
Console Applications
This appendix shows the basic structure of console applications, as used throughout
the examples in this book.

Creating the solution and project files
To create a new solution in Xamarin, go to the File menu, select New, and then select
Solution. Select Blank Solution from the Other category or perhaps Console Project
from the C# category. The latter creates a console project for you at the same time.
Don't forget to enter a name for the solution and the location to store the files. To add a
new project to the solution, right-click on the solution in the Solution panel to the left
in the IDE and select Add and then Add New Project. You can also add the Clayster.
Library.IoT and Clayster.Library.RaspberyPi projects by selecting Add Existing
Project from the same pop-up menu.

Once the project is created, you need to add project references to the project.
References tell the compiler that these projects are required by the running application.
To add references to the project, right-click on the References folder of the newly
created Sensor project in the Solution panel. From the context menu that appears,
select Edit References. In the References dialog that appears, you need to add three
types of libraries. First, you need to add the System.Xml and System.Drawing .NET
libraries to the project. This is done from the Packages page in the References dialog.
These two libraries allow you to work with XML and images in a simple way. Then,
you need to add references to the Clayster.Library.IoT and Clayster.Library.
RaspberyPi libraries, to which source code is provided, if these are added to the
solution. This is done in the Projects tab of the same dialog. In this tab, you will see
all the projects in your solution. Lastly, you need to add references to the remaining
Clayster libraries. This is done in the .NET Assembly tab in the same dialog. Navigate
to the folder with the downloaded libraries and add references to the corresponding
.dll files to the project.

A

Console Applications

[2]

Basic application structure
When creating a new console project in Xamarin, the main program file will be
named Program.cs and will look as follows:

using System;
namespace Sensor
{
 class MainClass
 {
 public static void Main (string[] args)
 {
 Console.WriteLine ("Hello World!");
 }
 }
}

Logging events
All projects in this book will use the following setup, and we describe it only here for
brevity. First, we will add the following using statements, since we will not only use
multiple threads but also the sleep function and event logging:

using System.Threading;
using Clayster.Library.EventLog;
using Clayster.Library.EventLog.EventSinks.Misc;

The event logging architecture allows for any number of event sinks to be registered.
Event sinks can be used to analyze the event flow, store events, or send events to the
network somewhere. If event logging is done properly when building applications,
it's easy at a later stage to add more advanced event logging capabilities, for instance,
sending events from things to a central repository for monitoring and analysis. For our
purposes, it is sufficient at this point to only output events to the terminal window.
For this reason, we will add the following code to the top of the Main() method:

Log.Register (new ConsoleOutEventLog (80));
Log.Information ("Initializing application...");

Appendix A

[3]

Terminating gracefully
We then register an event handler that will be executed if the user presses CTRL+C
in the terminal window when executing the application. Until this key combination
is pressed, the Executing variable will remain true, as shown in the following case:

bool Executing = true;
Console.CancelKeyPress +=
 (object sender, ConsoleCancelEventArgs e) =>
 {
 e.Cancel = true;
 Executing = false;
 };

By adding the previous event handler, we can implement a graceful shutdown of our
console application, as follows:

Log.Information ("Application started...");
try
{
 while (Executing)
 {
 System.Threading.Thread.Sleep (1000);
 }
}
catch (Exception ex)
{
 Log.Exception (ex);
}
finally
{
 Log.Information ("Terminating application.");
 Log.Flush ();
 Log.Terminate ();
}

Note that any unexpected exceptions should always be caught and sent to the
event log. This makes it easier to detect errors in the code. Furthermore, we need
to terminate the event log properly by using the Terminate method, or the console
application will not be terminated since there are active threads still running.

Console Applications

[4]

Compiling and deploying the project
When compiling the application, executable files will be generated and stored
in the bin/Debug folder under the project folder. Files with the extension .dll
are executable library files. The file with the .exe extension is the executable file.
Files with the .pdb extension are debug files. If they are downloaded, remote
debugging is possible and stack traces will contain line number information
to help locate errors quickly.

To deploy files to a Raspberry Pi, several methods are available. The method used
in our examples includes using a command-line version of the Secure Copy (SCP)
protocol, which copies files using the Secure Shell (SSH) protocol, a protocol used
by Linux for secure terminal connections to the device. A command-line version of
SCP called PSCP.exe is available in PUTTY, the terminal application we used when
creating the applications.

To simplify automatic deployment, each project has a file called CopyToRaspberryPi.
bat that copies relevant files to the corresponding Raspberry Pi. To automatically
deploy newly compiled code, right-click on the project in Xamarin and select Options.
In the Options dialog, go to Build and Custom Commands. Choose After Build and
select and execute the CopyToRaspberryPi.bat command in the ${ProjectDir}
working directory. Now, the batch file will execute every time the project has been
successfully built, copying all files to the corresponding Raspberry Pi. To make
deployment quicker, files seldom changed can be commented out. The following line
shows an example of how the command-line syntax of deploying a file will look on a
Windows machine:

"c:\Program Files (x86)\PuTTY\pscp.exe" -pw raspberry
bin/Debug/Sensor.exe pi@192.168.0.29:

To execute the file on a Raspberry Pi, simply execute the following in a
terminal window:

$ sudo mono Sensor.exe

Since Sensor.exe is a .NET application, it needs to run within the Mono virtual
machine. To make sure the application has full access rights, which is important
to access GPIO later, super user access rights are required.

Appendix A

[5]

Making the application run at system
startup
When the sensor is done, we might want to configure our Raspberry Pi to
automatically run the application when it boots. This way, it will always start
when the Raspberry Pi is powered up. To do this, open a terminal window to
the Raspberry Pi and edit the /etc/rc.local file as follows:

$ sudo nano /etc/rc.local

Before the exit statement, we add the following:

cd /
cd home
cd pi
mono Sensor.exe > /dev/null &

We can now exit, save the file, and reboot the Raspberry Pi. After a few moments,
the LEDs on our prototype board will indicate that the sensor application is up and
running. Navigating to the sensor in a browser will also confirm the sensor is alive
and well.

To update the application at a later stage, you need to kill the Mono process first,
update the application, and test it; then, when you are satisfied, reboot the device
and the application will automatically start again, using the new version of the code.

