
Case Study – Regression
We will now examine a set of S3 classes designed to explore a specific data set. We
will use S3 classes to provide a longer example of an S3 class. The context for the
exploration of the data is regression. A heavier focus is given to the routines to read
the data file and extract columns from the data set. The regression class is limited
and serves as a placeholder for further development.

This chapter is roughly divided into the following parts:

• The data
• The relationship class
• The regression class
• Exploring the data

The data
We will first discuss the data set. The majority of code associated with the primary
class is designed to read the data file and isolate certain aspects of the data. The data
set is made available as part of Vancouver, British Columbia's Open Data Project.
Being able to understand the data and simplifying the process of getting access to
specific parts of the data is an important step. It is not uncommon that 70 percent
of the effort for a project is to understand the data, 20 percent is to transform the
data to a more usable form, and the remaining 10 percent is dedicated to the
relevant mathematics.

Case Study – Regression

[2]

The data set examined was located at http://data.vancouver.ca/
datacatalogue/streetTrees.htm, and the information about specific trees is given
for a variety of neighborhoods. Each geographic area within Vancouver has a CSV
file with information about the trees in the area. There are 19 columns in each data
file, but we are only interested in a few of the columns. In particular, the columns
whose names are DIAMETER, DATE, and STREET_SIDE_NAME are explored. The unit
for the DIAMETER column is inches. The DATE is given in the form YYYYMMDD. The
STREET_SIDE_NAME is either EVEN, ODD, MED (for the median), or TBD if the position is
not known.

The Relationship class
There are two classes used to explore the data. The first is the Relationship class
that is used to read the data and make gaining access to specific columns easier. The
second class is the Regression class that is briefly discussed in the next section. The
complete details of the classes are not given to keep our discussion more focused,
and you should closely examine the code provided on the website.

The members of the Relationship class include a full copy of the data read from
the CSV file, vectors for the explanatory and response variables, a list of shortcuts
to make it easier to get columns from the data file, and a member from one of the
regression classes described in the following section. The methods include accessor
functions to set and get copies of the data members. There are also methods to read
the data file and to convert a character column into a date object.

The constructor for the class is given in the following code. One set of accessor
functions included here is for the getDataColumn and setDataColumn methods.
These methods are not simple and are kept here to emphasize their roles in the
class. The idea is that the names often used in the title header of a file (especially
those generated by government entities) can be difficult to remember and are not
necessarily intuitive.

The shortcut element is a list, and in this context, it can be thought of as a set of
key/value pairs. The name of an object within the list is treated as a keyword.
The name is used to point to a character object that is the name of the column in
the original CSV file. The keyword can be set to a word that is easier to remember
than the original column title. A character object is passed to the getDataColumn
or setDataColumn command. If that character object matches one of the names
from within the list, then the corresponding value associated with the name is used
to determine which column from the data file to use, otherwise it is assumed to be
the name of the column.

Chapter 12

[3]

A partial listing of the class including the getDataColumn and setDataColumn
methods is as follows:

##################################
Define the constructor for the
relationship class
Relationship <- function()
 {

 ## Create the list used to represent an
 ## object for this class
 me = list(
 ## reserve the data associated with the class
 data = list(),
 explanatory = character(0),
 response = character(0),
 shortcut = list(
 id="TREE_ID", # The id of the tree
 street="STD_STREET", # Name of the street
 side="STREET_SIDE_NAME", # Which side of street
 dia="DIAMETER", # Diameter of tree
 date="DATE_PLANTED", # Date tree planted
 barrier="ROOT_BARRIER", # Y/N ?
 curb="CURB", # Y/N at curb?
 name="COMMON_NAME" # Tree type's name
),

 theFit = NULL

)

 class(me) <- append(class(me),"Relationship")
 return(me)
 }

getDataColumn <- function(theObject,columnName)
 {
 ## Return a copy of one of the columns from the data set
 UseMethod("getDataColumn",theObject)
 }

getDataColumn.default <- function(theObject,columnName)
 {

Case Study – Regression

[4]

 return(NA)
 }

getDataColumn.Relationship <- function(theObject,columnName)
 {
 ## Return a copy of one of the columns from the data set
 ##print(columnName)

 if(columnName %in% names(theObject$shortcut)) {
 ## The name passed is defined in the shortcut vector
 ## use value in the shortcut to index into the data
 return(theObject$data[[theObject$shortcut[[columnName]]
]])

