A pointcut expression which the methods that need to be executed
•	 A pointcut signature containing the name and any parameters

The following code snippet defines a pointcut named serviceMethod() that
matches the execution of all methods in the classes under the org.packt.Spring.
chapter4.aspectJ.service package:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

Chapter 10

[15]

 @Pointcut("execution(* org.packt.Spring.chapter4.aspectJ.
service.*.*(..))") //expression
 public void serviceMethod() {} // signature
}

In the preceding code snippet, a pointcut is declared:

•	 The execution() denotes which method execution we are interested in.
•	 * org.packt.Spring.chapter4.aspectJ.service.*.*(..); here, the

first *, which is a wildcard, denotes any return type of the matched method;
the second * denotes any class under the org.packt.Spring.chapter4.
aspectJ.service package; the third * denotes any method within the
matched class.

•	 The (..) notation denotes that the method can have any set of parameters.

The following example defines a pointcut named getEmpName that matches the
execution of the getEmpName() method available in the Employee class under
the org.packt.Spring.chapter4.aspectJ.model package:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

 @Pointcut("execution(*
org.packt.Spring.chapter4.aspectJ.model.Employee.getEmpName(..))")
 public void getEmpName() {} // signature
}

A pointcut is a point of execution at which the crosscutting concerns may be
applied. Pointcuts are applied at joinpoints that match a method execution.
Whenever the program execution reaches one of these joinpoints, an advice,
that is, the code associated with the pointcut is executed. Spring AOP only
supports joinpoints associated with a method execution for the Spring beans
in its own container. If the pointcut expression is used outside this scope, an
IllegalArgumentException exception is thrown.

Aspect-oriented Programming with Spring

[16]

Spring AOP supports many Pointcut Designators (PCD) that can be used in pointcut
expression. However, Spring AOP users most often use the execution pointcut
designator. The format of execution expression is as follows:

execution(modifiers-pattern? ret-type-pattern declaring-type-
pattern? name-pattern(param-pattern)
 throws-pattern?)

Here, except ret-type-pattern, all other patterns are optional.

•	 ret-type-pattern: This pattern determines the return type of a method in
order to match a joinpoint. Most frequently, we use * as ret-type-pattern
to match any return type.

•	 name-pattern: This pattern matches the method name. We can use the
* wildcard to match all methods.

•	 param-pattern: This pattern matches the method with parameters; for
instance, () matches a method that takes no parameters, whereas (..)
matches any number of parameters.

•	 modifiers-pattern: This pattern defines the access modifier. In Spring AOP,
because of the proxy-based nature, protected methods are not intercepted and
hence match any given pointcut against public methods only.

Declaring advice
There are five kinds of advice in Spring AOP implementation. All these advices
are declared as aspects and applied as conditions to deal with a specific instance
of method execution. Advices can be classified as follows:

•	 Before
•	 After
•	 After returning
•	 After throwing
•	 Around

Before advice
A before advice takes place before a particular program/method is executed, or is
executed before the joinpoint execution. The @Before annotation is used to handle
crosscutting concerns before method execution.

Chapter 10

[17]

The before advice declaration, declared in the @Aspect style, is represented in the
following code snippet:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

 @Pointcut("execution(* org.packt.Spring.chapter4.aspectJ.
service.*.*(..))")
 public void serviceMethod() {} // signature

 @Before("serviceMethod()")
 public void beforeLoginAdvice() {
 //...
 }
}

In the preceding code snippet, the annotation @Before is used to declare before
advice under aspect declaration, and the advice refers to the pointcut declared
separately. The @Before annotation makes the beforeLoginAdvice advice
method to run before the serviceMethod target method, which is a pointcut.
The @Before annotation takes the parameter where this advice method has to
run before the target method runs. Here, the advice method will run before the
pointcut serviceMethod() method is run.