Sampling and History
Performing basic sampling and keeping a historical record of sampled values is the
basic function of any sensor. Sensors are an important aspect of Internet of Things.
This appendix shows how sampling and historical record keeping is done in the
sensor project published in this book. You start by creating a project, as described
in Appendix A, Console Applications and then follow it up with the instructions in this
appendix. Here, we will start by interfacing our hardware, configuring it, preparing
the code with the basic data structures, and then sampling values sensed by the
hardware. The circuit diagram for our prototype board, as described in Chapter 1,
Preparing our IoT Projects, is as follows:

B

Sampling and History

[8]

Interfacing the hardware
We start by adding code to interface the hardware on our prototype board. The
actual interface with GPIO is done using the Clayster.Library.RaspberryPi
library, for which you'll have the source code available. We first add the following
references to the corresponding namespaces:

using Clayster.Library.RaspberryPi;
using Clayster.Library.RaspberryPi.Devices.Temperature;
using Clayster.Library.RaspberryPi.Devices.ADC;

The RaspberryPi namespace contains generic GPIO classes, while the Devices
subnamespace contains classes for communication with specific devices. We then
create the following private static members, one DigitalOutput class for each one
of the LEDs:

private static DigitalOutput executionLed =
 new DigitalOutput (23, true);
private static DigitalOutput measurementLed =
 new DigitalOutput (24, false);
private static DigitalOutput errorLed =
 new DigitalOutput (25, false);
private static DigitalOutput networkLed =
 new DigitalOutput (18, false);

We also remove the Executing variable defined in Appendix A, Console Applications,
and replace it with executionLed.Value. Instead of setting the variable to true
or false respectively, we can also use the High() and Low() methods. By using
this LED instead of an internal variable, we can physically see when the application
is running.

The DigitalOutput class manages the state of an output GPIO pin. The first
parameter is the GPIO pin number it controls and the second parameter is its initial
state. We also need to add an object of the DigitalInput class for the motion detector
on GPIO pin 22, as follows:

private static DigitalInput motion = new DigitalInput (22);

We then have two sensors connected to an I2C bus that is connected to pins 3, Serial
Clock (SCL), and 2, Serial Data (SDA). If a Raspberry Pi R1 is used, these pins have
to be changed to pin 1 instead of 3 for SCL and pin 0 instead of 2 for SDA. Reading
the component specifications, we deduce that a maximum clock frequency of 400
kHz is allowed. We code these specifications in the following simple statement:

private static I2C i2cBus = new I2C (3, 2, 400000);

Appendix B

[9]

We then add a reference to the Texas Instruments TMP102 sensor, hardwired to
address 0, which within the class is converted to I2C address 48 hex, as follows:

private static TexasInstrumentsTMP102 tmp102 =
 new TexasInstrumentsTMP102 (0, i2cBus);

The Analog/Digital Converter Digilent Pmod AD2 employed uses an Analog
Devices AD7991, which also uses I2C to communicate with microcontrollers. It is also
hardwired to address 0, which internally in the class is converted to I2C address 28
hex, making it possible to coexist with the temperature sensor. Only one of the A/D
channels is used in this example. We add the corresponding interface as follows:

private static AD799x adc =
 new AD799x (0, true, false, false, false, i2cBus);

Correctly releasing hardware
Hardware attached to GPIO pins are not released by default when an application
terminates, as is done with other system resources controlled by the operating
system. For this reason, it is very important to always release hardware resources
correctly in the application and shut down the application gracefully, regardless of
what happens inside the application. For this reason, we call the Dispose() method
on all hardware resources in the finally statement at the end of the Main method,
which is guaranteed to run. The Dispose() method makes sure all resources are
released correctly, and any output pins are converted back to passive input pins:

executionLed.Dispose ();
measurementLed.Dispose ();
errorLed.Dispose ();
networkLed.Dispose ();
motion.Dispose ();
i2cBus.Dispose ();

Internal representation of sensor values
We now have our hardware interfaces in place. We now need to plan how
to represent sampled values internally. The motion detector is a digital input.
Its internal representation is simply done as a Boolean parameter, as follows:

private static bool motionDetected = false;

Sampling and History

[10]

The temperature sensor returns a binary 16-bit value whose most significant byte
(8 bits) corresponds to an integer number of degrees centigrade, and the least
significant byte (bits) corresponds to fractions of degrees. Negative values are
represented using two's complement, which means the 16-bit value should be
treated as a simple signed 16-bit integer (short) in C#. We will convert this to a
double datatype for practical reasons that will become clear later. So, our internal
representation of the temperature value becomes this:

private static double temperatureC;

The light sensor, on the other hand, is only a simple analog device with no calibrated
physical unit. The AD7991 device will return as a 12-bit unsigned value from 000 to
FFF hex. We will convert this to a relative value in percentage, where 0 percent will
represent no light and 100 percent maximum light, all as measured by the sensor.
Practically, during a bright day or when using a flashlight, the sensor will measure 100
percent. When placing one or two hands on the sensor, it will measure 0 percent. Our
internal representation of light density will also be made by a double value, as follows:

private static double lightPercent;

Since access to sensor values will be possible from multiple threads, we will also create
a synchronization object, which will be used during the lifetime of the application—
except during initialization—to make sure data is always consistent:

private static object synchObject = new object ();

Averaging to decrease variance
Our application will sample the physical values every second. To avoid jitter in
sampled values, we will also use an averaging window that for each sample will
calculate the average value of the last ten sampled values. Such an averaging
window will reduce the variance in sampled values and remove jitters that often
occur when sensors are sampled frequently and differences in sampled values is
small. This reduction in variance will appear to also decrease error and provide an
additional decimal of accuracy. Even though the method actually reduces sample
errors, it does not remove systematic errors that make sensors offset over time. To
remove such errors, recalibration of sensors is required. But, by using the average
values over the last ten sampled values, the output becomes smoother. And if you're
measuring only the change in sampled values, the sensing becomes more accurate
and gives an additional decimal of precision.

Appendix B

[11]

So, we add the following member variables to the application to be able to calculate
the average values of the last ten samples:

private static int[] tempAvgWindow = new int[10];
private static int[] lightAvgWindow = new int[10];
private static int sumTemp, temp;
private static int sumLight, light;
private static int avgPos = 0;

The avgPos variable maintains the position in the averaging windows. The sum*
parameter contains the sum of all values in the averaging window, and the temp
and light variables contain the most recent sample. Note that the sums are made
on integers, which means we do the summation on binary raw values and not
floating point values. This removes the possibility that the operation will introduce
round off errors over time, which would otherwise be the result if a large amount
of floating point additions and subtractions would have been used.

