
1

9
Useful jQuery Recipes

for ASP.NET Sites

We have reached toward the end of the exciting journey of exploring the rich features of jQuery
with ASP.NET applications. This chapter summarizes the concepts we have covered so far in
the following recipes:

 f Infinite scrolling

 f Creating a shadow effect for text

 f Using Ajax to load scripts in web pages

 f Serializing form data

 f Uploading files in MVC

 f Exporting the GridView data in the CSV format

Introduction
This book began with the fundamentals of jQuery, such as the use of selectors, event
handling, and DOM manipulation. After learning the basics, we moved on to creating visual
effects using graphics and animations. We then worked with Ajax and created plugins.

It is possible to apply more than one feature of jQuery on a single page. This chapter
describes six diverse recipes that can be embedded in real-world applications to solve
common problems.

Useful jQuery Recipes for ASP.NET Sites

2

Infinite scrolling
Sites such as Facebook and Twitter provide auto loading of contents when the end of the page
is reached on scrolling. This is referred to as infinite loading. This recipe will demonstrate the
use of jQuery to implement this feature on a data-driven page.

The constructs used in this example are summarized in the following table:

Construct Type Description
$("#identifier") jQuery selector This selects an element based on its ID
$.ajax() jQuery function This posts an Ajax request to the server with

the set options
.append() jQuery method This inserts content at the end of each

matched element
.height() jQuery method This gets the height of the first matched

element or sets the height of each matched
element

.hide() jQuery method This hides the matched elements

.length jQuery property This returns the number of elements in the
jQuery object

.scroll() jQuery event
binder

This attaches an event handler for the scroll
event of the matched elements

.scrollTop() jQuery method This gets the vertical position of the scrollbar
for the first matched element or sets the
vertical position of the scrollbar for each
matched element

this DOM element This refers to the current DOM element
window.location.
href

JavaScript
property

This returns the URL of the current page

Getting ready
To add infinite scrolling to a page, follow these steps:

1. In this example, we will display the order details from the Northwind database on the
web form. For each database read, a fixed number of records will be retrieved and
displayed. A loader image will be displayed at the end of the current set of records,
as shown in the following screenshot:

Chapter 9

3

When the scroll bar reaches the bottom of the page, the next set of records will be
auto loaded and displayed.

2. To create this form, launch a new ASP.NET Web Application project in Visual Studio
using the Empty template and name it Recipe1 (or any other suitable name).

3. Add a Scripts folder to the project and include the jQuery files in this folder.

4. Add a web form named Default.aspx to the project. Include the jQuery library in
the form.

Useful jQuery Recipes for ASP.NET Sites

4

5. Next, download a loader image from http://www.ajaxload.info:

For the Indicator type field, select Indicator Big, and click on the Generate It !
button, as shown in the preceding screenshot. Save the image as ajax-loader.
gif in the images folder.

6. Add the following markup to the form:
<div id="container"></div>
<asp:Image ID="imgLoad" runat="server"
ImageUrl="~/images/ajax-loader.gif" />

7. Next, we will add a class to the order details. To do this, right-click on the project, and
go to Add | Class. Name the class as Orders.vb (VB) or Orders.cs (C#). Include
the following properties in the class.

For VB, the properties are as follows:
Public Class Orders
 Public Property OrderID
 Public Property ShipName
 Public Property ShipAddress
 Public Property ShipCity
 Public Property ShipCountry
End Class

Chapter 9

5

For C#, the properties are as follows:

public class Orders
{
 public string OrderID { get; set; }
 public string ShipName { get; set; }
 public string ShipAddress { get; set; }
 public string ShipCity { get; set; }
 public string ShipCountry { get; set; }
}

8. In the web.config file, add a connection string to the Northwind database in the
configuration section:
<connectionStrings>
 <add name="NorthwindConnection"
providerName="System.Data.SqlClient" connectionString="Data
Source=localhost;Initial Catalog=Northwind;Integrated
Security=True;"/>
</connectionStrings>

9. Now, we will add a page method to the code-behind of the web form to retrieve the
order details. Let's start by adding the following namespaces at the top of the page.

For VB, the namespace is as follows:
Imports System.Web.Services
Imports System.Data
Imports System.Data.SqlClient
Imports System.Web.Configuration

For C#, the namespace is as follows:

using System.Web.Services;
using System.Data;
using System.Data.SqlClient;
using System.Web.Configuration;

10. Let's define two shared (VB)/static (C#) variables. The currentIndex variable
keeps track of the current index of the order details' records being displayed, whereas
the pageSize variable keeps track of the total number of records per page.

For VB, the definition is as follows:
Shared currentIndex As Integer
Shared pageSize As Integer

Useful jQuery Recipes for ASP.NET Sites

6

For C#, the definition is as follows:
static int currentIndex, pageSize;

Initialize these variables in the page load procedure. We will use a page size
of 10 records.

For VB, the code is as follows:
Protected Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load
 currentIndex = 0
 pageSize = 10
End Sub

For C#, the code is as follows:

protected void Page_Load(object sender, EventArgs e)
{
 currentIndex = 0;
 pageSize = 10;
}

11. Add the following page method to the code-behind. This method will retrieve the
current set of records using ADO.NET.

For VB, the code is as follows:
<WebMethod()>
Public Shared Function GetMoreOrders() As Orders()
 Dim orderList As List(Of Orders) = New List(Of Orders)()
 Dim strConn As String =
WebConfigurationManager.ConnectionStrings
("NorthwindConnection").ConnectionString
 Dim con As SqlConnection = New SqlConnection(strConn)
 Dim strSql As String = "select OrderID, ShipName,
ShipAddress, ShipCity, ShipCountry from orders order by
OrderID desc"
 con.Open()
 Dim adapter As SqlDataAdapter = New
SqlDataAdapter(strSql, strConn)
 Dim ds As DataSet = New DataSet
 adapter.Fill(ds, currentIndex, pageSize, "Orders")
 For Each dr In ds.Tables("Orders").Rows
 Dim orderObj As New Orders()
 orderObj.OrderID = Convert.ToString(dr("OrderID"))
 orderObj.ShipName = Convert.ToString(dr("ShipName"))
 orderObj.ShipAddress =
Convert.ToString(dr("ShipAddress"))

Chapter 9

7

 orderObj.ShipCity = Convert.ToString(dr("ShipCity"))
 orderObj.ShipCountry =
Convert.ToString(dr("ShipCountry"))
 orderList.Add(orderObj)
 Next
 con.Close()
 currentIndex = currentIndex + pageSize
 Return orderList.ToArray
End Function

