
[1]

Simple Swift App
In this bonus chapter, we're going to make a simple Notes app using a storyboard,
UIkit, and Swift.

Creating a simple app with Swift
Apple's new programming language, Swift, is still in its infancy at the time of writing
this book. However, there is still loads of documentation to reference, combined with
an entire blog dedicated to Swift created by Apple. So, before we go ahead and start
creating games, let's create a simple iOS app in Swift to get a feel of how the syntax
works in conjunction with our familiar UIkit elements.

Goal of the app
Our app is going to be a very simple version of the Notes app on all iOS devices.
It will be able to provide the following basic features of a note-taking app:

•	 Creating new notes
•	 Editing an existing note
•	 Saving changes to a note
•	 Recording changes to the device (data persistence)

Simple Swift App

[2]

Here	are	two	screenshots	of	what	the	final	version	of	the	app	is	going	to	look	like:

It	won't	be	too	hard,	so	let's	get	right	into	it	by	first	creating	a	project	to	start	from.

Bonus Chapter

[3]

Creating a blank project
Open Xcode and go to File | New | Project. From the iOS Application section, select
Single View Application and click on Next, as shown in the following screenshot:

Name it NotesApp (or whatever you wish), set the language to Swift, and set
the devices to Universal. Then click on Next. This is also shown in the following
screenshot for your reference:

Simple Swift App

[4]

Save the project wherever you want; it doesn't particularly matter.

Now let's set up our UI so that it's not so boring.

Setting up the view controllers in
Interface Builder
Click on Main.storyboard to access Interface Builder, and you will see a visual
representation of the app. Although we told Xcode that we wanted to create a
Single View Application, we can still modify it however we want.

The	first	order	of	business	is	to	make	sure	you	can	see	the	Object Library within
Xcode. If you don't have the Object Library visible, click on the sidebar button in
the top-right corner of Xcode to open it, as shown in the following screenshot:

Bonus Chapter

[5]

From there, drag a Table View Controller controller to any place within the
storyboard. It doesn't really matter where you put it, but for clarity, it's probably
best to place it to the left of the currently existing view controller.

Simple Swift App

[6]

Next, select Table View Controller (it should be selected by default) and go to
Editor | Embed In | Navigation Controller. This will add a navigation bar to the
top of our table view, as well as Navigation Controller for us, and link up the two
view controllers automatically so that we don't have to.

After that, select Table View Controller, press Ctrl, and drag it from the View
Controller icon (the yellow box, either in the document outline or above the view
controller), to the blank view controller that was initially created.

Bonus Chapter

[7]

From the list that pops up, select the Push segue.

This creates a segue (the name for a transition between two UIViewController
objects). Essentially, if you're unfamiliar, it will automatically create a navigation
bar at the top of your view controller and allow you to transition to this view
controller, with the navigation automatically built in.

Simple Swift App

[8]

With the segue created, click on the Segue icon between the table views on the blank
view controller, and give it a name such as showEditorSegue or something relevant.

Finally, we want to set the initial view controller to be our navigation controller.
So, click on Navigation Controller, and under the Attributes Inspector, check the
box that says Is Initial View Controller.

Bonus Chapter

[9]

Alternatively, wherever you have the initial view controller that you started with,
there should be an arrow coming in from the left of it. Click and drag that arrow onto
the Navigation Controller (feel free to zoom out a bit if you have to).

If you run the app at this point, you'll get to an app with a blank list of items.
You will also get a navigation bar across the top that has no title or buttons.
So we can't test our editor segue yet.

Simple Swift App

[10]

Set up the UI
With our view controllers set up properly, we can add to our views the necessary
elements that will make up the core of our interaction.

First, drag a Bar Button Item from the Object Library onto the far right side of the
navigation bar of Table View Controller. As you drag the button close to it, it will be
highlighted in blue (not shown in the following screenshot):

Then,	change	the	button's	identifier	to	Add, turning it into a + button.

Bonus Chapter

[11]

Next, click on Navigation Item in Table View Controller, and change the
Title property to Notes. When you do this, it'll change the name of the scene
to Notes Scene.