Configuring and initializing the
temperature sensor
Before the application can start using the sensors, we need to initialize
them correctly. We also need to initialize member variables used for sensing.
To initialize the temperature sensor and its sensing variables, we do as follows:

try
{
 tmp102.Configure (false,
 TexasInstrumentsTMP102.FaultQueue.ConsecutiveFaults_6,
 TexasInstrumentsTMP102.AlertPolarity.AlertActiveLow,
 TexasInstrumentsTMP102.ThermostatMode.ComparatorMode,
 false, TexasInstrumentsTMP102.ConversionRate.Hz_1, false);

 temp = (short)tmp102.ReadTemperatureRegister ();
 temperatureC = temp / 256.0;

 for (int i = 0; i < 10; i++)
 tempAvgWindow [i] = temp;

 sumTemp = temp * 10;
}
catch (Exception ex)
{

Sampling and History

[12]

 Log.Exception (ex);
 sumTemp = 0;
 temperatureC = 0;
 errorLed.High ();
}

The first statement is TMP102-specific and configures how the device should operate.
The first parameter (false) disables the one-shot feature, which in practice means
the device performs regular sampling. The second parameter states that the sensor
should flag for sensor errors only after six consecutive faults have occurred. The
third parameter controls the ALERT pin on the temperature sensor saying that it
should be active low, meaning it is high in a normal state and is pulled low when
an error occurs. The ALERT pin is not used in our application. The fourth parameter
configures the sensor to work in normal comparator mode and not interrupt mode.
We don't use the sensor's interrupt pin in our application, so we leave it in comparator
mode. The fifth parameter tells the sensor to sample the temperature every second. In
the sixth parameter, we disable the extended mode, which would give us an extra bit
of precision. Normal mode is sufficient for our application.

The rest of the code is easier to understand. The temperature sensor is read,
the averaging window is filled with the current value, and the sum register is set
accordingly. This assures that the average calculation of the following sample will
be calculated correctly. If an exception occurs, as would happen if the temperature
sensor cannot be read, the error LED is lit and variables are filled with zeroes.

Configuring and initializing the light
sensor
We must now do the same with the light sensor, or better said, with the A/D
converter. The only thing that differs is how the hardware is initialized and
how the momentary value is calculated:

try
{
 adc.Configure (true, false, false, false, false, false);

 light = adc.ReadRegistersBinary () [0];
 lightPercent = (100.0 * light) / 0x0fff;

 for (int i = 0; i < 10; i++)
 lightAvgWindow [i] = light;

Appendix B

[13]

 sumLight = light * 10;
}
catch (Exception ex)
{
 Log.Exception (ex);
 sumLight = 0;
 lightPercent = 0;
 errorLed.High ();
}

When configuring the AD7991 A/D converter, the first four parameters state which
channels are active and which are not. In our example, only the first channel is active.
The fifth parameter states that we do not use an external voltage reference connected
to one of the input channels, but use the same voltage reference used to power the
I2C communication bus. The sixth parameter tells the converter not to bypass existing
filters on the I2C SCL and SDA pins.

Setting up the sampling interval
We are now ready to perform the actual sampling. As mentioned previously, sampling
will be performed in the application every second. To activate this sampling frequency,
we add the following to the main method, just before entering into the main loop:

Timer Timer = new Timer (SampleSensorValues, null,
 1000 - DateTime.Now.Millisecond, 1000);

This line of code creates a System.Threading.Timer object that will call
the SampleSensorValues method every 1,000 milliseconds (last parameter).
The first call will be made on the next even second shift (third parameter). The
timer method takes a state object, which we do not need, so we choose to send
a null value (second parameter). To make sure the timer is disposed correctly
when the system terminates, we add the following line to the application's
clean-up clause at the end of the main method:

Timer.Dispose ();

Sampling and History

[14]

Performing the sampling
First we create the method that will be called by the sample timer created previously.
This method takes an object-valued parameter, which will always be null in our
case. We will light the measurement LED at the beginning of the method and make
sure the LED is unlit at the end. The event handler is also secured using try-catch-
finally to make sure unhandled exceptions do not make the entire application fail.
The actual sampling will be done within the lock statement that is there to make
sure access to the sample parameters can only be done from one thread at a time.
If sampling goes well, the error LED is unlit (if lit):

private static void SampleSensorValues (object State)
{
 measurementLed.High ();
 try
 {
 lock (synchObject)
 {
 }
 errorLed.Low ();
 }
 catch (Exception)
 {
 errorLed.High ();
 }
 finally
 {
 measurementLed.Low ();
 }
}

Within the lock statement, we can now start our sampling. We begin by reading the
current raw values from the temperature and light sensors:

temp = (short)tmp102.ReadTemperatureRegister ();
light = adc.ReadRegistersBinary () [0];

We then subtract the oldest values available in the averaging window from the
corresponding sum variables, replace the oldest values with the newest, and add
these values to the sum registers:

sumTemp -= tempAvgWindow [avgPos];
sumLight -= lightAvgWindow [avgPos];
tempAvgWindow [avgPos] = temp;
lightAvgWindow [avgPos] = light;

Appendix B

[15]

sumTemp += temp;
sumLight += light;

We then update the momentary value registers by calculating the average value
of the latest ten measurements. We also make sure to move the averaging window
position to the next oldest value, which after the current operation is the oldest:

temperatureC = (sumTemp * 0.1 / 256.0);
lightPercent = (100.0 * 0.1 * sumLight) / 0x0fff;
avgPos = (avgPos + 1) % 10;

We also make sure to update the motion detector variable with its current status:

motionDetected = motion.Value;

Historical records
One of the advantages of using a plug computer is that it is easy to store and process
historical data. We will take advantage of this fact and store historical values each
minute, hour, day, and month. But instead of storing current values at even time
intervals, which might be misleading, averaging will be performed for the entire time
interval of each corresponding period. In this case, averaging will not use windows
since the average is only required at the end of a period. For the binary motion value,
we will consider it to be true if it has been true at any time during the period and false
if it has been false during the entire period.

To facilitate these calculations, we create a class that maintains information about all
measured values:

public class Record
{
 private DateTime timestamp;
 private double temperatureC;
 private double lightPercent;
 private bool motion;
 private byte rank = 0;

 public Record (DateTime Timestamp, double TemperatureC,
 double LightPercent, bool Motion)
 {
 this.timestamp = Timestamp;
 this.temperatureC = TemperatureC;
 this.lightPercent = LightPercent;
 this.motion = Motion;
 }
}

Sampling and History

[16]

The only field here that requires some comment is the rank field. When creating
the record, the value that will be set is 0. For each averaging division, the value of
rank will be increased by one. So, when calculating a minute average across samples
every second, it will be ranked one. When calculating an hour average across minute
averages, it will be ranked two, and so on.