 } else if (columnName %in% names(theObject$data)) {
 ## The name itself is a valid name. Use the
 ## column with the same name that is passed.
 return(theObject$data[[columnName]])
 }

 ## The column name could not be found. Print out an
 ## error message.
 stop(paste("Column",theObject$columnName,"is not defined"))

 }

setDataColumn <- function(theObject,columnName,newColumn)
 {
 ## Set the specified column to the given data set
 UseMethod("setDataColumn",theObject)
 }

setDataColumn.default <- function(theObject,columnName,newColumn)
 {
 ## Set the specified column to the given data set
 return(theObject)
 }

setDataColumn.Relationship <- function(theObject,columnName,newColumn)

Chapter 12

[5]

 {
 ## Set the specified column to the given data set

 if(columnName %in% names(theObject$shortcut)) {
 ## The name passed is defined in the shortcut vector
 ## use value in the shortcut to index into the data
 theObject$data[theObject$shortcut[[columnName]]] <-
newColumn
 } else {
 ## Use the column with the same name that is passed.
 theObject$data[columnName] <- newColumn
 }
 return(theObject)
 }

There are two additional methods. The first, readFile, is used to read a data file
and assign the value of the data element within an object from the Relationship
class. The second, convertDate, is a method to aid in converting a column that
contains dates into vectors of the Date class. We first examine the readFile method.
It includes the ... reserved word to pass all optional arguments to the read.csv
command. Note that there is an additional check for the skip option, and a warning
is printed if it is not included. I personally like to add information at the start of a file
that includes details about where and when the information was obtained.

The definition for the readFile method is as follows:

readFile <- function(theObject,file, ...)
 {
 UseMethod("readFile",theObject)
 }

readFile.Relationship <- function(theObject,file, ...)
 {
 print(noquote(paste("Reading file:",file)))
 arguments <- list(...)
 if(!('skip' %in% names(arguments))) {
 ## there is no skip argument
 warning("skip is not defined. Defaulting to skip=0")
 }
 theObject <- setData(theObject,read.csv(file,...))
 }

Case Study – Regression

[6]

The second method, convertDate, is more straightforward. It obtains a copy of the
requested column, converts it to a Date class, and then reassigns the result within the
list that holds the data within the object. The code for this method is as follows:

convertDate <- function(theObject,columnName,timeFormat)
 {
 UseMethod("convertDate",theObject)
 }

convertDate.Relationship <- function(theObject,columnName,timeFormat)
 {

 timeColumn <- getDataColumn(theObject,columnName)
 theObject <- setDataColumn(theObject,columnName,
 as.Date(as.character(timeColumn),
timeFormat))
 }

The codes for the Relationship class are assumed to be kept in a separate file,
relationship.R. Prior to creating a member of this class, the file must be executed
using the source command. One member of the class, the regression variable, has not
been defined, and is described in the following section.

The Regression class
The Regression class is used to manage the details of the regression calculations.
The details to make it a more useful regression operator are omitted as our focus
is to discuss how to organize the classes and provide a framework to compare the
relationships between variables. Regression is a complicated subject, and a whole
book could probably be written on the topic of regression alone.

The Regression class has three data members. The first is a vector for data for
the explanatory variable. The second is a vector for data for the response variable.
Finally, the third is an object returned from the glm command that contains
information about the regression relationship. One obvious improvement to the class
would be to replace the data vectors with a single object from the formula class. (See
the help page on the formula class, help(formula), for more information.) Here, we
assume the simplest relationship between the two variables, which is reflected in the
method used to create the glm object.