Now click on Table View Cell (right below where it says Prototype Cells, or in the
outline on the left-hand side), and change the cell's Identifier to CELL. The actual
name doesn't matter, but we're just naming it something obvious for later reference:

Simple Swift App

[12]

With the Table View Cell still selected, change the Accessory property to Disclosure
Indicator (which will give it a < arrow on the right-hand side of the cell).

That's all for the table view, so now select the View Controller scene, and drag a
Navigation Item onto the view:

Bonus Chapter

[13]

Feel free to change the title (or leave it; it's up to you). It doesn't matter here because
we're going to modify it in the code anyway.

Next, drag a Bar Button Item onto the right side of the newly created Navigation
Item (similar to Table View), and change the Title property of the button to Done.

Alternatively, you can change the button's Identifier to Done, which will make
the text bold in addition to showing the word Done. Whichever way you do it,
the button will still work as intended later on.

But what's a note-taking app without the ability to modify the notes? So, let's add a
giant text view to the screen. With the main scene selected (Title Screen or whatever
you ended up calling it), drag a Text View (not a Text Field) onto the view's
Navigation Bar.

Simple Swift App

[14]

This	ensures	that	the	text	view	fills	the	entirety	of	the	screen	across	all	edges.

Bonus Chapter

[15]

Here's what it looks like when properly placed:

Simple Swift App

[16]

To make sure that the Text View	is	filling	the	screen	properly,	press	Ctrl and drag
from the + button of the Table View to the Title Scene, and select Show under
Action Segue.

Bonus Chapter

[17]

Then run the app and click on the + button. If you can read all of the default text
(and it's not going off the screen), you're good. Otherwise, you'll have to delete the
Text View and try again.

Simple Swift App

[18]

Once you know it's working, you can get rid of the segue you just created from the
+ button. Just click on either of the segues between the two view controllers, and
whichever	doesn't	have	an	identifier	is	the	segue	you're	going	to	delete.

Bonus Chapter

[19]

Now that you know the Text View is working properly, you can (if you wish) select
the text view and just delete all of the text within it.

Now that we have all our user interface elements laid out, we can start coding
the functionality. Yes, so far, all this has been the same as what happens when
using Objective-C, but it's still important to know (and set up properly) when
making iOS apps.

Simple Swift App

[20]

Set the TableViewController and displaying
the data
Even though you could argue that creating a note might be the most important
feature of your app, if you can't see the list of notes created, it's a useless app.
So, we want to make sure we get that aspect working before anything else.

First, change ViewController.swift to TableViewController.swift (either by
double-clicking slowly or clicking then hitting return). Also change the name of the
class	within	the	file	(on	line	11	or	so).

Since our base/initial view controller is going to be a table view controller,
we need to change our main view controller's superclass (or parent class) to
UITableViewController. So, in TableViewController.swift, change the
class it inherits from:

class TableViewController: UITableViewController {
...
}

Now that it's of the UITableViewController type, go back to Main.storyboard,
select the Notes Scene (make sure you select the controller and not any of the
elements within it), and, under the Identity Inspector, change the Class property to
TableViewController.

Bonus Chapter

[21]

Make sure it's TableViewController, not UITableViewController.
If you're only seeing UITableViewController, it's because
you haven't changed the superclass (or parent class) to the type of
UITableViewController. So, go back and make sure you change the
name and inheritance of the class properly (and clear up any errors that
exist, as this may also contribute to the storyboard issue).

With the class and the controller linked, we can actually display some data. To do that,
we're going to implement three methods that will help the UITableViewController
object determine what it's going to display. In TableViewController.swift, add the
following methods below the didReceiveMemoryWarning function:

override func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {

 // return the desired # of elements. In this case, 5
 return 5
}

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 //grab the "default cell", using the identifier we set up in
 the Storyboard
 var cell = tableView.dequeueReusableCellWithIdentifier("CELL")
 as UITableViewCell

 // set the text to a test value to make sure it's working
 cell.textLabel!.text = "Test Value"

Simple Swift App

[22]

 //return the newly-modifed cell
 return cell
}

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {

 //do nothing at the moment
}

These three methods are fairly self-explanatory, even if you've never used a
UITableView object before. Plus, the comments should help if you get lost.