After advice
An after advice takes place after a particular method is executed. The @After
annotation is used to handle crosscutting concerns after method execution.
The declaration of an after advice in @Aspect style is represented in the
following code snippet:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

Aspect-oriented Programming with Spring

[18]

import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

 @Pointcut("execution(*
org.packt.Spring.chapter4.aspectJ.service.*.*(..))")
 public void serviceMethod() {} // signature

 @After("serviceMethod()")
 public void afterLoginAdvice() {
 //...
 }
}

In the preceding code snippet, the @After annotation is used to declare the after advice
under aspect declaration, and the advice refers to the pointcut declared separately.
The @After annotation makes the afterLoginAdvice advice method run after the
serviceMethod target method, which is a pointcut. The @After annotation takes the
parameter where this advice method runs after the target method runs. Here, the
advice method will run after the pointcut serviceMethod() method is run.

The @After annotation executes the advice method after the method has run,
whether the method has completed successfully or not because of some problem
in execution of method and there is an exception thrown.

After returning advice
The @AfterReturning annotation is used to handle crosscutting concerns returned
after method execution with normal termination. It is used to perform logging or any
crosscutting concern only after returning a method.

As we have discussed, the @After annotation executes the advice method after
the target method has run, whether the method has completed successfully or not.
Now let's say we want little bit of control over this. We want an advice to run only
when the target method completes successfully without throwing any exception.

The @AfterReturning annotation is another type of advice in Spring AOP from the
org.aspectj.lang.annotation.AfterReturning package. The after returning
advice declared in the @Aspect style is represented in the following code snippet:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.annotation.AfterReturning;

Chapter 10

[19]

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

 @Pointcut("execution(* org.packt.Spring.chapter4.aspectJ.
service.*.*(..))")
 public void serviceMethod() {} // signature

 @AfterReturning("serviceMethod()")
 public void afterReturningLoginAdvice() {
 //...
 }
}

In the preceding code snippet, the @AfterReturning annotation is used to declare
afterReturningLoginAdvice under aspect declaration and the advice refers to the
pointcut declared separately.

After throwing advice
The after throwing advice runs after the joinpoint execution completes with abnormal
termination. The @AfterThrowing annotation is used to handle crosscutting concerns
that are returned after method execution. The after throwing advice in the @Aspect
style is represented in the following code snippet:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

 @Pointcut("execution(* org.packt.Spring.chapter4.aspectJ.
service.*.*(..))")
 public void serviceMethod() {} // signature

 @AfterThrowing("serviceMethod()")

Aspect-oriented Programming with Spring

[20]

 public void afterThrowingLoginAdvice() {
 //...
 }
}

In the preceding code snippet, the @AfterThrowing annotation is used to declare an
after throwing advice under aspect declaration.

Around advice
So far, from the preceding topics, we have got an idea of how to write different advice
types in different stages through the execution of the target method. We can write
an advice method to be executed before a target method, or after a target method, or
return of a target method so on. So, with all the concepts that we have discussed so far,
we have all the tools required to intercept and run advice at any point in the execution
of the target method needed, both before and after. There is one other advice type that
we have not discussed so far, and that we will discuss here, the around advice.

The reason you would need around advice is if you happen to use all these different
advice types, around advice is required for a particular use case. Say you have a
target method and you want some advice code to be executed both before and after,
you can achieve this by writing a separate advice method for before, and a separate
advice for after. But if we use around, we have a little more control; it is also a little
bit more powerful than two separate before and after advice methods.

The advice method used for this type of advice must be defined with the following:

•	 The first argument as of org.aspectj.lang.ProceedingJoinPoint type
•	 The return type should be java.lang.Object.

The ProceedingJoinPoint allows us to invoke the proceed() method that would
proceed to invoke the target method. The around advice declared using the @Around
annotation in the @AspectJ style, is represented in the following code snippet:

package org.packt.Spring.chapter4.aspectJ.aspect;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

Chapter 10

[21]

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

 @Pointcut("execution(* org.packt.Spring.chapter4.aspectJ.
service.*.*(..))")
 public void serviceMethod() {
 } // signature

 @Around("serviceMethod()")
 public Object aroundLoginAdvice(ProceedingJoinPoint
proceedingJoinPoint)
 throws Throwable {

 // Here is a code that get executed before target method

 Object result = proceedingJoinPoint.proceed();

 // Here is a code that get executed after target method

 return result;
 }
}

In the preceding code snippet, we have configured aroundLoginAdvice as around
advice using the @Around annotation. The proceedingJoinPoint.proceed() method
executes when the actual target methods are executed. So we can have code before
proceedingJoinPoint.proceed() and after it gets executed, before and after the
execution of the target method, and that makes this advice as around advice.