For C#, the code is as follows:

[WebMethod]
public static Orders[] GetMoreOrders()
{
 List<Orders> orderList = new List<Orders>();
 string strConn =
WebConfigurationManager.ConnectionStrings
["NorthwindConnection"].ConnectionString;
 SqlConnection con = new SqlConnection(strConn);
 string strSql = "select OrderID, ShipName, ShipAddress,
ShipCity, ShipCountry from orders order by OrderID desc";
 con.Open();
 SqlDataAdapter adapter = new SqlDataAdapter(strSql,
strConn);
 DataSet ds = new DataSet();
 adapter.Fill(ds, currentIndex, pageSize, "Orders");
 foreach (DataRow dr in ds.Tables["Orders"].Rows)
 {
 orderList.Add(new Orders { OrderID =
Convert.ToString(dr["OrderID"]), ShipName =
Convert.ToString(dr["ShipName"]),
ShipAddress=Convert.ToString(dr["ShipAddress"]), ShipCity =
Convert.ToString(dr["ShipCity"]), ShipCountry =
Convert.ToString(dr["ShipCountry"]) });
 }
 con.Close();
 currentIndex += pageSize;
 return orderList.ToArray();
}

Useful jQuery Recipes for ASP.NET Sites

8

The preceding page method returns an array of objects of the Orders type to the
calling script. The Northwind connection string in web.config is used to connect
to the database using ADO.NET. A data adapter is used to populate the dataset with
records, starting from currentIndex. The number of records returned during each
query is equal to the pageSize variable. The data rows in the returned dataset is
looped and stored in a List object. This List object is converted to an array and
returned to the calling script. The currentIndex variable is then incremented by
the pageSize variable to get the starting position of the next set of records.

Note that we are using Windows Authentication for all
database driven examples in this book. Hence in the MS
SQL Server, it is important to give permission to the Windows
account to access the Northwind database.

How to do it…
Add the following jQuery code to a script block on the page:

<script type="text/javascript">
 $(document).ready(function() {
 loadNextPage();
 $(window).scroll(function() {
 var scrolldist = $(window).scrollTop() + $(window).height();
 if ($(document).height() == scrolldist)
 loadNextPage();
 });
 function loadNextPage() {
 var loc = window.location.href;
 $.ajax({
 type: "POST",
 url: loc + "/GetMoreOrders",
 data: '{}',
 contentType: "application/json;charset=utf-8",
 dataType: "json",
 timeout: 5000,
 cache: false,
 success: function(response) {
 if (response.d.length > 0) {
 $.each(response.d, function() {
 $("#container").append("OrderID: " + this['OrderID']
+ "
");
 $("#container").append("Customer Name: " +
this['ShipName'] + "
");

Chapter 9

9

 $("#container").append("Shipping Address: " +
this['ShipAddress'] + "
");
 $("#container").append("City: " + this['ShipCity'] +
", Country: " + this['ShipCountry'] + "

");
 });
 } else
 $("#<%=imgLoad.ClientID%>").hide();
 },
 error: function(jqXHR, textStatus, errorThrown) {
 if (textStatus == "error") {
 alert("An error has occurred: " + jqXHR.status + " " +
jqXHR.statusText);
 }
 }
 });
 }
 });
</script>

How it works…
The infinite scrolling of the page works as follows:

1. In the jQuery script, when the document is ready, the loadNextPage() function
is called. This function initializes the page content by displaying an initial set of 10
records from the database.

In the loadNextPage() function, we first get the URL of the current page:
var loc = window.location.href;

An Ajax call is made with the following parameters:

 � The type of the request is set to POST:
 type: "POST",

 � The url of the request is set to UrlOfCurrentPage/
NameOfPageMethod:

 url: loc + "/GetMoreOrders",

 � No data is sent to the server:
 data: '{}',

 � The contentType of the request is set to application/json and the
character is set to utf-8:

 contentType: "application/json;charset=utf-8",

Useful jQuery Recipes for ASP.NET Sites

10

 � The dataType of the response is set to json:
 dataType: "json",

 � A timeout of 5000 milliseconds is set after which the request will timeout if
no response is received from the server:

 timeout: 5000,

 � The cache is set to false so that the response is not cached:
 cache: false,

 � A callback function is defined for the successful completion of the Ajax call:
 success: function (response) {…},

If the response length is nonzero, we loop through the returned array and append the
data to the container div on the page:
if (response.d.length > 0) {
 $.each(response.d, function () {
 $("#container").append("OrderID: " + this['OrderID'] +
"
");
 $("#container").append("Customer Name: " +
this['ShipName'] + "
");
 $("#container").append("Shipping Address: " +
this['ShipAddress'] + "
");
 $("#container").append("City: " + this['ShipCity'] + ",
Country: " + this['ShipCountry'] + "

");
 });
}

If the response is empty, then the loader image is hidden. This indicates that all the
records have been completely loaded:

$("#<%=imgLoad.ClientID%>").hide();

 � A callback function is defined when the request is unsuccessful:

error: function (jqXHR, textStatus, errorThrown) {…}

If the textStatus returns error, then the status and statusText of the
XmlHttpRequest object is displayed:

if (textStatus == "error") {
 alert("An error has occurred: " + jqXHR.status + " " +
jqXHR.statusText);
}

Chapter 9

11

2. After the page content is loaded for the first time, an event handler is attached to the
scroll event of the window:

$(window).scroll(function () {…});

In the preceding event handler, to determine whether the scroll bar has reached the
bottom of the browser window, we determine how much of the document has already
been scrolled:
var scrolldist = $(window).scrollTop() +
$(window).height();

Next, if the document height becomes equal to the value computed above, that is,
the scroll bar has reached the end of the document, we call the loadNextPage()
method to get the next set of records from the database:
if ($(document).height() == scrolldist)
 loadNextPage();

The previous checks are performed every time the user scrolls the window.

$(window).height() returns the height of the browser viewport, that is,
the visible area of the HTML content.
$(document).height() returns the height of the entire HTML page.

See also
The Using Ajax to load scripts in web pages recipe

Creating a shadow effect for text
This recipe demonstrates how to create a shadow effect on text elements with the help of CSS
properties. The constructs used in this example are summarized in the following table:

Construct Type Description
$("#identifier") jQuery selector This selects an element based on its

ID.
.appendTo() jQuery method This inserts elements at the end of the

target.