If you're wondering why we have to use override here, it's because of the inheritance
from UITableViewController.	Instead	of	simply	defining	a	function	implemented	by	
a delegate, we're directly overriding the implementation of that function.

Also note the location and implementation of the return type on these functions
(as previously shown in the Goal of the App section of this chapter).

If you have to type these methods yourself, you can start typing
tableView and it will suggest a list of options. Highlight the option
you want using the arrow keys (or clicking on the item), and either hit
return or double-click on the item. Then Xcode will generate the code
for you, including the override keyword.

Running the app at this point will let you see the table view populated with some
values. When you tap on any of the values, nothing happens just yet. We'll get to that
soon. First, we need to implement the creation of a new note.

Create an array for notes
The key functionality of a note-taking app is the ability to create new notes.
To do that, we just need to implement the functionality of the + button that we
added to our main view controller. When we create a note, we will want to add
it to a list of notes previously created. But since we don't yet have a list to add it to,
we must create a list.

Bonus Chapter

[23]

In TableViewController.swift, we add an instance variable to the top of the class
that will store our notes. The structure we're going to use is an array of dictionaries.
The keys we're going to use are title and body. The syntax looks a little wonky, but
it's essentially combining the two types, and telling Swift that we're going to be using
dictionaries within this array that have both their keys and values as a String type:

class TableViewController: UITableViewController {

 //an array of dictionaries
 // keys = "title", "body"
 var arrNotes = [[String:String]]()

override func viewDidLoad() {
...
}

So, imagine a series of notes, each with a title and a body, all arranged within an
array. This makes it easy for the table view (as well as for us) when determining
which note to display or modify.

Now that we have a list to work with, we can change the hardcoded values in our
tableView method to the following:

override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

//we want "the number of elements in the array" to be the number
 of rows
 return arrNotes.count
}

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 //grab the "default cell"
 var cell = tableView.dequeueReusableCellWithIdentifier("CELL")
 as UITableViewCell

 //set the text to the "title" value of the same index of the
 array
 cell.textLabel!.text = arrNotes[indexPath.row]["title"]

 return cell
}

Running the app at this point will show nothing in the table (which is intended,
because we haven't added anything to the array yet).

Simple Swift App

[24]

Implement the + button
Now that we have an array being created and the table view using it to display any
data within it, we can implement the + button's add mechanics.

So in TableViewController.swift, add the following method. It will be called
when the + button is tapped:

@IBAction func newNote() {

 //new dictionary with 2 keys and test values for both
 var newDict = ["title" : "TestTitle",
 "body" : "TestBody"]

 //add the dictionary to the front (or top) of the array
 arrNotes.insert(newDict, atIndex: 0)

 //reload the table (refresh the view)
 self.tableView.reloadData()
}

But just because we've created the method doesn't mean it will work. We must link
the button to the method in our storyboard.

Open Main.storyboard, and select the + button from the Notes Scene. Press Ctrl
and drag from the + button to the yellow view controller icon (either on the left in
the outline or above the view), and select newNote under the Sent Actions section.

Bonus Chapter

[25]

When you let go of the mouse, the following menu will appear, asking you what you
want to link the + button's button clicked event to. In this case, we want to link it to
the newNote action that we created.

Now you should be able to run the app, and upon tapping the + button, you'll see
an item get added to the table view every time. It looks like it's being added to the
bottom of the list, but it's actually being added to the top and pushing everything
else down.

Create and link the notes editor class
We need to create a new class to modify the data in our editor view (the one with
the textbox).

Simple Swift App

[26]

To do this, you need to right-click (or press Ctrl	and	click)	on	one	of	the	files	or	
folders in the project and select New File. From there, go to the iOS Source section,
choose Cocoa Touch Class, and then click on Next.

We're going to name it NotesViewController, make it a subclass of
UIViewController, and choose Swift as Language.

Bonus Chapter

[27]

Then click on Create,	and	it	will	take	you	to	the	file.