We also need to add simple get and set properties for our fields:

public DateTime Timestamp
{
 get { return this.timestamp; }
 set { this.timestamp = value; }
}

public double TemperatureC
{
 get { return this.temperatureC; }
 set { this.temperatureC = value; }
}

public double LightPercent
{
 get { return this.lightPercent; }
 set { this.lightPercent = value; }
}

public bool Motion
{
 get { return this.motion; }
 set { this.motion = value; }
}

public byte Rank
{
 get { return this.rank; }
 set { this.rank = value; }
}

Now, let's define the sum of two records this way: if either of the records is null,
the sum will be the value of the other record. If both contain valid object references,
the fields are summed up as follows: the sum of the timestamp values is the largest
one. Likewise, the sum of the rank values is the largest of the two. The sum of the
temperature and light values is the arithmetic sum of each other respectively.
The sum of the motion property is the logical OR of the two. We formalize this
with the following code:

Appendix B

[17]

public static Record operator + (Record Rec1, Record Rec2)
{
 if (Rec1 == null)
 return Rec2;
 else if (Rec2 == null)
 return Rec1;
 else
 {
 Record Result = new Record (
 Rec1.timestamp > Rec2.timestamp ?
 Rec1.timestamp : Rec2.timestamp,
 Rec1.temperatureC + Rec2.temperatureC,
 Rec1.lightPercent + Rec2.lightPercent,
 Rec1.motion | Rec2.motion);

 Result.rank = Math.Max (Rec1.rank, Rec2.rank);
 return Result;
 }
}

We also define a division operator where we divide a record with an integer number
to be able to later calculate average values. The temperature and light values are
divided arithmetically, while the timestamp and the logical motion values are left
as they are. The rank value is incremented once to give it the property mentioned
at the beginning of this section. We formalize this with the following code:

public static Record operator / (Record Rec, int N)
{
 Record Result = new Record (Rec.timestamp,
 Rec.temperatureC / N, Rec.lightPercent / N,
 Rec.motion);
 Result.rank = (byte)(Rec.rank + 1);
 return Result;
}

Storing historical averages
Before we can calculate historical averages, we need a place to store them.
First, we need to add a reference to System.Collections.Generic to permit
us to use generic list structures:

using System.Collections.Generic;

Sampling and History

[18]

We will then add the following static member variables that will be used in our
average calculations:

private static Record sumSeconds = null;
private static Record sumMinutes = null;
private static Record sumHours = null;
private static Record sumDays = null;
private static int nrSeconds = 0;
private static int nrMinutes = 0;
private static int nrHours = 0;
private static int nrDays = 0;

Then, we will add the following static member variables to keep a record of historical
averages over time:

private static List<Record> perSecond = new List<Record> ();
private static List<Record> perMinute = new List<Record> ();
private static List<Record> perHour = new List<Record> ();
private static List<Record> perDay = new List<Record> ();
private static List<Record> perMonth = new List<Record> ();

The idea is to do the following: store each sample in perSecond and also sum it
up into sumSeconds. At the end of each minute, the sum over the second is used to
calculate the average of that minute. This average is added to perMinute and also
summed to sumMinutes. At the end of each hour, the sum over the minute is used
to calculate an average for the respective hour. This average is added to perHour
and also summed to sumHours, and so on, for hours, days, and months. The code
to do this will follow. We start by creating a record containing momentary values.
This record will be ranked zero. We add this directly to the sample timer method
following the calculation of momentary values:

DateTime Now = DateTime.Now;
Record Rec, Rec2;

Rec = new Record (Now, temperatureC,
 lightPercent, motionDetected);

We then add this record to historical records, maintaining at most only a thousand
records, and sum it to the second-based sum register, as follows:

perSecond.Add (Rec);
if (perSecond.Count > 1000)
 perSecond.RemoveAt (0);

sumSeconds += Rec;
nrSeconds++;

Appendix B

[19]

If it is the start of a new minute, we calculate the minute average and store it in the
historical record, maintaining at most a thousand records. We also sum the result to
the minute-based sum register and initialize the second-based average calculation
for a new minute, as follows:

if (Now.Second == 0)
{
 Rec = sumSeconds / nrSeconds; // Rank 1
 perMinute.Add (Rec);

 if (perMinute.Count > 1000)
 {
 Rec2 = perMinute [0];
 perMinute.RemoveAt (0);
 }

 sumMinutes += Rec;
 nrMinutes++;

 sumSeconds = null;
 nrSeconds = 0;

The same is then done again at the start of a new hour. An hour average is calculated
and stored, the hour-based sum register is incremented accordingly, and a new period
is initialized:

 if (Now.Minute == 0)
 {
 Rec = sumMinutes / nrMinutes;
 perHour.Add (Rec);

 if (perHour.Count > 1000)
 {
 Rec2 = perHour [0];
 perHour.RemoveAt (0);
 }

 sumHours += Rec;
 nrHours++;

 sumMinutes = null;
 nrMinutes = 0;

Sampling and History

[20]

The same is done again at the start of a new day. A day average is calculated and
stored, the day-based sum register is incremented accordingly, and a new period
is initialized:

 if (Now.Hour == 0)
 {
 Rec = sumHours / nrHours;
 perDay.Add (Rec);

 if (perDay.Count > 1000)
 {
 Rec2 = perDay [0];
 perDay.RemoveAt (0);
 }

 sumDays += Rec;
 nrDays++;

 sumHours = null;
 nrHours = 0;

At the start of a new month, we content ourselves by only calculating the month
average and storing it, and initializing a new period. At this point, we don't concern
ourselves with removing old values:

 if (Now.Day == 1)
 {
 Rec = sumDays / nrDays;
 perMonth.Add (Rec);

 sumDays = null;
 nrDays = 0;
 }
 }
 }
}

Object Database
This appendix shows how to persist data in an object database by simply using class
definitions. It uses the Sensor project example to show how sampled and historical
data records are persisted and accessed through the use of an object database proxy.

Setting up an object database
The Raspberry Pi and the Raspbian operating system come with SQLite, a small,
flexible SQL database. The Clayster.Library.Data library, a powerful and flexible
object database, can use this database (and others) to automatically persist, load, and
search for objects directly from their class definitions. There is no need to do database
development if you are using this library to persist data. To use this object database,
we first need to add a reference to the library in our main application with the
following code:

using Clayster.Library.Data;

We then create an internal static ObjectDatabase variable that can be used throughout
the project, as shown in the next code:

internal static ObjectDatabase db;

The db variable will be our proxy to the object database.

During application initialization, preferably early in the initialization, we tell
the object database library what database to use. This can be done either in an
application config file or directly from the code, as in the following example:

DB.BackupConnectionString = "Data Source=sensor.db;Version=3;";
DB.BackupProviderName = "Clayster.Library.Data.Providers." +
 "SQLiteServer.SQLiteServerProvider";

C

Object Database

[22]

The provider's name is simply the full name of the object database provider that
will be used, in this case, the object database provider for SQLite. The term "backup"
in this case means that this value will be used if no value is found in the application
configuration file. We also need to provide a connection string whose format depends
on the provider chosen. Since we've chosen SQLite, all we need to do is provide a
filename for our database and the version of the library to use. We are then ready
to create our object database proxy, as follows:

db = DB.GetDatabaseProxy ("TheSensor");

The db variable is now our proxy. The parameter we send to the GetDatabaseProxy()
method is the name of the owner of the proxy. Owners can be used to separate data.
One owner cannot access data from another owner. The owner can be a simple name
or the full name of the class owning the data, and so on.