Useful jQuery Recipes for ASP.NET Sites

12

Construct Type Description
.clone() jQuery method This makes a deep copy of the

matched elements, that is, the
matched elements are copied along
with their descendants and text
nodes.

.css() jQuery method This gets the style property for the
first matched element or sets the style
property for every matched element.

left CSS property This is the position of the left edge of
the element.

.offset() jQuery method This gets the coordinates of the first
matched element relative to the
document. It returns an object with
the left and top properties for the left
and top coordinates of the element,
respectively.

opacity CSS property This is the degree of transparency of
the element.

position CSS property This specifies the position of an
element as fixed, relative, absolute, or
sticky.

top CSS property This is the position of the top edge of
the element.

zIndex CSS property This is the z-order of an element.
When elements overlap, the one with
the higher z-order appears above the
one with the lower z-order.

Getting ready
To create a shadow effect on text content, follow these steps:

1. We will create a shadow effect on text elements, as shown in the
following screenshot:

Chapter 9

13

2. To get started, launch a new ASP.NET Web Application project in Visual Studio using
the Empty template and name it Recipe2 (or any other suitable name).

3. Include the jQuery library in a Scripts folder in the project.

4. Add a web form named Default.aspx and include the jQuery library in the form.

5. Add a div element with some text, as shown in the following code:
<div id="title">
 This is the page title
</div>

6. To style the title text, add the following CSS:
<style type="text/css">
 #title{
 font-family:'AR BLANCA';
 font-size:40px;
 }
</style>

Useful jQuery Recipes for ASP.NET Sites

14

How to do it…
Add the following jQuery code to a script block on the form:

<script type="text/javascript">
 $(document).ready(function() {
 var $originalLeft = $("#title").offset().left;
 var $originalTop = $("#title").offset().top;
 for (var cnt = 0; cnt < 7; ++cnt) {
 var $clonedItem = $("#title").clone();
 $clonedItem.css({
 opacity: 0.07,
 left: $originalLeft + cnt + 1,
 top: $originalTop + cnt + 1,
 zIndex: -1,
 position: 'absolute'
 }).appendTo("body");
 }
 });
</script>

How it works…
The shadow effect works as follows:

1. When the document is ready, get the left and top coordinates of the element on
which the shadow effect is to be applied:
var $originalLeft = $("#title").offset().left;
var $originalTop = $("#title").offset().top;

2. The shadow will be formed by cloning the text element a couple of times and shifting
the position of the cloned text with respect to the original element. Let's say that we
clone the element seven times (determined randomly from experiment). Thus, we run
a for loop the required number of times, as shown in the following code:
for (var cnt = 0; cnt < 7; ++cnt) {…}

Inside the preceding for loop, first of all, clone the original element:
var $clonedItem = $("#title").clone();

Set the CSS of the cloned element, as follows:

 � Set its opacity to 0.07

 � Shift the left edge of the clone with respect to the left edge of the original
element by cnt + 1

Chapter 9

15

 � Shift the top edge of the clone with respect to the top edge of the original
element by cnt + 1

 � Set the zIndex value of the clone to -1 so that it is stacked below the
original element

 � Set the position of the clone to absolute:

$clonedItem.css({
 opacity: 0.07,
 left: $originalLeft + cnt + 1,
 top: $originalTop + cnt + 1,
 zIndex: -1,
 position: 'absolute'
})

The cloned element is then appended to the body element:

.appendTo("body");

See also
The Serializing form data recipe

Using Ajax to load scripts in web pages
This recipe demonstrates lazy loading of script files, that is, delaying the loading of scripts
until they are needed at runtime. We will use the jQuery cycle plugin to demonstrate this.

The constructs used in this example are summarized as follows:

Construct Type Description
$("#identifier") jQuery selector This selects an element based on its ID.
$(this) jQuery object This refers to the current jQuery object.
$.getScript() jQuery function This loads a JavaScript file from the server

using HTTP GET and executes it.
click jQuery event This is fired when you click on an element.

It corresponds to the JavaScript click event.
.cycle() jQuery cycle

plugin method
This runs a slideshow on the child elements
of the matched element.

event.
preventDefault()

jQuery method This prevents the default action of the event
from being triggered.

.on() jQuery event
binder

This attaches an event handler for one or
more events to the matched elements.

Useful jQuery Recipes for ASP.NET Sites

16

Construct Type Description
.prop(propertyName)
or

.prop(propertyName,
value)

jQuery method This returns the value of the specified
property for the first matched element or
sets the value of the specified property for all
matched elements.

Getting ready
Follow these steps to build a page with lazy loading of scripts:

1. Let's create a page with a few sample images, as shown in the following screenshot:

After clicking on the Start Slideshow button, the cycle plugin will be dynamically
loaded using jQuery. This will trigger the slideshow on the images, as shown in the
following screenshot:

Chapter 9

17

2. To build this page, launch a new ASP.NET Web Application project in Visual Studio
using the Empty template and name it Recipe3 (or any other suitable name).

3. Add the jQuery library to the Scripts folder in the project.

4. Create an images folder and add some sample images to this folder.

5. Add a web form named Default.aspx to the project. Include the jQuery library in
the form.

6. Add the following markup to the page:
<asp:Button ID="btnStart" runat="server" Text="Start
Slideshow" />
<div id="container">
 <asp:Image ID="imgDemo1" runat="server"
ImageUrl="~/images/image1.jpg"/>
 <asp:Image ID="imgDemo2" runat="server"
ImageUrl="~/images/image2.jpg"/>
 <asp:Image ID="imgDemo3" runat="server"
ImageUrl="~/images/image3.jpg" />
 <asp:Image ID="imgDemo4" runat="server"
ImageUrl="~/images/image4.jpg" />
</div>

Useful jQuery Recipes for ASP.NET Sites

18

7. Include the following styles for the images and the container div:
<style type="text/css">
 img{
 width:320px;
 height:225px;
 }
 #container{
 margin-left:30px;
 margin-top:20px;
 border:solid;
 border-color:lightgrey;
 border-width:1px;
 }
</style>

8. Download the cycle plugin from http://jquery.malsup.com/cycle/
download.html:

Save the jquery.cycle.all.js plugin file in the Scripts folder.