At the top of the NotesViewController.swift	file,	we're	going	to	create	an	
IBOutlet property for our UITextView object. The ! mark at the end indicates that
it's an optional type (similar to the ? mark) and is implicitly unwrapped. In other
words, you don't have to manually unwrap the variable to access it (but you would if
it	were	defined	as	UITextView!):

class NotesViewController: UIViewController {

 //a variable that links to the main body text view
 @IBOutlet weak var txtBody : UITextView!

 override func viewDidLoad() {
 ...
}

With the variable ready, we can go ahead and link the two together. In Main.
storyboard, select the Title Scene (the scene with the textbox), and change its
Class to NotesViewController.

Simple Swift App

[28]

Then, with the view controller selected, press Ctrl and drag from the yellow icon to
the text view.

Bonus Chapter

[29]

Select the txtBody variable from the available options.

Simple Swift App

[30]

Transition to the notes editor
Now that we have our notes editor created and linked, let's transition to it using the
segue	identifier	we	created	earlier.	Because	we	have	the	identifier	of	the	segue	set,	
we can call that segue in the respective areas. We're calling the segue manually so
that we can do some internal work before the segue happens.

In your didSelectRowAtIndexPath method as well as your newNote method, you
need to call the performSegue	method	with	the	identifier	you	set	up	earlier:

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {

 //push the editor view using the predefined segue
 performSegueWithIdentifier("showEditorSegue", sender: nil)
}

@IBAction func newNote() {

 ...

 //reload the table (aka, refresh the view)
 self.tableView.reloadData()

 //push the editor view using the predefined segue
 performSegueWithIdentifier("showEditorSegue", sender: nil)
}

If you run the app at this point, you will be able to actually transition back and
forth between the two views with no problem. It's just that there's no data being sent,
so let's do that.

Modify the destination's title value
We	first	need	to	know	which	index	is	selected	so	that	we	can	send	the	information	to	
the NotesViewController. At the top of our TableViewController class, we add a
variable to hold the selected index:

//selected index when transitioning (-1 as sentinel value)
var selectedIndex = -1

override func viewDidLoad() { ... }

Bonus Chapter

[31]

Then, in the tableView:didSelectRowAtIndexPath: method, set the selected index
value to the row that was selected:

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {

 //set the selected index before segue
 self.selectedIndex = indexPath.row

 ...
}

We're also going to add it to the newNote method, for when we tap the + button:

@IBAction func newNote() {

 ...

 //set the selected index to the most recently added item
 self.selectedIndex = 0

 //reload the table (refresh the view)
 self.tableView.reloadData()

 //push the editor view using the predefined segue
 performSegueWithIdentifier("showEditorSegue", sender: nil)
}

Now that the index is being set in the only two places that can change the index,
let's actually perform our transition. If you're unfamiliar with navigation controllers,
let me tell you that Apple provides a method called prepareForSegue that takes two
parameters and allows us to modify the destination view controller before it appears
on the screen.

That being said, add the prepareForSegue function to TableViewController.
swift:

override func prepareForSegue(segue: UIStoryboardSegue, sender:
 AnyObject?) {

 //grab the view controller we're gong to transition to
 let notesEditorVC = segue.destinationViewController as
 NotesViewController

Simple Swift App

[32]

 //set the title of the navigation bar to the selectedIndex's title
 notesEditorVC.navigationItem.title =
 arrNotes[self.selectedIndex]["title"]
}

The preceding method will set the title of our navigation bar to the title value
in our dictionary at the same index that's being selected. For example, when the +
button is tapped, we insert a new dictionary at index 0, select it, and set the title of the
NotesViewController navigation bar to be the same as that of the newly created note.

If you run the app at this point and create a new note (or select a previously created
note), you'll see that the title is now being shown as TestTitle (and not whatever
you had before). But you also might be wondering why we aren't modifying the
text view here either. Well, the way prepareForSegue works is that it can access
the	view	controller	just	fine,	but	UI	elements	in	our	view	controller	have	not	been	
created	yet,	so	we	have	to	set	a	variable	first.

Send the body text
Since we can't directly set the text view's text property in the prepareForSegue
method, we must create a variable that will act as the "middleman" variable. Then, in
the viewDidLoad method of NotesViewController, we can set the text accordingly.