Proxy
The proxy for the advised objects can be created by using the org.aspectj.lang.
aspectj.annotation.AspectJProxyFactory class. The following code snippet
can be used to create the proxy for the object:

AspectJProxyFactory factory = new
AspectJProxyFactory(targetObject);

Here, the AspectJProxyFactory() constructor is used to create a new proxy. It can
be added to an aspect to authenticate the method call.

Aspect-oriented Programming with Spring

[22]

Here, we will examine AOP in more detail, considering mainly how it works in
a Pure Object Oriented Scene. Let's say we have an Employee.java class with a
getEmpName() method that is being called in the main() method after creating an
Employee object in a PayrollsSystem.java class. Now, when we run the main
method, how is it possible that some advice code, which has been defined in some
other class, runs when we run the getEmpName() method? Let's say we have an
around advice method in the LoggingAspect.java class that runs before and
after the getEmpName() method, even though we don't have a call to that method
anywhere in the PayrollsSystem.java class or the Employee.java class. How did
that happen in the Pure Object Oriented paradigm?

AOP is completely different from OOP and the preceding scenario is actually not
possible. Spring uses some of the concepts of OOP to achieve AOP, and it does so
using a Proxy.

Proxy is a design pattern. It is a class that is going to limit access to another class.
It may be done for security reasons, or because an object is intensive to create, or is
accessed from a remote location. A proxy object is an object that is called by a client
to access the real object. So instead of making a call to class A, a call is made to class
B, and class B internally makes a call to class A.

When ApplicationContext in the Spring Framework starts up, it creates a bunch of
proxies that track method invocation, and thus applies some special code before or/
and after method execution. There are two types of proxies: one is the JDK proxy
that comes out of the box in JDK, and second one is CGLib, which is from the CGLib
library. The JDK proxy will support when our beans implement an interface, which
is also the Spring way of using AOP. But, there are many people who like to go for
concrete classes, and so they must use CGLib by adding cglib.jar to the classpath.
This makes the proxy constructors run twice.

Chapter 10

[23]

Developing an application in Spring using the
@AspectJ annotation
After discussing @AspectJ support in the Spring Framework in detail, we will
now develop an application using the @Aspect annotation that applies advice to
a method execution. It loads the XML bean declaration from the beans.xml file.
In order to create and execute the application successfully, we need to perform
the following tasks:

1.	 Create Java files.
2.	 Create a Spring configuration file.
3.	 Configure the application.
4.	 Execute the application.

Directory structure of the application
The final directory structure of the application is seen in the following screenshot:

The preceding tasks that enable the development of a Spring application using
@AspectJ annotation have been discussed in the following sections.

Aspect-oriented Programming with Spring

[24]

Creating Java files
Create a project called SpringAOPExample and create a package called org.packt.
Spring.chapter4.aspectJ under the src folder within the project. Create Java
classes, namely Employee.java, Logging.java, and PayrollsSystem.java under
the org.packt.Spring.chapter4.aspectJ package.

Employee.java
The Employee.java class contains empName as an instance variable and
getEmpName() and setEmpName() as instance methods:

package org.packt.Spring.AOP.aspectJ.model;

public class Employee {
 private String empName;

 public String getEmpName() {
 return empName;
 }

 public void setEmpName(String empName) {
 this.empName = empName;
 }
}

EmployeeService.java
The EmployeeService.java class contains the getEmployee() and
printThrowException() methods:

package org.packt.Spring.AOP.aspectJ.service;

import org.packt.Spring.AOP.aspectJ.model.Employee;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class EmployeeService {

 @Autowired
 private Employee employee;

 public Employee getEmployee() {
 System.out.println("EmployeeService: employee returned");

Chapter 10

[25]

 return employee;
 }

 public void printThrowException() {
 System.out.println("EmployeeService: Exception
occurred");
 throw new IllegalArgumentException(
 "Throwing illegal argument exception from
Service class");
 }
}