Database objects
The object database can store almost any object whose class is Common Language
Specification compliant (CLS-compliant). To facilitate the handling of database
objects, however, the Clayster.Library.Data library provides a base class that
can be used and that provides some basic functionality, such as the SaveNew(),
Delete(), Update(), and UpdateIfModifed()methods, and it provides OwnerId,
ObjectId, Created, Updated, and Modified attributes that can be used to manage
or reference objects.

Since it is historical data we want to persist, we will update our Record class by
making it a descendant of DBObject. We also add an attribute to the class, stating
that if supported by the object database provider, objects of this class should be
persisted in dedicated tables. SQLite does not support dedicated tables, but if you
want to change the provider to MySQL, for instance, the provider will support
dedicated tables. When creating classes that will be stored in an object database,
it is better to do it without preference to what database provider you use at the time
of developing the class. The Record class is updated using the following code:

[DBDedicatedTable]
public class Record : DBObject

Each class that is to be used in object databases is required to have a public default
constructor defined, otherwise the class cannot be loaded. A default constructor is
a constructor without parameters. We define one for our Record class as follows:

public Record()
 : base(MainClass.db)
{
}

Appendix C

[23]

Note here that we already limit the class to belong to a particular object database
proxy, and therefore a particular owner. If you are sharing the object database with
other applications, they cannot access these objects, and vice versa.

We update the existing constructor in a similar way, making sure the owner is set to
our object database proxy:

public Record (DateTime Timestamp, double TemperatureC,
 double LightPercent, bool Motion)
 : base (MainClass.db)

Loading persisted objects
We also add a static method to the Record class that allows us to load any objects
of this class given a particular parameter, Rank, and sort them in the ascending
timestamp order, as follows:

public static Record[] LoadRecords (Rank Rank)
{
 DBList<Record> List = MainClass.db.FindObjects<Record>
 ("Rank=%0%", (int)Rank);
 List.Sort ("Timestamp");
 return List.ToArray ();
}

We also need to define the Rank enumeration, remembering our definition of Rank
earlier. This can be done with the following code:

public enum Rank
{
 Second = 0,
 Minute = 1,
 Hour = 2,
 Day = 3,
 Month = 4
}

During application initialization, we also need to load any objects persisted earlier.
This needs to be done after object database initialization and before the HTTP server
is initialized and new samples are made. We will not persist second values in this
application, so we start by loading minute values as follows:

Log.Information ("Loading Minute Values.");
perMinute.AddRange (Record.LoadRecords (Rank.Minute));

Object Database

[24]

We do the same with hourly values:

Log.Information ("Loading Hour Values.");
perHour.AddRange (Record.LoadRecords (Rank.Hour));

We also load the daily values:

Log.Information ("Loading Day Values.");
perDay.AddRange (Record.LoadRecords (Rank.Day));

Finally, we do the same with monthly values:

Log.Information ("Loading Month Values.");
perMonth.AddRange (Record.LoadRecords (Rank.Month));

We also need to initialize our averaging calculations for the different time bases.
We begin by initializing our averaging calculations based on minute values. It is only
necessary to include records from the same hour as the current hour. Since records
are sorted in ascending time order, we simply traverse the list backwards while we
remain in the hour as the current one:

int Pos = perMinute.Count;
DateTime CurrentTime = DateTime.Now;
DateTime Timestamp;

while (Pos-- > 0)
{
 Record Rec = perMinute [Pos];
 Timestamp = Rec.Timestamp;
 if (Timestamp.Hour == CurrentTime.Hour && Timestamp.Date ==
 CurrentTime.Date)
 {
 sumMinutes += Rec;
 nrMinutes++;
 }
}
else
 break;

We do the same operation with hourly and daily values as well, without showing it
explicitly here.

Appendix C

[25]

Saving and deleting objects
The only thing missing now is to save new Record objects that we create and then
delete old objects we no longer want to keep. To save a new object, we simply call
the SaveNew() method on the object, as follows:

perMinute.Add (Rec);
Rec.SaveNew ();

Note that we repeat the previous code also for new hourly, daily, and monthly values.
And to delete an old object, we only call the Delete() method, as follows:

perMinute.RemoveAt (0);
Rec2.Delete ();

Note that a new object can only be saved using SaveNew() once. Afterwards, the
Update() or UpdateIfModified() methods have to be used, if updates are made
to the object.

We can now run our application again, let it run for a while, reset the Raspberry Pi,
rerun the application, and see that the previous values are still available.

Control
Performing basic control operations is a crucial task for any actuator. This appendix
shows you how control operations are implemented in the actuator project published
in the book. You start by creating a project as described in Appendix A, Console
Applications, and then follow it up with the instructions in this appendix.

Here, we will start by interfacing our hardware, configuring it, preparing the code
with the basic data structures, and then starting sampling values sensed by the
hardware. The circuit diagram for our prototype board, as described in Chapter 1,
Preparing our IoT Projects, is as follows:

D

Control

[28]

Interfacing the hardware
All hardware, except the alarm output, are simple digital outputs. These can be
controlled by the DigitalOutput class. The alarm output will control the speaker
through a square wave signal that will output on the GPIO#7 pin, using the
SoftwarePwm class, which outputs a pulse width modulated (PWM) square signal
on one or more digital outputs. The SoftwarePwm class will only be created when
the output is active. When not active, the pin will be left as a digital input.

The declarations look as follows:

private static DigitalOutput executionLed =
 new DigitalOutput (8, true);
private static SoftwarePwm alarmOutput = null;
private static Thread alarmThread = null;
private static DigitalOutput[] digitalOutputs =
 new DigitalOutput[]
{
 new DigitalOutput (18, false),
 new DigitalOutput (4, false),
 new DigitalOutput (17, false),
 new DigitalOutput (27, false),
 // pin 21 on Raspberry Pi R1
 new DigitalOutput (22, false),
 new DigitalOutput (25, false),
 new DigitalOutput (24, false),
 new DigitalOutput (23, false)
};

Controlling the alarm
The alarm will be controlled from a separate low-priority thread. We make sure
it is below normal priority so that it does not affect network communication and
other more important tasks. To turn the alarm on, we call the following method:

private static void AlarmOn ()
{
 lock (executionLed)
 {
 if (alarmThread == null)
 {
 alarmThread = new Thread (AlarmThread);
 alarmThread.Priority = ThreadPriority.BelowNormal;
 alarmThread.Name = "Alarm";

Appendix D

[29]

 alarmThread.Start ();
 }
 }
}

To turn it off, we call this method:

private static void AlarmOff ()
{
 lock (executionLed)
 {
 if (alarmThread != null)
 {
 alarmThread.Abort ();
 alarmThread = null;
 }
 }
}