So in NotesViewController.swift, add a string variable to hold the body text
while the UIViewController loads. Then set the txtBody object's text property to
the string value:

//a string variable to hold the body text
var strBodyText : String!

override func viewDidLoad() {
 super.viewDidLoad()

 //set the body's text to the intermitent string
self.txtBody.text = self.strBodyText
}

Then, in TableViewController.swift, we want to set this variable in the
prepareForSegue method:

override func prepareForSegue(segue: UIStoryboardSegue, sender:
 AnyObject?) {

Bonus Chapter

[33]

 ...

 //set the body of the view controller to the selectedIndex's
 body
 notesEditorVC.strBodyText =
 arrNotes[self.selectedIndex]["body"]
}

Now if you run the app, you'll see that the body text's test value we assigned is being
properly passed to NotesViewController.

Implement the Done button
If you recall, we added a navigation button with the word Done. Right now, it's not
doing	anything,	so	let's	fix	that.	The	functionality	we	want	for	the	Done button is to
hide the keyboard, but it will be visible only when the keyboard is also visible.

To make the keyboard visible automatically, we need to set the text view to become
the	first	responder.	This	will	enable	editing	on	the	text	view,	and	the	keyboard	will	
pop up as soon as we transition to the NotesViewController.

In the viewDidLoad method, right after we set the text view's text to the string
variable, we need to call the following:

//makes the keyboard appear immediately
self.txtBody.becomeFirstResponder()

Now that the keyboard is showing, we need a way to hide it (as well as the Done
button).	So	first,	we	need	to	create	an	IBOulet variable to store the button. At the top
of NotesViewController.swift, add the following code:

//a variable to link the Done button
@IBOutlet weak var btnDoneEditing: UIBarButtonItem!

Also add the following method, which the Done button will call when tapped:

@IBAction func doneEditingBody() {

 //hides the keyboard
 self.txtBody.resignFirstResponder()

 //makes the button invisible (still allowed to be pressed, but
 that's okay for this app)
 self.btnDoneEditing.tintColor = UIColor.clearColor()
}

Simple Swift App

[34]

Now that you have a method for the Done button, open Main.storyboard, select the
NotesViewController (Title Scene or whatever you called it), and link the button to
the IBOutlet as well as the IBAction.

Again, make sure you link not only the view controller to the button (as shown
in the preceding screenshot) but also the Done button's button clicked (touch up
inside) event to the view controller (as shown in the following screenshot). Like
the + button, we want to link our Done button to the doneEditingBody function
we just created.

Bonus Chapter

[35]

To verify that you've added both correctly, check the Connections tab of the
Done button.

If you run the app at this point, you'll see the Done button and keyboard disappear
as intended, but the Done button is never visible again whereas the keyboard
appears	again	(but	it	does	still	work,	which	is	fine	for	this	sample	app).

To	fix	this,	we	need	to	change	the	tint	color	of	the	Done button back to the default
color when the text view begins editing. So in NotesViewController.swift, add
the following method:

func textViewDidBeginEditing(textView: UITextView) {

 //sets the color of the Done button to the default blue
 //it's not a pre-defined value like clearColor, so we give it
 the exact RGB values
 self.btnDoneEditing.tintColor = UIColor(red: 0, green:
 122.0/255.0, blue: 1, alpha: 1)
}

But this method won't get called just yet. We need to tell the view controller that the
text view's delegate methods (the preceding method is one of the delegate methods)
should get called in this class.

To do that, add a comma, followed by the UITextViewDelegate keyword, after the
class declaration:

class NotesViewController: UIViewController , UITextViewDelegate {
 ...
}

Simple Swift App

[36]

Then assign the delegate of the text view to self. You can do this by linking it either
in the storyboard or in the viewDidLoad method, like this:

override func viewDidLoad() {

 ...

 //allows UITextView methods to be called (so we know when they
 begin editing again)
self.txtBody.delegate = self
}

Now you should be able to run the app and see the Done button working completely
as	intended.	But	still,	the	notes	aren't	being	saved	after	they	are	modified.