LoggingAspect.java
The LoggingAspect.java class is an aspect module that defines methods to be
called at various points:

package org.packt.Spring.AOP.aspectJ.aspect;

import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

@Aspect
@Component("loggingAspect")
public class LoggingAspect {

 /**
 * Pointcut.
 */
 @Pointcut("execution(* org.packt.Spring.AOP.aspectJ.service.
EmployeeService.
getEmployee(..))")
 public void serviceMethod() {
 }

 /**
 * Execute before a selected method execution.
 */
 @Before("serviceMethod()")
 public void beforeAdvice() {

Aspect-oriented Programming with Spring

[26]

 System.out.println("Before Advice: Going to setup
Employee.");
 }

 /**
 * Execute after a selected method execution.
 */
 @After("serviceMethod()")
 public void afterAdvice() {
 System.out.println("Employee has been setup.");
 }

 /**
 * Execute if there is an exception raised by any method.
 */
 @AfterThrowing("execution(*
org.packt.Spring.AOP.aspectJ.service.EmployeeService.
printThrowException())")
 public void afterThrowingLoginAdvice() {
 System.out.println("There has been an exception: ");
 }
}

In the preceding code, we have used the @Aspect, @Pointcut, @Before, @After,
and @AfterThrowing annotations in the class and method. The @Aspect declaration
informs the compiler that an aspect has been declared.

Let's create the main() method in the PayrollSystem.java class.

PayrollsSystem.java
The PayrollsSystem.java class contains the main method and loads the XML bean
definition from the beans.xml file:

package org.packt.Spring.AOP.aspectJ.main;

import org.packt.Spring.AOP.aspectJ.service.EmployeeService;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

Chapter 10

[27]

 ApplicationContext context = new
ClassPathXmlApplicationContext(
 "beans.xml");
 EmployeeService employeeService =
context.getBean("employeeService",
 EmployeeService.class);
 System.out.println("Employee Name: "
 + employeeService.getEmployee().getEmpName());
 try {
 employeeService.printThrowException();
 } catch (IllegalArgumentException ex) {
 System.out.println(ex.getMessage());
 }
 }
}

The BeanFactory and ApplicationContext are two implementations of the
IoC container. ApplicationContext is an interface, which is an extension of
BeanFactory. Therefore, an object of the ClassPathXmlApplicationContext
class needs to be created, which implements the ApplicationContext interface
and builds the application context by loading the beans.xml file.

To get a bean declaration from an ApplicationContext, the getBean() method
is executed in the ApplicationContext with a unique bean ID as its argument
and class as another argument, which internally typecasts the EmployeeService
type object.

Creating a Spring configuration file
Create the beans configuration file beans.xml under the src folder. The following
code snippet shows the contents of the beans.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.1.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
4.1.xsd">

Aspect-oriented Programming with Spring

[28]

 <aop:aspectj-autoproxy />
 <context:component-scan base-
package="org.packt.Spring.AOP.aspectJ" />
 <bean name="employee"
class="org.packt.Spring.AOP.aspectJ.model.Employee">
 <property name="empName" value="Ravi"></property>
 </bean>
</beans>

This configuration file contains an autoproxy declaration using the <aop:aspectj-
autoproxy /> tag.

Executing the application
Once you are done with creating source and bean configuration files, it's time to run
the application:

INFO: Loading XML bean definitions from class path resource
[beans.xml]
Before Advice: Going to setup Employee.
EmployeeService: employee returned
Employee has been setup.
Employee Name: Ravi
EmployeeService: Exception occurred
There has been an exception:
Throwing illegal argument exception from Service class

XML schema-based configuration
In the previous sections, we have seen how to configure aspects and advice,
and have done the entire configuration using annotation. We used the @aspect
annotation to define an aspect, and we have seen all the different advice types
using annotations such as @Before, @After, @AfterReturning, @AfterThrowing,
and @Around. We have also defined pointcut using the @Pointcut annotation,
which can be applied to different advice methods.

In addition to defining aspects and advice methods using annotations, there is
another way we can perform all these configurations and definitions in Spring XML.
We will also discuss when to choose to define aspects using XML and when to define
using annotations instead.

XML schema-based configuration is used to construct the aspect and declare advices.
To declaring the aspect, pointcut and advice, Spring uses a bean configuration file
along with specialized tags related to particular aspects.