Chapter 9

19

How to do it…
Add the following jQuery code to a script block on the page:

<script type="text/javascript">
 $(document).ready(function() {
 $("#<%=btnStart.ClientID%>").on("click", function(evt) {
 evt.preventDefault();
 $(this).prop("disabled", true);
 var url = "Scripts/jquery.cycle.all.js";
 $.getScript(url)
 .done(function(script, textStatus) {
 $("#container").cycle({
 fx: "shuffle",
 speed: 1000,
 timeout: 1000
 });
 })
 .fail(function(jqxhr, settings, exception) {
 alert("Failed to load script");
 });
 });
 });
</script>

How it works…
The lazy loading of the cycle plugin works as follows:

1. The cycle plugin will be loaded on the page after clicking on the Start Slideshow
button. Hence, we write an event handler for the button click event, as follows:
$("#<%=btnStart.ClientID%>").on("click", function (evt)
{…});

2. In the preceding event handler, first, prevent the page from auto postback:

evt.preventDefault();

Next, disable the button so that it is not clickable:
$(this).prop("disabled", true);

Initialize the URL of the cycle plugin:
var url = "Scripts/jquery.cycle.all.js";

Useful jQuery Recipes for ASP.NET Sites

20

Make an HTTP GET request to retrieve the cycle plugin from the server:
$.getScript(url)

When the loading of the cycle plugin is completed successfully, the following function
will be executed:
.done(function (script, textStatus) {…});

In the preceding function, trigger the slideshow by providing the following options to
the plugin:

 � Use the shuffle transition effect. A number of other transition effects, such
as fade, zoom, turndown, scrollRight, and so on, can also be used.

 � The speed of the transition is set to 1000 milliseconds.

 � Each slide will be displayed for 1000 milliseconds using the timeout option.

The preceding options are set as follows:
$("#container").cycle({
 fx: "shuffle",
 speed: 1000,
 timeout: 1000
});

If, however, the loading of the cycle plugin fails, display the required error message to
the user:
.fail(function (jqxhr, settings, exception) {
 alert("Failed to load script");
});

The $.getScript() function is a shorthand function for the following Ajax
command:

$.ajax({ type: "GET",

 url: url,

 cache: false,

 dataType: "script",

 ...

});

By default, the $.getScript() function sets cache to false. This can,
however, be overwritten using $.ajaxSetup().

Chapter 9

21

See also
The Infinite scrolling recipe

Serializing form data
Serializing form data is the process of converting the form fields into name/value pairs. In this
recipe, let's serialize form data and send it to the server using Ajax. The constructs used in
this example are summarized as follows:

Construct Type Description
$("#identifier") jQuery selector This selects an element based on its

ID.
$.ajax() jQuery function This posts an Ajax request to the

server with the set options.
:checked jQuery filter This selects checked input elements.
click jQuery event This is fired when you click on

an element. It corresponds to the
JavaScript click event.

event.
preventDefault()

jQuery method This prevents the default action of
the event from being triggered.

.find() jQuery method This finds all elements that match
the filter.

.hide() jQuery method This hides the matched elements.

.html() jQuery method This returns the HTML content of
the first matched element or sets the
HTML content of every matched
element.

JSON.stringify() JavaScript
function

This converts a JavaScript value to a
JSON string.

.not() jQuery method This removes elements from the
matched elements.

.on() jQuery event
binder

This attaches an event handler for
one or more events to the matched
elements.

Useful jQuery Recipes for ASP.NET Sites

22

Construct Type Description
.prop(propertyName)
or

.prop(propertyName,
value)

jQuery method This returns the value of the
specified property for the first
matched element or sets the value
of the specified property for all
matched elements.

.serializeArray() jQuery method This encodes form elements as an
array of name/value pairs.

.show() jQuery method This displays the matched elements.

.val() jQuery method This returns the value of first
matched element or sets the value
of every matched element.

window.location.href JavaScript
property

This returns the URL of the current
page.

Getting ready
Follow these steps to create a page that serializes form data:

1. In this example, let's create a simple registration page consisting of the
following fields:

Chapter 9

23

When the form is submitted, the form data is serialized and posted to the server
using Ajax. At the server, we will parse this data and return it back as an Ajax
response. This will be displayed on the browser, as shown in the following screenshot.
Notice that the name/value pairs consist of the control names and the corresponding
data entered.

2. To get started, create a new ASP.NET Web Application project in Visual Studio using
the Empty template and name it Recipe4 (or any other suitable name).

3. Add a Scripts folder to the project and include the jQuery library in this folder.

4. Add a web form and name it Default.aspx. Include the jQuery library in the form.

5. To create the form fields, add the following markup to the form:
<div>
 <table>
 <tr>
 <td class="col1">
 <asp:Label ID="lblName" runat="server"
Text="Name:"></asp:Label>
 </td>
 <td class="col2">

Useful jQuery Recipes for ASP.NET Sites

24

 <asp:TextBox ID="txtName"
runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Label ID="lblEmail" runat="server"
Text="Email:"></asp:Label>
 </td>
 <td>
 <asp:TextBox ID="txtEmail"
runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Label ID="lblGender" runat="server"
Text="Gender:"></asp:Label>
 </td>
 <td>
 <asp:DropDownList ID="ddlGender" runat="server">
 <asp:ListItem Text="--Please Select--"
Value=""></asp:ListItem>
 <asp:ListItem Text="Male"
Value="Male"></asp:ListItem>
 <asp:ListItem Text="Female"
Value="Female"></asp:ListItem>
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Label ID="lblType" runat="server"
Text="Registration Type:"></asp:Label>
 </td>
 <td>
 <asp:RadioButtonList ID="rblType" runat="server">
 <asp:ListItem Text="Student">Student</asp:ListItem>
 <asp:ListItem Text="Staff">Staff</asp:ListItem>
 <asp:ListItem Text="Alumni">Alumni</asp:ListItem>
 </asp:RadioButtonList>
 </td>
 </tr>
 <tr>
 <td>

Chapter 9

25

 <asp:Label ID="lblContact" runat="server"
Text="Preferred Mode of Contact:"></asp:Label>
 </td>
 <td>
 <asp:CheckBoxList ID="chkContact" runat="server">
 <asp:ListItem Text="Phone"
Value="Phone"></asp:ListItem>
 <asp:ListItem Text="Email"
Value="Email"></asp:ListItem>
 </asp:CheckBoxList>
 </td>
 </tr>
 <tr>
 <td colspan="2" class="center">
 <asp:Button ID="btnSubmit" runat="server"
Text="Submit" />
 <asp:Button ID="btnReset" runat="server"
Text="Reset" />
 </td>
 </tr>
 </table>

 <asp:Panel ID="pnlResult" runat="server"></asp:Panel>
</div>

Note that a pnlResult Panel control is included at the end of the form. This Panel
control will be used to display the Ajax response.