Save the selected value
When the user is done editing their note, or wants to go back to the list of notes,
they should notify the view controller that a change was made and the data in the
table should be updated accordingly.

To do this, we're going to implement the protocol (or delegate) pattern.
If you're unfamiliar, it's exactly the same as the UITextView and the UITableView
delegate methods that we've been implementing. But instead of using an
Apple-defined	method,	we're	going	to	create	our	own	protocol,	and	have	the	
TableViewController conform to that protocol.

So in NotesViewController.swift,	add	the	following	protocol	to	the	top	of	the	file:

//the protocol (or delegate) pattern, so we can update the table
 view's selected item
protocol NoteViewDelegate {

 //the name of the function that will be implemented
 func didUpdateNoteWithTitle(newTitle : String, andBody newBody :
 String)
}

class NotesViewController: UIViewController , UITextViewDelegate {
 ...
}

Bonus Chapter

[37]

Now that we have a protocol to conform to, we need to know which class is going to
be conforming to it. To know this information, we must create an optional variable
(optional because of the ? mark at the end, and optional here does not mean "not
required"). So create a delegate variable in NotesViewController.swift that will
determine what class to call the protocol's methods on:

class NotesViewController: UIViewController , UITextViewDelegate {

 //a variable to hold the delegate (so we can update the table
 view)
 var delegate : NoteViewDelegate?

 ...
}

With this delegate variable added, we can call the didUpdateNoteWithTitle
method on the delegate class (but only if the delegate exists—is not equal to nil).
So	first	in	our	Done button method, doneEditingBody, we're going to make a call
to the method via the delegate, like this:

@IBAction func doneEditingBody() {

 ...

 //tell the main view controller that we're going to update the
 selected item
 //but only if the delegate is NOT nil
 if self.delegate != nil {

 self.delegate!.didUpdateNoteWithTitle(self.navigationItem.
title!, andBody: self.txtBody.text)

 }
}

Also, when the user hits the Back button (or in this case, Notes), we want to make
a call to the delegate method. The easiest way to do this is by implementing the
viewWillDisappear function in NotesViewController, as this is called only when
the Back button is pressed:

override func viewWillDisappear(animated: Bool) {

 super.viewWillDisappear(animated)

Simple Swift App

[38]

 //tell the main view controller that we're going to update the
 selected item
 //but only if the delegate is NOT nil
 if self.delegate != nil {
 self.delegate!.didUpdateNoteWithTitle(
 self.navigationItem.title!, andBody: self.txtBody.text)
 }
}

Before we can assign the delegate of the view controller, we need to tell
TableViewController that it will be conforming to the NoteViewDelegate.
So, in TableViewController.swift, set the delegate the same way as you set
the text view:

class TableViewController: UITableViewController ,
 NoteViewDelegate {
 ...
}

It's going to give us an error, which is expected because we haven't
added the protocol's required method, didUpdateNoteWithTitle, to the
TableViewController class. Simply add that method, which will just modify
the title and body of the selected index:

func didUpdateNoteWithTitle(newTitle: String, andBody newBody:
 String) {

 //update the respective values
 self.arrNotes[self.selectedIndex]["title"] = newTitle
 self.arrNotes[self.selectedIndex]["body"] = newBody

 //refresh the view
 self.tableView.reloadData()
}

Finally, we need to assign the delegate to the TableViewController in our
prepareForSegue method:

override func prepareForSegue(segue: UIStoryboardSegue, sender:
 AnyObject?) {

 ...

 //set the delegate to "self", so the method gets called here
notesEditorVC.delegate = self
}

Bonus Chapter

[39]

Suppose you the run the app at this point. You'll see that when you edit a note,
go back to the list of notes, and then tap on the note you recently edited, it shows
the updated text.

In other words, it's properly saving the "note" portion of the note as intended.

But the title still isn't getting updated, so let's handle that.

Update the title accordingly
We	want	the	title	of	our	note	to	be	the	first	set—everything	from	the	first	non-
whitespace	character	up	to	the	first	newline	character.