Chapter 10

[29]

In the XML schema-based configuration approach, all the aspect declarations are
placed under the <aop:config/> tag. To use AOP namespace tags, we need to
import the spring-aop schema.

The following code snippet shows the beans.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.1.xsd">

 <aop:config>

 <!-- contains aspect configuration and all method
related configuration -->

 </aop:config>

</beans>

The aop:config will contain all aspect configurations and all specific method-related
configurations, such as around, pointcut, and so on.

Declaring an aspect
An aspect is a regular Java object and is declared using the <aop:aspect> tag within
<aop:config>. The ref attribute is used to refer backing bean. The following code
snippet declares the myaspect aspect:

<aop:config>
 <aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- Body Content -->
 </aop:aspect>
</aop:config>

<bean id="loggingAspectBean"
class="org.packt.Spring.AOP.aspectJ.aspect.LoggingAspect" >
</bean>

Aspect-oriented Programming with Spring

[30]

In the preceding code snippet, an aspect declaration is given using the <aop:aspect>
tag. The <aop:aspect> tag takes an ID and ref. The ID is the ID of the aspect. The
ref is a reference to the bean that has been defined for the aspect. In the preceding
code snippet, loggingAspectBean is defined as a bean, which is used as a reference
for <aop:aspect>. So, this <aop:aspect> will replace the @Aspect annotation in
the class.

The body content of the <aop:aspect> element allows zero or more child tags listed
here, in any condition:

Tag Description
<aop:pointcut > This tag declares pointcut
<aop:before > This tag declares before advice
<aop:after > This tag declares after advice
<aop:afterReturning > This tag declares after returning advice
<aop:afterThrowing > This tag declares after throwing advice
<aop:around > This tag declares around advice

Declaring a pointcut
A pointcut is declared by using the <aop:pointcut> tag. This pointcut ID is the
method name in the class. A pointcut is declared either under the <aop:aspect>
or <aop:config> tag:

•	 If a pointcut is declared under the <aop:aspect> tag, then it is visible only
under that particular aspect within which it is declared. The following code
snippet shows a pointcut declared within an aspect:
<aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- pointcut declared -->
 <aop:pointcut
 expression="execution(*
org.packt.Spring.AOP.aspectJ.service.EmployeeService.
getEmployee(..))"
 id="serviceMethod" />
</aop:aspect>

The preceding code snippet defines a pointcut called serviceMethod,
which has the expression execution(* org.packt.Spring.AOP.aspectJ.
service.EmployeeService.getEmployee(..)) within loggingAspect.

Chapter 10

[31]

•	 Alternatively, if it is declared under the <aop:config> tag, then it is
available to all aspects. The following code snippet shows a pointcut
declared globally:
<aop:config>
 <aop:pointcut
 expression="execution(*
org.packt.Spring.AOP.aspectJ.service.EmployeeService.
getEmployee(..))"
 id="serviceMethod" />
</aop:config>

Declaring an advice
An advice is an object that includes API invocation to system wide concern
representing the action to be performed at a joinpoint, specified by a pointcut.
An advice is declared either under the <aop: aspect> or <aop: config> tag.
The advice requires a reference to the particular pointcut, denoted by the <ref>
tag. The common advices declared are:

•	 Before advice: This advice executes before the joinpoint.
•	 After advice: This advice executes after executing the joinpoint.
•	 After returning advice: This advice executes after the joinpoint execution

completes, with normal termination.
•	 After throwing advice: This advice executes after the joinpoint execution,

if it completes, with abnormal termination.
•	 Around advice: This advice surrounds the jointpoint providing

the advice before and after executing the joinpoint, and controls
the jointpoint invocation.

Now, let's discuss these advices in detail with some examples, first starting with
before advice.

Before advice
As discussed earlier, before advice is the advice that executes before the jointpoint.
That means this type of advice allows us to intercept the request and apply the
advice before the execution of the joinpoint. A before advice takes place before a
particular program/method is executed. It is used to handle crosscutting concerns
before the method execution. Before advice is declared using the <aop:before>
element within an <aop:aspect> tag.