6. Include the following styles for the form fields:
<style type="text/css">
 .col1{
 width:150px;
 }
 .col2{
 width:200px;
 }
 .center{
 text-align:center;
 }
</style>

7. Next, we will add a class for the name/value pairs generated by serializing the
form fields. The name refers to the field name, whereas the value refers to the data
entered by the user in the respective field.

Useful jQuery Recipes for ASP.NET Sites

26

To add the class, right-click on the project in the Solution Explorer tab, and go to Add
| Class. Name the class as NameValuePairs.

For VB, the code is as follows:
Public Class NameValuePairs
 Public Property Name
 Public Property Value
End Class

For C#, the code is as follows:

public class NameValuePairs
{
 public string Name { get; set; }
 public string Value { get; set; }
}

8. In the code-behind page of the web form, add the System.Web.Services
namespace at the top of the page.

For VB, the namespace is as follows:
Imports System.Web.Services

For C#, the namespace is as follows:

using System.Web.Services;

9. Add a page method to the code-behind. The serialized form data will be posted
to this method.

For VB, the method is as follows:
<WebMethod>
Public Shared Function ProcessForm(formData As
NameValuePairs()) As String
 Dim strReturn As String = String.Empty
 If (formData.Length > 0) Then
 strReturn += "You have submitted the following data:

"
 For Each item As NameValuePairs In formData
 strReturn += item.Name + ": " + item.Value + "
"
 Next
 End If
 Return strReturn
End Function

Chapter 9

27

For C#, the method is as follows:

[WebMethod]
public static string ProcessForm(NameValuePairs[] formData)
{
 string strReturn = String.Empty;
 if (formData.Length > 0) {
 strReturn += "You have submitted the following data:

";
 foreach (NameValuePairs item in formData)
 strReturn += item.Name + ": " + item.Value + "
";
 }
 return strReturn;
}

The preceding page method receives the form data as an array of the
NameValuePairs type. It loops through the elements of this array and builds a
string of these name/value pairs. The string is returned as an Ajax response to the
calling script.

How to do it…
Add the following jQuery code to a script block on the page:

<script type="text/javascript">
 $(document).ready(function() {
 $("#<%=pnlResult.ClientID%>").hide();
 $("#<%=btnSubmit.ClientID%>").on("click", function(evt) {
 evt.preventDefault();
 var strData =
$("#form1").find("input,select,textarea").not("#__VIEWSTATE").
not("#__VIEWSTATEGENERATOR").not("#__EVENTVALIDATION").
serializeArray();
 var loc = window.location.href;
 $.ajax({
 type: "POST",
 url: loc + "/ProcessForm",
 data: JSON.stringify({
 formData: strData
 }),
 dataType: "json",
 contentType: "application/json;charset=utf-8",
 timeout: 5000,
 cache: false,
 success: function(response) {

Useful jQuery Recipes for ASP.NET Sites

28

 $("#<%=pnlResult.ClientID%>").html(response.d).show();
 },
 error: function(jqXHR, textStatus, errorThrown) {
 if (textStatus == "error") {
 alert("An error has occurred: " + jqXHR.status + " " +
jqXHR.statusText);
 }
 }
 });
 });
 $("#<%=btnReset.ClientID%>").on("click", function(evt) {
 evt.preventDefault();
 $("#<%=txtName.ClientID%>").val("");
 $("#<%=txtEmail.ClientID%>").val("");
 $("#<%=ddlGender.ClientID%>").val("");
 $("#<%=rblType.ClientID%> :checked").prop("checked", false);
 $("#<%=chkContact.ClientID%> :checked").prop("checked",
false);
 });
 });
</script>

How it works…
The serialization of the form data works as follows:

1. When the page is loaded, the Panel control is initially hidden:
$("#<%=pnlResult.ClientID%>").hide();

2. An event handler is attached to the click event of the Submit button, as follows:
$("#<%=btnSubmit.ClientID%>").on("click", function (evt)
{…});

In this event handler, the page is prevented from posting back:
evt.preventDefault();

Next, the form fields are serialized and stored in an array. At runtime, ASP.NET creates
additional hidden fields for ViewState and EventValidation. On viewing the
page source, we can see that the __VIEWSTATE, __VIEWSTATEGENERATOR, and
__EVENTVALIDATION fields are created, as shown in the following screenshot:

Chapter 9

29

These fields should be excluded when serializing the form fields. This can be done
using the .not() method, as follows:

var strData =
$("#form1").find("input,select,textarea").not("#__VIEWSTATE
").not("#__VIEWSTATEGENERATOR").not("#__EVENTVALIDATION").
serializeArray();

3. The next step is to build the Ajax request that is to be sent to the page method. To do
this, first, get the URL of the current page:
var loc = window.location.href;

Send an Ajax request to the page method with the required options:
$.ajax({
 type: "POST",
 url: loc + "/ProcessForm",
 data: JSON.stringify({ formData: strData }),
 dataType: "json",
 contentType: "application/json;charset=utf-8",
 timeout: 5000,
 cache: false,
 success: function (response) {
 $("#<%=pnlResult.ClientID%>").html(response.d).show();
 },
 error: function (jqXHR, textStatus, errorThrown) {
 if (textStatus == "error") {
 alert("An error has occurred: " + jqXHR.status + " "
+ jqXHR.statusText);
 }
 }
});

Useful jQuery Recipes for ASP.NET Sites

30

In the preceding Ajax call, the following options are set:

 � The type of request is set to POST.

 � The url of the request is set to the address of the page method.

 � The form data is sent in a JSON format using JSON.stringify().

 � The type of the expected response is set to json.

 � The content type of the sent request is set to application/json and the
character set to utf-8.

 � A timeout of 5000 milliseconds is defined after which the request will be
terminated if the server fails to respond.

 � The cache is set to false so that the response is not cached.

 � A callback function is defined when the response is successful. In this
function, the response is displayed in the Panel control and the control is
made visible:

 $("#<%=pnlResult.ClientID%>").html(response.d).show();

Note that the Ajax response is contained in response.d.