The thread controlling the alarm will only create the PWM output on the GPIO pin 7
and then oscillate the output frequency to generate an alarm sound. The duty cycle
will be maintained at 0.5, meaning that 50 percent of the time the wave will be high,
and during the remaining 50 percent it will be low. The oscillation starts at 100 Hz,
is increased to 1,000 Hz in steps of 10 Hz per 2 milliseconds, and then lowered back
to 100 Hz, and so the process is repeated:

private static void AlarmThread ()
{
 alarmOutput = new SoftwarePwm (7, 100, 0.5);
 try
 {
 while (executionLed.Value)
 {
 for (int freq = 100; freq < 1000; freq += 10)
 {
 alarmOutput.Frequency = freq;
 System.Threading.Thread.Sleep (2);
 }
 for (int freq = 1000; freq > 100; freq -= 10)
 {
 alarmOutput.Frequency = freq;
 System.Threading.Thread.Sleep (2);
 }
 }
 }

Control

[30]

 catch (ThreadAbortException)
 {
 Thread.ResetAbort ();
 }
 catch (Exception ex)
 {
 Log.Exception (ex);
 }
 finally
 {
 alarmOutput.Dispose ();
 }
}

Since the alarm is turned off by calling the AlarmOff() method, which aborts
the execution of the thread, we make sure to catch the ThreadAbortException
exception to make a graceful shutdown of the thread.

Features adapted from the sensor project
The following topics will not be discussed explicitly for the actuator project since
they are implemented in a similar manner as for the sensor project:

•	 Main application structure
•	 Event logging
•	 Export of current output states as sensor data
•	 User credentials and authentication
•	 Connection to an object database
•	 Persistence of output states
•	 Deployment and execution after the system is restarted

E
Fundamentals of HTTP

As long as communication protocols are concerned, the success of the Hypertext
Transfer Protocol (HTTP) is only eclipsed by the pervasive success of the Internet
Protocol (IP), the fundamental communication protocol on the Internet. While IP was
developed almost two decades earlier, and is used by all protocols communicating
on the Internet, it lives a relatively anonymous life compared to HTTP among the
broader public.

IP is basically used to route packets between machines (or hosts) on the Internet,
knowing only the IP address of each machine. Traditionally, networks were local,
and each of the connected machines could only communicate with other machines
on that same network using a specific address depending on the type of network
used. Today, such networks are known as Local Area Networks (LAN), and the
most commonly used LAN networks are of type Ethernet, which uses Media Access
Control (MAC) addresses as local network addresses. Using the IP protocol and IP
addresses, it was possible to inter-connect different networks, and make machines
communicate with each other regardless of to what type of local area network
they were connected. And thus the Internet was born; communication could be
made between machines on different networks. The following diagram shows the
relationship between IP, LAN, and the Physical network, in what is called a protocol
stack diagram:

Internet Protocol (IP)

(IP addresses)

Local Area Network (LAN)

(MAC addresses)

Physical

(Cables, Radio, etc.)

Fundamentals of HTTP

[32]

Communicating over the Internet
IP is often mentioned together with the Transmission Control Protocol (TCP),
in the form of TCP/IP. TCP allows the creation of connections between machines.
Each connection endpoint is identified by the IP address of the machine and a
Port number. Port numbers allow thousands of connections to be made to or from
a single machine. There are both well-known standardized port numbers that are
used by well-known services as well as private port numbers that are short-lived
port numbers for private use. Packets sent over a TCP connection are furthermore
guaranteed to be delivered in the same order as they were sent, and without packet
loss, as long as the connection is alive. This makes it possible to create data streams,
where large streams of data can be sent between machines, in a simple manner and
without regard to details such as packet size, retransmissions, and so on.

TCP has an important cousin, the User Datagram Protocol (UDP). UDP also
transmits packets (called datagrams) between machines using IP and port numbers,
but without using connections and retries to assure datagram order and delivery.
This makes UDP much quicker than TCP, and is often preferred in favor of TCP in
cases where a certain degree of packet loss is not a problem, or handled explicitly
by the overlying service or application.

UDP is also often used together with the Internet Group Management Protocol
(IGMP) to allow the transmission of datagrams to multiple recipients at once,
without having to send the datagram to each recipient individually. This manner of
transmitting packets is called multicasting, as opposed to unicasting where packets
are sent from one machine to another. Using multicasting, it is sufficient to transmit
a stream once on a backbone, regardless of how many recipients are connected to
the backbone. If IGMP-enabled routers or switches are used when connecting to the
backbone, each local area network is not congested with all streams transmitted on
the backbone, only the streams actively subscribed to, on the local area network.
The following diagram shows the relationship between the protocols in a protocol
stack diagram:

Local Area Network (LAN)

(MAC addresses)

TCP

(port #)

UDP

(port #)
IGMP

Physical

(Cables, Radio, etc.)

Internet Protocol (IP)

(IP addresses)

Appendix E

[33]

From an application point of view, the operating system provides it with network
sockets, where the application can choose what protocol to use (typically TCP or
UDP), which machine to communicate with (IP address), and what port number
to use. To make life easier for end users, Domain Name Servers (DNS) are used
to provide hosts in the IP network with a name that applications can refer to. The
operating system normally provides the application with the possibility to use host
names instead of IP addresses in all application programming interfaces.

The creation of HTTP
Originally developed as a means to transport (scientific) text documents containing
simple formatting and references to other documents, the HTTP protocol is used in
a much broader context today. These documents were written in Hypertext Markup
Language (HTML) and the protocol was thus called HTTP. At that time, the mark-up
language contained simple formatting, but could also include references to images
seen inside the document and references to other documents (so called links).

Locating resources on the World
Wide Web
When HTTP was first invented, content on the Web was seen as files made
accessible by hosts. Each content item would be assigned a Uniform Resource
Locator (URN), so that links or references could be made to each content item.
Over time, web resources have evolved a great deal to include dynamically
generated content based on queries, and so on.

Uniform Resource Locators for use with HTTP(S) are made up of five parts: first,
a Uniform Resource Identifier scheme (URI scheme), HTTP or HTTPS. This URI
scheme identifies which versions of the protocol to use. (URIs and URLs are often
confused and intermixed. URIs are used for identification of resources, and do not
necessarily point to a location where the resource can be found. A URL is a location
where the resource can be accessed.) Following the URI scheme, comes the authority,
which in this case is either the domain name or IP address of the host publishing
the content item, optionally followed by the port number, if not the standard port
number for the protocol. The third part is the path of the content item, similar to a
local file path. Following the path are optional query parameters and an optional
fragment identifier.

Fundamentals of HTTP

[34]

The following figure provides an example of the different parts of an URL/URI:

HTTP uses TCP to communicate. Communication is either performed over an
unencrypted connection (in which the URI scheme is HTTP). In this case, the default
port number is 80. Or communication can be performed over an encrypted channel
(in which the URI scheme is HTTPS). In this case, the default port number is 443.
The following diagram shows HTTP and HTTPS in a protocol stack diagram:

Securing communication using
encryption
When using HTTPS, encryption is performed using Secure Sockets Layer (SSL),
which evolved into Transport Layer Security (TLS). These in turn use X.509
Certificates to handle identification and actual encryption. These certificates
provide three services.