Aspect-oriented Programming with Spring

[32]

The following code snippet represents the declaration of before advice in an
XML schema-based configuration:

<aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- pointcut declared -->
 <aop:pointcut
 expression="execution(*
org.packt.Spring.AOP.aspectJ.service.EmployeeService.getEmployee(..))"
 id="serviceMethod" />
 <!-- before advice definition -->
 <aop:before method="beforeAdvice" pointcut-ref="serviceMethod"
/>
</aop:aspect>

In the preceding code snippet, the <aop:before> tag is used to declare a before
advice under an aspect. The attributes of <aop:before> elements are:

•	 pointcut-ref: This takes the name of an associated pointcut definition,
that is, the ID of the pointcut defined using the <aop:pointcut> element.
Here, serviceMethod is the ID of a pointcut defined within <aop:aspect>.

•	 method: This takes the name of the method that has to be invoked before
the target method invocation. Here, <aop:before> tells the beforeAdvice
method to be executed before the execution of any getter method.

After advice
An after advice executes after a particular program/method is executed. The
<aop:after > tag is used to handle crosscutting concern after method execution.
The after advice executes after the joinpoint execution, irrespective of how the
joinpoint execution exists, that is, whether it completes with normal or abnormal
termination. Since this advice acts the same as finally block, that is, being executed
in case of normal or abnormal termination of try block, and so considered as finally
advice. The after advice declared in the XML schema-based configuration can be
represented by the following code snippet:

<aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- pointcut declared -->
 <aop:pointcut
 expression="execution(*
org.packt.Spring.AOP.aspectJ.service.EmployeeService.getEmployee(.
.))"
 id="serviceMethod" />
 <!-- after advice definition -->
 <aop:after method="afterAdvice" pointcut-ref="serviceMethod"/>
</aop:aspect>

Chapter 10

[33]

In the preceding code snippet, the <aop:after> tag is used to declare an after advice
under the aspect. The attributes of <aop:after> elements are:

•	 pointcut-ref: This takes the name of an associated pointcut definition,
that is, the ID of the pointcut defined using the <aop:pointcut> element.
Here, serviceMethod is the ID of the pointcut defined inside <aop:aspect>.

•	 method: This takes the name of the method that has to be invoked after the
target method invocation. Here, <aop:after> tells the afterAdvice method
to be executed after the execution of getter method.

After returning advice
After returning advice is the advice that executes after the joinpoint invocation
completes with normal termination. This advice is used to perform either logging or
any crosscutting concern, only after returning a method. The <aop:after-returning>
tag is used to handle crosscutting concerns, after returning from a method execution.
The after returning advice that is declared in an XML schema-based configuration style
is represented by the following code snippet:

<aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- pointcut declared -->
 <aop:pointcut
 expression="execution(*
org.packt.Spring.AOP.aspectJ.service.EmployeeService.
getEmployee(..))"
 id="serviceMethod" />
 <!-- after-returning advice definition -->
 <aop:after-returning method="afterReturningAdvice" pointcut-
ref="serviceMethod"/>
</aop:aspect>

In the preceding code snippet, the <aop:after-returning> tag is used to declare an
after-returning advice under the aspect.

The attributes of <aop:after-returning> elements are:

•	 pointcut-ref: This takes the name of an associated pointcut definition,
that is, the ID of the pointcut defined using the <aop:pointcut> element.
Here, serviceMethod is the ID of the pointcut defined within <aop:aspect>.

•	 method: This takes the name of the afterReturningAdvice method
that has to be invoked after the target method invocation completes
with normal termination.

Aspect-oriented Programming with Spring

[34]

After throwing advice
After throwing advice is the advice that executes after the joinpoint invocation
completes with an abnormal termination (that is, if the method invoked throws
any exceptions). This advice is executed only after an exception is thrown under
a method execution. The <aop:after-throwing> tag is used to declare an after
throwing advice. The after throwing advice declared in an XML schema-based
configuration style is represented by the following code snippet:

<aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- pointcut declared -->
 <aop:pointcut
 expression="execution(*
org.packt.Spring.AOP.aspectJ.service.EmployeeService.
getEmployee(..))"
 id="serviceMethod" />
 <!-- after-throwing advice definition -->
 <aop:after-throwing method="afterThrowingAdvice" pointcut-
ref="serviceMethod"/>
</aop:aspect>

In the preceding code snippet, the <aop:after-throwing> tag is used to declare an
after-throwing advice under the aspect. The attributes of <aop:after-throwing>
elements are:

•	 pointcut-ref: This takes the name of an associated pointcut definition,
that is, the ID of the pointcut defined using the <aop:pointcut> element.
Here, serviceMethod is the ID of the pointcut defined inside <aop:aspect>.