 � A callback function is defined when the response is unsuccessful. If
the returned value of textStatus is error, then the status and
statusText parameter of the XmlHttpRequest object is displayed.

4. The Reset button has an event handler attached to it, as follows:
$("#<%=btnReset.ClientID%>").on("click", function (evt)
{…});

Inside the preceding handler, the page is prevented from posting back, as follows:
evt.preventDefault();

Next, all the fields are reset one after the other:

 � First, the TextBox controls are cleared:
 $("#<%=txtName.ClientID%>").val("");
 $("#<%=txtEmail.ClientID%>").val("");

 � The DropdownList control is set to the default value:
 $("#<%=ddlGender.ClientID%>").val("");

 � If any radio button is selected, it is cleared:
 $("#<%=rblType.ClientID%> :checked").prop("checked",
 false);

Chapter 9

31

 � All checkboxes are also cleared:

 $("#<%=chkContact.ClientID%> :checked").prop("checked",
 false);

See also
The Uploading files in MVC recipe

Uploading files in MVC
In this example, we will create an MVC website and use jQuery to upload files on the server
using HTTP POST. The constructs used in this example are summarized as follows:

Construct Type Description
$("#identifier") jQuery selector This selects an element based on its ID.
$.ajax() jQuery function This posts an Ajax request to the server

with the set options.
click jQuery event This is fired when you click on an element.

It corresponds to the JavaScript click
event.

event.preventDefault() jQuery method This prevents the default action of the
event from being triggered.

FormData() Web API This creates a new FormData object.
FormData.append() Web API

method
This adds a key/value pair to the
FormData object.

.files HTML5
property

This returns a FileList object
consisting of selected files.

.get(0) jQuery method This returns the first element from the
jQuery array.

.length jQuery property This gets the number of elements in the
jQuery object.

.on() jQuery event
binder

This attaches an event handler for one or
more events to the matched elements.

.val() jQuery method This returns the value of the first matched
element or sets the value of every
matched element.

Useful jQuery Recipes for ASP.NET Sites

32

Getting ready
To build a file upload form in MVC, follow these steps:

1. In this example, we will create a simple file upload form, as shown in the
following screenshot:

After selecting one or more files and clicking on the Upload button, the files are
uploaded on the server using Ajax. If the process is successful, a notification is
displayed, as shown in the following screenshot:

Chapter 9

33

2. Let's get started by launching a new ASP.NET Web Application project in Visual
Studio. Select the Empty template and check the MVC box. This will create an empty
project with MVC folders.

3. Add a Scripts folder to the project and add the jQuery library to this folder.

4. Create a folder called uploads. This folder will be used to save the uploaded files.

5. Right-click on the Controllers folder in the Solution Explorer tab, and go to Add |
Controller. From the dialog box that is launched, select MVC 5 Controller – Empty,
and click on Add, as shown in the following screenshot:

This will display a popup to help you enter the controller name. Type
HomeController for the name of the controller, and click on Add,
as shown here:

Useful jQuery Recipes for ASP.NET Sites

34

6. Next, open the HomeController file, and right-click on the Index action method.
This will display a context menu, as shown in the following screenshot. Click on Add
View in the context menu:

This will display the Add View dialog box. Select Empty (without model) from the
Template field. Uncheck the Use a layout page option, and click on the Add button:

Chapter 9

35

7. Now, open the View and include the jQuery library on the page. Add the following
markup to create an upload form:
<p>Please select the files to upload: </p>
<input id="fileUpload" type="file" multiple/>

<input id="btnUpload" type="button" value="Upload" />

Note that the file upload element uses multiple to allow the user to select more
than one file for upload.

8. Now, let's focus on the controller. In the HomeController file, add the System.IO
namespace at the top of the file.

For VB, the namespace is as follows:
Imports System.IO

For C#, the namespace is as follows:

using System.IO;

9. Add an action method to the controller to handle HTTP POST requests. We will name
this method, UploadFiles(), and it will be responsible for copying the received
files in the uploads folder.

For VB, the code is as follows:
<HttpPost>
Public Function UploadFiles() As String
 Dim strReturn As String = String.Empty
 Dim totalFiles As Integer = Request.Files.Count
 Dim i As Integer
 Try
 For i = 0 To totalFiles - 1
 Dim fileToUpload = Request.Files(i)
 Dim uploadPath =
Path.Combine(Server.MapPath("~/uploads/"),
Path.GetFileName(fileToUpload.FileName))
 fileToUpload.SaveAs(uploadPath)
 Next
 Catch ex As Exception
 strReturn = String.Format("An error has occurred:
{0}", ex.Message.ToString())
 End Try

 If strReturn.Equals(String.Empty) Then
 strReturn = String.Format("Total files uploaded: {0}",
totalFiles)
 End If

Useful jQuery Recipes for ASP.NET Sites

36

 Return strReturn
End Function

For C#, the code is as follows:

[HttpPost]
public string UploadFiles()
{
 string strReturn = String.Empty;
 int totalFiles = Request.Files.Count;
 try
 {
 for (int i = 0; i < totalFiles; ++i)
 {
 var fileToUpload = Request.Files[i];
 var uploadPath = Path.Combine(Server.MapPath("~/uploads/"),
Path.GetFileName(fileToUpload.FileName));
 fileToUpload.SaveAs(uploadPath);
 }
 }catch (Exception ex)
 {
 strReturn = String.Format("An error has occurred: {0}",
ex.Message.ToString());
 }
 if (strReturn == String.Empty)
 strReturn = String.Format("Total files uploaded: {0}",
totalFiles);
 return strReturn;
}

In the preceding action method, each file in the Request.Files object is saved
in the uploads folder. The file upload snippet is enclosed in a try…catch block,
and exceptions, if any, are returned to the user in the Ajax response. If the upload is
successful, the total number of files is returned in the Ajax response.

How to do it…
Add the following jQuery code to a script block in the Index view:

$(document).ready(function () {
 $("#btnUpload").on("click", function (evt) {
 evt.preventDefault();
 var filesToUpload = $("#fileUpload").get(0).files;
 var fd = new FormData();
 for (var i = 0; i < filesToUpload.length; ++i) {

Chapter 9

37

 fd.append(filesToUpload[i].name, filesToUpload[i]);
 }
 $.ajax({
 method: "POST",
 url: "/Home/UploadFiles",
 contentType: false,
 data: fd,
 dataType: "json",
 cache: false,
 processData: false,
 error: function (jqXHR, textStatus, errorThrown) {
 if (textStatus == "error") {
 alert("An error has occurred: " + jqXHR.status + " " +
jqXHR.statusText);
 }
 },
 complete: function (response) {
 $("#fileUpload").val("");
 alert(response.responseText);
 }
 });
 });
});
</script>

At times, Visual Studio may skip breakpoints during debugging. In such a
situation, the debugger statement can be included in the script, as follows:

debugger;

The preceding statement will create a breakpoint in the script.