Firstly, they use a Public Key Infrastructure (PKI) encryption algorithm that
provides two keys, one public and one private. The public key can be sent to
whoever wants to communicate with the owner of the certificate. With this
public key, the encryption algorithm used by the certificate can encrypt
information. But you need the private key to be able to decrypt it.

Appendix E

[35]

Secondly, each certificate contains information that can be used to identify the holder
(or subject) of the certificate. For web servers, this is typically the domain name of
the server. When you connect to a web server and it returns a certificate, you can use
that certificate to make sure you're talking to the correct web server and nothing else.

Thirdly, all certificates contain information of who its creator (or issuer, or certificate
authority) was. Following these links, from certificate to its issuer, and so on, until you
reach a root certificate, you get a chain of trust. When validating a certificate, this chain
of trust is processed. Each issuer has the possibility to inform the entity performing
certificate validation, that the corresponding certificate has been revoked. If the private
key of a certificate has been compromised, the certificate must be revoked, and a new
certificate created instead. By revoking a certificate with its issuer, you make sure
nobody can use the certificate illicitly as long as everybody makes sure to validate
all certificates used.

Normally, if HTTPS is used, only the server provides a certificate to identify
itself to the client. If the client chooses to use HTTP to secure the communication,
it should properly validate the server certificate to make sure the server is who it is,
and not a man-in-the-middle (MITM); somebody pretending to be the server, to
eavesdrop on the conversation. The client can also provide a client-side certificate
to authenticate itself to the server. But since certificates are complicated to create,
require maintenance, and often incur a cost and require a high level of knowledge of
the user operating the client, other methods are often used to authenticate the client.
Such methods are discussed later in this chapter. Certificates are most often used
only by high-value entities, such as servers.

You can create self-signed certificates, which are basically certificates without an
issuer. These can only be used if certificate validation is not performed or if the
certificate is installed as a root certificate by each party validating it. This should be
avoided, since this may create security issues elsewhere in the system, especially if
the certificate store used is shared between applications.

Requests and responses
HTTP is based on the request/response communication pattern, where a client makes
a request to a server and the server responds to the request by sending a response.
Each request starts by stating what method to use followed by the resource (path and
query) followed by the protocol version used (1.0, 1.1 or 2.0). Afterwards follows a
sequence of text headers followed by an optional data section. The headers contain
information about how optional data is encoded, what data is expected in the result,
user authentication information, cookies, and so on.

Fundamentals of HTTP

[36]

Depending on the method used in the request, the server is expected to act differently.
The most common methods used are: The GET method fetches data from the server.
The HEAD method tests whether data is available on the server by simulating a GET
method but only returning the headers. The POST method posts data to the server, for
example data in a form. The PUT method uploads content, for example uploads a file.
The DELETE method removes content, for example deletes a file. The OPTIONS method
can be used to check to see what methods are supported by the server or a resource.

The server responds to the request in a similar way; first by returning the protocol
version supported by the server, followed by a status code and a status message.
After the status code and message, follows a sequence of text headers, followed by
an optional data section. In this case, the headers include not only how to encode the
data, but for how long it is valid, and so on. Other headers control authentication,
cache control and cookies, and so on.

While HTTP 1.0 and 1.1 (which are the versions mainly supported at the time of
writing this book) only support one request/response operation at a time over a single
connection, and only from the client to the server, future versions of the protocol
(such as version 2.0 currently being developed) will support multiple simultaneous
operations over a single connection. It will also support bidirectional communication.

Status codes
There are several status codes defined for use in HTTP. Are they important to
remember? Some are very well known, such as the 404 Not Found, which has
turned into its own meme, while others a bit more obscure.

It is often sufficient to know that 1xx status codes are informational, 2xx status
codes imply success (of some kind), 3xx status codes imply a redirection (of some
kind), 4xx status codes imply a client-side error in the request on behalf of the
client, and 5xx status codes imply server errors that occur on the server. Some of
the more important codes are listed in the following table. However, since they are
necessary to correctly implement server-side web resources you should not feel
limited by this list; a complete list can be found at http://tools.ietf.org/html/
rfc2616#section-6.1.1.

Code Message Meaning
200 OK Operation successful.
301 Moved Permanently Resource moved permanently. Update

original URL.

http://tools.ietf.org/html/rfc2616#section-6.1.1
http://tools.ietf.org/html/rfc2616#section-6.1.1

Appendix E

[37]

Code Message Meaning
303 See Other Used in the PRG pattern (POST/Redirect/GET),

to avoid problems in browsers. There's more about
this later on.

307 Temporary Redirect Redirect to another URL. No need to update
original URL.

308 Permanent Redirect Redirect to another URL. Update original URL.
400 Bad Request The request made was badly formed.
401 Unauthorized User has not been authenticated and cannot reach

a resource that requires authentication.
403 Forbidden User has been authenticated but lacks privileges to

access resource.
404 Not Found Resource not found on server.
500 Internal Server

Error
An exception occurred on the server during the
processing of the request.

Encoding and transmitting data
Clients and servers tell each other how to interpret the data that optionally follows the
headers using a set of header key and value pairs. The Transfer-Encoding header can
be used to tell the recipient the size of the content is not known at the time of sending
the headers, and is therefore sent in chunks. Chunked communication allows for
dynamically generated content, where content is sent as it is being generated. Content-
Encoding can be used to send compressed data. Content-Type describes how the
actual content is encoded and decoded as a binary stream of bytes. If the number of
bytes used in transmitting the content is not implicitly defined by the context, such as
when using chunked transfer, the number of bytes of the encoded content must be sent
to the recipient using the Content-Length header.

Content-Type is closely related to MIME (short for Multipurpose Internet Mail
Extensions) types, originally developed for encoding content in mail. Today, it is
common to discuss Internet Media Types (IMT), instead of specifically discussing
MIME types (for mail) or content types (for the Web).

IMT, in its common form consists of a type and a subtype, in the form type/
subtype. Sometimes, the subtype is classified more, using a suffix, as follows: type/
subtype+suffix. Common types include text, image, audio, video, application, and so
on. One that is not self-explanatory is the application type, which does not necessarily
contain applications, but application data for applications. The following table shows
some common media types to illustrate the concept.

Fundamentals of HTTP

[38]

IANA maintains a full list of registered media types that can be found at
http://www.iana.org/assignments/media-types/media-types.xhtml.

Media type Description
application/atom+xml ATOM media feeds.
application/json JSON-formatted data.
application/rdf+xml RDF-formatted data.
application/soap+xml SOAP-formatted data (web service calls

and responses).
application/x-www-form-urlencoded Used to encode form data containing

only simple form parameters.
audio/mpeg MP3 or other MPEG audio.
image/jpeg JPEG-encoded image.
multipart/form-data Used to encode form data including files,

images, and so on, posted to a server.
text/plain Plaint text file.
text/html HTML file.
text/xml XML file.
video/mp4 Mpeg-4 encoded video file.