Since we're already setting the text view's delegate to the NotesViewController,
all we have to do is add the following method to break the body into multiple
sections separated by the newline character. Then it will go through each section,
and	the	first	section	with	text	will	be	the	title:

func textViewDidChange(textView: UITextView) {

 //separate the body into multiple sections
 let components = self.txtBody.text.componentsSeparatedByString("
\n")

 //reset the title to blank (in case there are no components
 with valid text)
 self.navigationItem.title = ""

 //loop through each item in the components array (each item is
 auto-detected as a String)
 for item in components {

 //if the number of letters in the item (AFTER getting rid of
 extra white space) is greater than 0...
 if countElements(item.stringByTrimmingCharactersInSet(NSCharact
erSet.
 whitespaceAndNewlineCharacterSet())) > 0 {

 //then set the title to the item itself, and break out of
 the for loop
 self.navigationItem.title = item
 break
 }
 }
}

Simple Swift App

[40]

Now run the app and watch the title change as you type!

However,	when	you	first	create	a	new	note	via	the	+ button, it sets the title to
something other than what's in the body, which is why it seems weird when
it's	first	created.

So simply go to TableViewController and remove the test values (because we
know it works now):

@IBAction func newNote() {
 //new dictionary with 2 keys and blank values for both
 var newDict = ["title" : "",
 "body" : ""]
 ...
}

Save and read the notes to and from the
device
Although we have everything working as intended while the app is running, it's not
a very good app unless it stores data in the device for use at a later date. Here, we're
going to use NSUserDefaults as in the previous chapters throughout this book. Only
this time, because it's Swift and not Objective-C, there's a slight syntax change when
reading the value, but it's pretty straightforward.

So open TableViewController and add the following method that, when called,
will save our notes array in the device using NSUserDefaults:

func saveNotesArray() {

 //save the newly updated array
 NSUserDefaults.standardUserDefaults().setObject(arrNotes,
 forKey: "notes")
 NSUserDefaults.standardUserDefaults().synchronize()
}

We're going to call this function twice—once in the didUpdateNoteWithTitle
method and once in the newNote method:

func didUpdateNoteWithTitle(newTitle: String, andBody newBody:
 String) {

 ...

Bonus Chapter

[41]

 //save the notes to the phone
 saveNotesArray()
}

@IBAction func newNote() {

 ...

 //save the notes to the phone
 saveNotesArray()

 //push the editor view using the predefined segue
 performSegueWithIdentifier("showEditorSegue", sender: nil)
}

Although it might be saving on the phone, we have no idea whether it's working or
not because we're not loading in any of the previously saved data when we relaunch
the app. So, in the viewDidLoad function of TableViewController, we're going to
read the array from NSUserDefaults. However, because the arrayForKey method
returns "AnyObject?" as its type, we need to do something called downcasting,
which is essentially attempting to convert the AnyObject type into the type we
want. Downcasting doesn't always work, which is why we have the if-block to
prevent crashes:

override func viewDidLoad() {
 super.viewDidLoad()

 //read in the saved value. use "as?" to convert "AnyObject"
 (the type returned by NSUserDefaults) to the array of
 dictionaries
 //this is in an if-block so no "nil found" errors crash the
 app
 //this is known as downcasting
 if let newNotes = NSUserDefaults.standardUserDefaults().
 arrayForKey("notes") as? [[String:String]] {

 //set the instance variable to the newNotes variable
 arrNotes = newNotes

 }
}

When you run the app at this point, everything will be in order. We're done here.

Simple Swift App

[42]

And that's it for the app
Congratulations!	You've	just	made	your	first	app	using	Swift.	Not	too	bad,	eh?	
It feels somewhat like Objective-C—only with a slightly different syntax — and
it uses the same method and parameter names (which is good for those who are
familiar with Objective-C and want to move on to a new language).

Summary
In this chapter, we created a simple nongame app using Swift and covered
a lot of basic Swift elements such as optional, for-in loops, the delegate pattern,
table views, and more.

As mentioned earlier, if you wish to learn more about Swift, there's a plethora of
online resources available at your disposal, such as online courses, Apple-created
content, as well as online communities that provide assistance as needed.