•	 method: This takes the name of the afterThrowingAdvice method that
has to be invoked after the target method invocation completes with
abnormal termination.

Around advice
As discussed earlier, the around advice can surround the joinpoint, providing the
advice before and after executing the joinpoint. It can even control the joinpoint
invocation. Around advice is used to specify the behavior of a method executed
around a joinpoint. The <aop:around> tag is used to declare an around advice.
The following code snippet represents the declaration of around advice in an
XML schema-based configuration:

<aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- pointcut declared -->
 <aop:pointcut

Chapter 10

[35]

 expression="execution(* org.packt.Spring.AOP.aspectJ.
service.EmployeeService.
getEmployee(..))"
 id="serviceMethod" />
 <!-- around advice definition -->
 <aop:around method="aroundAdvice" pointcut-
ref="serviceMethod"/>
</aop:aspect>

The attributes of <aop:after-throwing> elements are:

•	 pointcut-ref: This takes the name of an associated pointcut definition,
that is, the ID of the pointcut defined using the <aop:pointcut> element.
Here, serviceMethod is the id of the pointcut defined within <aop:aspect>.

•	 method: This takes the name of the aroundAdvice method that has to
surround the target method invocation.

Developing an application in Spring using
XML schema-based configuration
In this section, an aspect in the Spring AOP application is developed using XML
schema-based configuration notation. It applies advice on a method execution.
It loads the XML bean declaration from the bean.xml file. In order to create and
execute the application successfully, we need to perform the following tasks:

1.	 Create Java files.
2.	 Create a Spring configuration file.
3.	 Configure the application.
4.	 Execute the application.

Creating Java files
To develop the application, we will create all the source files in the src folder under
the org.packt.Spring.chapter4.aspectJ package.

Employee.java
The Employee.java class contains empName as an instance variable and
getEmpName() and setEmpName() as an instance method:

package org.packt.Spring.AOP.aspectJ.model;

public class Employee {

Aspect-oriented Programming with Spring

[36]

 private String empName;

 public String getEmpName() {
 return empName;
 }

 public void setEmpName(String empName) {
 this.empName = empName;
 }
}

EmployeeService.java
The EmployeeService.java class contains the getEmployee(), setEmployee(),
and printThrowException() methods:

package org.packt.Spring.AOP.aspectJ.service;

import org.packt.Spring.AOP.aspectJ.model.Employee;

public class EmployeeService {

 private Employee employee;

 public void setEmployee(Employee employee) {
 this.employee = employee;
 }

 public Employee getEmployee() {
 System.out.println("EmployeeService: employee returned");
 return employee;
 }

 public void printThrowException() {
 System.out.println("EmployeeService: Exception
occurred");
 throw new IllegalArgumentException(
 "Throwing illegal argument exception from
Service class");
 }
}

Chapter 10

[37]

LoggingAspect.java
The LoggingAspect.java class is an aspect module that defines the method that will
be called at various points:

package org.packt.Spring.AOP.aspectJ.aspect;

import org.aspectj.lang.ProceedingJoinPoint;

public class LoggingAspect {

 /**
 * Pointcut.
 */
 public void serviceMethod() {
 }

 /**
 * Execute before a selected method execution.
 */
 public void beforeAdvice() {
 System.out.println("Before Advice: Going to setup
Employee.");
 }

 /**
 * Execute after a selected method execution.
 */
 public void afterAdvice() {
 System.out.println("Employee has been setup.");
 }

 /**
 * Execute when any method returns.
 */
 public void afterReturningAdvice() {
 System.out.println("After returning advice run");
 }

 /**
 * Execute if there is an exception raised by any method.
 */
 public void afterThrowingAdvice() {
 System.out.println("There has been an exception: ");
 }

Aspect-oriented Programming with Spring

[38]