How it works…
The uploading of files in MVC works as follows:

1. In the jQuery script, an event handler is attached to the click event of the Upload
button, as follows:
 $("#btnUpload").on("click", function (evt) {…});

Useful jQuery Recipes for ASP.NET Sites

38

In the preceding event handler, the page is prevented from posting back using the
preventDefault() method:

evt.preventDefault();

2. Next, get the list of files selected by the user in the file input element as a FileList
object:
var filesToUpload = $("#fileUpload").get(0).files;

3. Instantiate a FormData object. This object consists of a list of key/value pairs. The
key refers to the filename while the value refers to the File object:
var fd = new FormData();

4. Loop through each file in the FileList object and add a key/value pair to the
FormData object:
for (var i = 0; i < filesToUpload.length; ++i) {
 fd.append(filesToUpload[i].name, filesToUpload[i]);
}

5. Next, post an Ajax request to the controller action method:
$.ajax({
 method: "POST",
 url: "/Home/UploadFiles",
 contentType: false,
 data: fd,
 dataType: "json",
 cache: false,
 processData: false,
 error: function (jqXHR, textStatus, errorThrown) {
 if (textStatus == "error") {
 alert("An error has occurred: " + jqXHR.status + " "
+ jqXHR.statusText);
 }
 },
 complete: function (response) {
 $("#fileUpload").val("");
 alert(response.responseText);
 }
});

In the preceding statement, the following options are set:

 � The type of request is set to POST.

 � The url is set to the address of the UploadFiles action method.

Chapter 9

39

 � The contentType parameter is set to false to prevent jQuery from adding
the content type header.

 � Send the FileData object as the request data.

 � Set the dataType parameter of the response to json.

 � Set the cache parameter to false so that the response will not be cached.

 � Set processData to false so that the file data is not processed prior to
sending it to the server.

 � Define a callback function for an unsuccessful Ajax request. If error is
returned as textStatus, then the status and statusText parameter of
the XmlHttpRequest object is displayed.

 � Define a callback function when the request is completed. In this function,
clear the file upload input element:

 $("#fileUpload").val("");

 � Next, display the response returned from the server:

 alert(response.responseText);

It is important to set the contentType and processData
options to false for the upload process to be successful.

See also
The Using Ajax to load scripts in web pages recipe

Exporting the GridView data in the CSV
format

In this example, let's export the data of a GridView control to the CSV (Comma Separated
Values) format. The same script can also be used to export data from HTML tables or ASP.NET
Table controls. The constructs used in this example are summarized as follows:

Construct Type Description
$("#identifier") jQuery selector This selects an element based on its ID.
$("html_tag") jQuery selector This selects all elements with the

specified HTML tag.
$(this) jQuery object This refers to the current jQuery object.

Useful jQuery Recipes for ASP.NET Sites

40

Construct Type Description
.attr("name") or

.attr("name",
"value")

jQuery method This returns a string with the required
attribute value of a matched element. It
can also be used to set the attribute to
the required value.

click jQuery event This is fired when you click on an
element. It corresponds to the JavaScript
click event.

.each() jQuery method This iterates over the matched elements
and executes a function for each element.

encodeURIComponent() JavScript method This encodes a uniform resource
identifier by replacing each instance of
certain characters by escape characters.

:eq(i) jQuery filter This selects an element with an index
equal to i from the matched elements.

.find() jQuery method This finds all elements that match the
filter.

.get() jQuery method This gets the DOM elements matched by
the jQuery object.

:gt(i) jQuery filter This selects elements with an index
greater than i from the matched
elements.

.join() JavaScript method This joins the elements of an array to a
comma separated string.

.map() jQuery method This executes a function on each
matched element and returns a new
jQuery object with the updated values.

.on() jQuery event
binder

This attaches an event handler for one or
more events to the matched elements.

.replace() JavaScript method This searches for the specified substring
in a string and replaces it with another
substring.

Chapter 9

41

Construct Type Description
.text() jQuery method This returns the combined text content of

each of the matched elements or sets the
text content of every matched element.

.trim() JavaScript method This removes leading and trailing
whitespaces from the string.

Getting ready
Follow these steps to setup a GridView control on a page:

1. In this example, let's create a web page to display customer records from the
Northwind database, as shown in the following screenshot:

Useful jQuery Recipes for ASP.NET Sites

42

After clicking on the Export to CSV link, the data can be downloaded in CSV,
as shown in the following screenshot:

2. To get started, launch a new ASP.NET Web Application in Visual Studio using the
Empty template and name it Recipe6 (or any other suitable name).

3. Create a Scripts folder in the project and include the jQuery library in this folder.

4. Add a web form named Default.aspx. Include the jQuery library on the form.

5. Go to Toolbox | Data, and drag and drop a GridView control on the form.

6. In the Design mode, mouse over the GridView control until a small arrow icon
appears in the top-right corner. Click on the arrow icon to display the GridView Tasks
menu, as shown in the following screenshot:

Chapter 9

43

From the Choose Data Source dropdown, select <New data source…>.

7. From the following dialog box of the Data Source Configuration wizard, select SQL
Database. Type NorthwindDataSource for the ID of the data source, and click on
the OK button:

Useful jQuery Recipes for ASP.NET Sites

44

8. Click on the New Connection button:

Chapter 9

45

This will launch the Add Connection dialog box, as shown in the following screenshot.
Enter LOCALHOST for the server name, select Northwind as the database name, and
click on OK:

Useful jQuery Recipes for ASP.NET Sites

46

9. The following screenshot displays the configuration of the SELECT statement.
Choose the Customers table and select all the columns. Finish the
configuration wizard:

Note that we are using Windows Authentication for all database
driven examples in this book. Hence in the MS SQL Server, it is
important to give permission to the Windows account to access
the Northwind database.