Chapter 12

[7]

In this example, we have three classes derived from the Regression class. The three
classes are used for performing logit, Poisson, and linear regression depending on
the data type of the response variable. First, the base class, Regression, is defined.
As in the previous section, the accessors are ignored for the sake of brevity and allow
us to keep our discussion more focused:

##################################
Define the constructor for the
regression class
Regression <- function(theResponse=numeric(0),theExplanatory=numer
ic(0))
 {

 ## reserve the data associated with the class

 ## Create the list used to represent an
 ## object for this class
 me = list(

 ## Define the environment where this list is defined so
 ## that you can refer to it later.
 explanatory = theExplanatory,
 response = theResponse,
 fit = NULL
)

 class(me) <- append(class(me),"Regression")
 return(me)
 }

The three derived classes, LogitRegression, CountRegression, and
ContinuousRegression, build on the Regression class. In this example, they are
all simple classes, but each one can be easily expanded. Only one, LogitRegression,
is used in the examples that follow in the next section, and it is defined in the
following code:

##################################
Define the constructor for the
logit regression class
LogitRegression <- function(theResponse,theExplanatory)
 {

 ## Create the list used to represent an

Case Study – Regression

[8]

 ## object for this class
 me = Regression(theResponse,theExplanatory)

 class(me) <- append(class(me),"LogitRegression")
 return(me)
 }

One more method is required for the Regression class. The method is used to call
the glm function and perform the required regression calculations. The name of the
method is called regression, and the code is as follows:

regression <- function(theObject, ...)
 {
 #print("regression")
 UseMethod("regression",theObject)
 }

regression.LogitRegression <- function(theObject, ...)
 {
 theObject <- setFit(theObject,
 glm(getResponse(theObject) ~
getExplanatory(theObject),
 family=binomial(),...))
 return(theObject)
 }

Finally, there is one item missing from the Relationship class described in the
previous section. We need a method to create an appropriate Regression object
and call its regression method:

calcRegression <- function(theObject,...)
 {
 UseMethod("calcRegression",theObject)
 }

calcRegression.Relationship <- function(theObject,...)
 {
 ## Method to create a regression object and set it for
 ## this object.
 print("calcRegression.Relationship")
 response <- getResponse(theObject)
 explanatory <- getExplanatory(theObject)

 if(is.logical(response)) {
 theFit <- LogitRegression(response,explanatory,...)

Chapter 12

[9]

 } else if (is.integer(response)){
 theFit <- CountRegression(response,explanatory,...)
 } else {
 theFit <- ContinuousRegression(response,explanatory,...)
 }
 theObject <- setFit(theObject,regression(theFit))
 return(theObject)
 }

Exploring the data
We will now provide a brief example using the Relationship and Regression
classes. The example demonstrates how to convert the DATE_PLANTED column into
a Date object and grab a copy of the resulting column. The example is also a brief
demonstration of how to perform logistic regression between the date the tree was
planted and the side of the street the tree is planted. The first step in the example is
to execute the code that includes the class definitions and to then create an object that
is a Relationship object:

> source('relationship.R')
> tree <- Relationship()

The next step is to read in the data file and convert the column that has the dates
with their corresponding date objects:

> tree <- readFile(tree,"trees/StreetTrees_KensingtonCedarCottage.
csv",skip=2)
> tree <- convertDate(tree,"date","%Y%m%d")
timeDefined <- !is.na(tm)

The next steps are to get a copy of the columns that have the information about
which side the trees are planted and the date the trees were planted. The trees whose
planting dates are unknown are censored:

theDate <- getDataColumn(tree,"date")
side <- getDataColumn(tree,"side")
side <- side[!is.na(theDate)]
theDate <- theDate[!is.na(theDate)]

We can now perform the logistic regression and get a copy of the results:

tree <- setExplanatory(tree,theDate)
tree <- setResponse(tree,side=="EVEN")
tree <- calcRegression(tree)

Get the regression and find the details of the results.

Case Study – Regression

[10]

fit <- getFit(tree)
fit
summary(fit)

A quick check of the output indicates that there is not a clear relationship between
the date a tree is planted and which side of the road it was planted. The residuals,
though, are relatively large, and a look at the residuals when plotting the glm object
shows that the assumptions for the regression are not satisfied.

Summary
An example of a set of classes to aid in performing regression on a particular data set
is examined in this chapter. The set of classes are roughly divided into two parts. The
first part is a class that is used to aid in reading the file and getting access to certain
columns within the data file. The second class is used to perform the regression
between two variables, and the type of class used depends on the data types of the
variables that are compared.

In the next chapter, another set of classes are developed. The classes in that chapter
provide an example of a set of classes that can be used to generate the results from a
stochastic process and manage the results from a large number of simulations. The
classes can be used to generate results from either a discrete or continuous process,
and the distribution of the results can be explored.