 /**
 * Execute around advice.
 */
 public Object aroundAdvice(ProceedingJoinPoint
proceedingJoinPoint)
 throws Throwable {
 System.out.println("Additional Concern Before calling
actual method");
 // Here is a code that get executed before target method
 Object result = proceedingJoinPoint.proceed();

 // Here is a code that get executed after target method
 System.out.println("Additional Concern After calling
actual method");
 return result;
 }
}

PayrollsSystem.java
The PayrollsSystem.java class contains the main method and loads the XML bean
definition from the beans.xml file:

package org.packt.Spring.AOP.aspectJ.main;

import org.packt.Spring.AOP.aspectJ.service.EmployeeService;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {
 ApplicationContext context = new
ClassPathXmlApplicationContext(
 "beans.xml");
 EmployeeService employeeService = (EmployeeService)
context
 .getBean("employeeService");
 System.out.println("Employee Name: "
 + employeeService.getEmployee().getEmpName());
 try {
 employeeService.printThrowException();
 } catch (IllegalArgumentException ex) {
 System.out.println(ex.getMessage());
 }
 }
}

Chapter 10

[39]

The BeanFactory and ApplicationContext are two implementations of the IoC
container. ApplicationContext is an interface that is an extension of BeanFactory.
Therefore, an object of the ClassPathXmlApplicationContext class needs to
be created, which implements the ApplicationContext interface and build the
application context by loading the beans.xml file.

To get a bean declaration from an application context, the getBean() method is
executed in the application context with a unique bean ID as its argument, and
class as another argument, which internally typecasts the Employee type object.

Creating a Spring configuration file
The Spring configuration file beans.xml includes all the configuration for the beans,
aspects, pointcuts, and advices. The aspect is declared under the <aop:config>,
using the <aop:aspect> tag. Create a beans configuration file called beans.xml
under the src folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.1.xsd">

 <aop:config>
 <aop:aspect id="loggingAspect" ref="loggingAspectBean">
 <!-- pointcut declared -->
 <aop:pointcut
 expression="execution(*
org.packt.Spring.AOP.aspectJ.service.*.*(..))"
 id="serviceMethod" />

 <!-- before advice definition -->
 <aop:before method="beforeAdvice" pointcut-
ref="serviceMethod" />

 <!-- after advice definition -->
 <aop:after method="afterAdvice" pointcut-
ref="serviceMethod" />

 <!-- after-returning advice definition -->
 <aop:after-returning method="afterReturningAdvice"
 pointcut-ref="serviceMethod" />

Aspect-oriented Programming with Spring

[40]

 <!-- after-throwing advice definition -->
 <aop:after-throwing method="afterThrowingAdvice"
 pointcut-ref="serviceMethod" />

 <!-- around advice definition -->
 <aop:around method="aroundAdvice" pointcut-
ref="serviceMethod" />
 </aop:aspect>
 </aop:config>

 <bean id="loggingAspectBean" class="org.packt.Spring.AOP.aspectJ.
aspect.LoggingAspect" />

 <bean name="employee" class="org.packt.Spring.AOP.aspectJ.model.
Employee">
 <property name="empName" value="Ravi"></property>
 </bean>

 <bean id="employeeService"
class="org.packt.Spring.AOP.aspectJ.service.EmployeeService"
 autowire="byType" />

</beans>

Executing the application
Once you are done with creating the source and bean configuration files, let's run
the application:

INFO: Loading XML bean definitions from class path resource [beans.
xml]
Before Advice: Going to setup Employee.
Additional Concern Before calling actual method
EmployeeService: employee returned
Additional Concern After calling actual method
After returning advice run
Employee has been setup.
Employee Name: Ravi
Before Advice: Going to setup Employee.
Additional Concern Before calling actual method
EmployeeService: Exception occurred
There has been an exception:
Employee has been setup.
Throwing illegal argument exception from Service class

Chapter 10

[41]

Summary
In this chapter, we saw the problems with OOP in developing applications.
We looked at AOP concepts and their terminologies, such as aspect, joinpoint,
pointcuts, advice, introduction, and proxy. We implemented AOP in a Spring
application using the AspectJ annotation style and also using XML schema-based
configuration.