10. Now that the database setup is completed on the web form, add a LinkButton
control above the GridView control to get the following markup on the page:
<asp:LinkButton ID="btnExport" runat="server">Export to
CSV</asp:LinkButton>

<asp:GridView ID="customersGridView" runat="server"
AutoGenerateColumns="False" DataKeyNames="CustomerID"
DataSourceID="NorthwindDataSource">
 <Columns>
 <asp:BoundField DataField="CustomerID" HeaderText="CustomerID"
ReadOnly="True" SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName"
HeaderText="CompanyName" SortExpression="CompanyName" />

Chapter 9

47

 <asp:BoundField DataField="ContactName"
HeaderText="ContactName" SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle"
HeaderText="ContactTitle" SortExpression="ContactTitle" />
 <asp:BoundField DataField="Address" HeaderText="Address"
SortExpression="Address" />
 <asp:BoundField DataField="City" HeaderText="City"
SortExpression="City" />
 <asp:BoundField DataField="Region" HeaderText="Region"
SortExpression="Region" />
 <asp:BoundField DataField="PostalCode" HeaderText="PostalCode"
SortExpression="PostalCode" />
 <asp:BoundField DataField="Country" HeaderText="Country"
SortExpression="Country" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
SortExpression="Phone" />
 <asp:BoundField DataField="Fax" HeaderText="Fax"
SortExpression="Fax" />
 </Columns>
</asp:GridView>
<asp:SqlDataSource ID="NorthwindDataSource" runat="server"
ConnectionString="<%$
ConnectionStrings:NorthwindConnectionString %>"
SelectCommand="SELECT * FROM
[Customers]"></asp:SqlDataSource>

How to do it…
Add the following jQuery code to a script block on the page:

<script type="text/javascript">
 $(document).ready(function() {
 $("#<%=btnExport.ClientID%>").on("click", function() {
 var csvContent = "";
 var fileName = "export.csv";
 var newline = "\r\n";

 //Write the header row
 var $header =
$("#<%=customersGridView.ClientID%>").find("tr:eq(0)");
 var $headercols = $header.find("th");
 var csv = $headercols.map(function(j, col) {
 return '"' + $(col).text().replace('/"', '/"/"') + '"';
 }).get().join();
 csvContent = csv + newline;

Useful jQuery Recipes for ASP.NET Sites

48

 //Write all the content rows
 var $rows =
$("#<%=customersGridView.ClientID%>").find("tr:gt(0)");
 $rows.each(function(i, row) {
 var $cols = $(row).find("td");
 var csv = $cols.map(function(j, col) {
 if ($(col).text().trim() != "")
 return '"' + $(col).text().replace('"', '""') + '"';
 else
 return '""';
 }).get().join();
 csvContent += csv + newline;
 });
 csvContent = "data:application/csv;charset=utf-8," +
encodeURIComponent(csvContent);
 $(this).attr({
 download: fileName,
 href: csvContent,
 target: "_blank"
 });
 });
 });
</script>

How it works…
The export of GridView data to CSV format works as follows:

1. In the jQuery script, an event handler is attached to the click event of the
LinkButton control:
$("#<%=btnExport.ClientID%>").on("click", function () {…});

Note that we will not use event.preventDefault() in this handler since we want
the default action of the link to be executed.

2. Initialize a variable named csvContent. This will be used to build a comma
separated string from the contents of the GridView control:
var csvContent = "";

3. Initialize the filename to export the data as required:
var fileName = "export.csv";

4. Define a variable named newline to hold the carriage return and newline
characters:
var newline = "\r\n";

Chapter 9

49

5. Next, build the header row. To do this, first, find the header row, that is, the tr
element at index 0, as follows:
var $header = $("#<%=customersGridView.ClientID%>").
find("tr:eq(0)");

Then, determine the header columns by filtering the preceding row using the th
elements:
var $headercols = $header.find("th");

Build a comma separated string by mapping the header columns to return the
column text enclosed in double quotes. If the column content has double quotes, it is
replaced by two double quotes:
var csv = $headercols.map(function (j, col) {
 return '"' + $(col).text().replace('/"', '/"/"') + '"';
}).get().join();

The .map() method returns a jQuery object containing an array. We use .get() to
retrieve the array, and the corresponding elements are joined to a comma separated
string.

The GridView columns may have commas in the content. To
avoid the CSV file from incorrectly splitting up at the commas in
the content, all column values are enclosed in double quotes.
Double quotes in the column values, if any, are escaped by
replacing them with two double quotes.

6. Next, add the newline to the preceding csv string:
csvContent = csv + newline;

7. After building the header row, we use a similar process on each row of the GridView
control:
$rows.each(function (i,row) {…});

In the preceding function, select the columns in each row:
var $cols = $(row).find("td");

Useful jQuery Recipes for ASP.NET Sites

50

Use the .map() method and return a comma separated string that consists of the
column values enclosed in double quotes. If the column content is empty, an empty
string enclosed in double quotes is returned for that column:
var csv = $cols.map(function (j, col) {
 if ($(col).text().trim() != "")
 return '"' + $(col).text().replace('"', '""') + '"';
 else
 return '""';
}).get().join();

Append the comma separated row content to the csvContent string:

csvContent += csv + newline;

8. Attach a header to the content to indicate the data as CSV and the character set as
utf-8:
csvContent = "data:application/csv;charset=utf-8," +
encodeURIComponent(csvContent);

9. Lastly, update the attribute of the LinkButton control to attach the CSV content
generated from the GridView control as a downloadable file, as shown in the
following code:

$(this).attr({
 download: fileName,
 href: csvContent,
 target: "_blank"
});

Note that there is a limitation in using this script with IE browsers. In IE, the
CSV content will not be attached as a downloadable file, and step 9 will not
work. To overcome this issue, we can provide a multiline textbox control on the
form, and add the CSV content to this control.

Chapter 9

51

There's more…
If the GridView control has accented (non-English) characters, the exported CSV file may not
display them correctly. To see the data correctly, perform the following steps:

1. Launch Microsoft Excel.

2. From the File menu, go to Data | Get External Data | From Text. This will launch a
browse window. Select the CSV file exported in the previous section, and click
on Open.

3. Next, Text Import Wizard will be launched, as shown in the following screenshot:

Select Delimited as the file type, and choose 65001: Unicode (UTF- 8) as the
encoding. Click on the Next button.

Useful jQuery Recipes for ASP.NET Sites

52

4. In the next step, select Comma as the file delimiter. Click on Finish to complete
the wizard:

This will display the accented characters correctly in the CSV file.

See also
The Infinite scrolling recipe