States and sessions in HTTP
HTTP is considered to be stateless by itself, which means that the server responding
to requests does not by itself remember anything from previous conversations with
the client. This also means that the request must contain all information the server
requires to process the request. Stateless protocols simplify scaling, in that you can
have multiple machines serving requests to the same domain. But often it is not
a good idea to either let the client maintain all information and resend it in each
request to the server. Consider, for instance, browsing through a large result set
from a database search operation. Should the server search the database again when
navigating in the result set? Or should the client contain the entire result set (which
might take time to download), even though they may be many more than the user
is interested in? To solve such issues, applications running on web servers (as HTTP
servers are also called) on top of the HTTP layer create the concept of a session. A
session is a server-side construct, where the application can store information. The
session is identified using an identifier (which can be application-specific), and sends
only the session identifier to the client in the form of a cookie. (Cookies can contain
any type of information, not only session identifiers.) To work correctly, clients need
to remember what cookies it has received, from where they received them, and for
how long they are valid.

http://www.iana.org/assignments/media-types/media-types.xhtml

Appendix E

[39]

When making new requests to a server, it provides any cookies it has received
pertaining to that particular server, the server forwards the cookies to the application,
and the application can continue processing the request using any state information
available in the implied session. Another important use of sessions and cookies is to
maintain user credentials. When a user logs into a service, information about the user's
credentials and privileges will be stored in the session. This allows the user to navigate
a site and the servers involved will be able to adapt the contents to the user, and their
privileges and personal settings.

User authentication
User authentication is important in secure applications and requires the user (human
or machine) behind the client connecting to a server to authenticate its credentials
to the server. In theory, client-side certificates over an encrypted connection could
be used to achieve this. This is also done when high-value entities communicate
between each other. But in web applications or IoT applications where masses of
end users without technical skills or low-value entities, such as small things, want
to communicate, certificates do not offer a practical solution.

HTTP has a built-in authentication mechanism called WWW-authentication to
differentiate itself from the more commonly known Simple Authentication and
Security Layer (SASL) used in other Internet protocols. Even though it is technically
different, it works in similar ways as SASL, by allowing multiple and pluggable
authentication mechanisms to be used, and by allowing the client to decide which
method to use, restricted only to the list of methods provided by the server.

Even though such a method works well in automation, where it is easy for clients
to authenticate themselves repetitively, it has several drawbacks when it comes to
human users.

The first drawback is that it is implemented on a protocol level, while sessions are
implemented on the application level since the protocol is stateless. This means that
the web server (or web client) are not aware that a session exists and that a user is
logged in or already authenticated by the application. This implies that unless special
provisions are taken to bypass this logic, the user needs to authenticate themselves
repetitively every time a new resource is fetched. As mentioned previously, this is
not necessarily a problem for machines. (It can even be an advantage sometimes.) To
avoid such repetitive user authentications, browsers attempt to store user credentials
so that the browser can respond by itself, without obviating the end user. But this is in
itself a security issue, since it bypasses the requirement that the real end user responds
to the login challenge, and not the browser. How does the server know the difference
between the true user opening up a browser with a stored password, and another
person using the same browser to look at the same page?

Fundamentals of HTTP

[40]

The second drawback of using WWW-authentication for human users is its lack of
customization of user interfaces. Again, this is not a problem for machines. But the
previously mentioned reasons are more than sufficient for web developers to want
to implement user authentication by themselves, in the application layer. It also ties
into session management in a more logical manner.

Web services and Web 2.0
As the World Wide Web was formed, and HTTP became popular, it became
obvious that it was difficult and costly to maintain and publish interesting content
on a static web. The model that users used clients to browse existing information
was not sufficient. There was a need to let users be able to interact more directly
with available applications running on web servers. There was also a need to
automate content publication on servers, which meant to be able to go beyond the
quite limited possibilities that existed at the time. This included content provided
by online web forms, content published by uploading files to the web server, or
out-of-band (non HTTP-based) methods. There was a need to communicate with
underlying web applications in a more efficient manner.

With the development of XML, the web community had an exceptional tool to encode
any type of data in a structural manner. XML schemas can be used to validate XML
to make sure it is formatted as it should be. Since XML has a well-known media type,
web clients and web servers know how to encode and decode it, and it could thus be
easily published by web servers, downloaded, and used to customize user experiences.
It can be automatically transformed using XSL Transformations (XSLT) into anything
based on text (such as HTML), and supports all kinds of features. But it can also be
uploaded (using POST) to web applications to send data to it, without updating actual
application files. And for this automation got a great tool to automatically call services
within an application, and thus web services and Service-Oriented Architecture (SOA)
was born. Little was it known at the time (which seems to be a tradition for the Web)
that this would dramatically change the World Wide Web, and how users interact with
applications. Today, the advent of web services can be seen as the birth of Web 2.0, and
is the basis for everything from applications only hosting end-user generated content
to most smart applications running on smartphones. Today, web applications are not
necessarily HTML and script-based applications running in browsers, but can be native
smartphone applications communicating with their web servers using web services.
This is also the basis for automation and Internet of Things, over HTTP.

Appendix E

[41]

SOAP or REST
There are several different types of web services available and two are well known
and commonly used today: the first one is called Simple Object Access Protocol
(SOAP) and the second is called Representational State Transfer (REST).

Once all XML-based technologies were developed, it was a relatively simple task
to start to standardize how web service calls should be made and how responses
should be returned. It resulted not only in schemas for how the actual calls and
responses are made (these are called SOAP), but also in schemas for how to
document these calls (these are called Web Service Definition Language (WSDL)).
With WSDL, it was not only possible to automate the actual calls themselves but also
to automate the actual coding or implementation of the calls. Most developer tools
today allow you to create a web reference, which basically downloads the WSDL
document from the web server and the tool automatically generates code that will
make the corresponding calls described in the document.

Automation never looked simpler. Or, at least, until the first update to the model
had to be done. One of the major problems with SOAP-based web services is that
it creates a hardly coupled link between the client and the server. If you update one
link, it is likely to break the other, unless special care is taken. If you do not have the
control of all participants using the web service, versioning and compatibility issues
become a major problem. This is especially true for web applications, which grow
and change dynamically from their inception until they mature.

The development of RESTful web services was a reaction to the rigor of SOAP,
which is shown in the acronym itself. Instead of attempting to solve all problems in
one protocol on top of HTTP, the idea was to go back to the roots of HTTP and allow
developers to use simple HTTP actions to create web service calls to the underlying
application. This could include simply encoding the call in the URL itself, or by posting
a simple (proprietary) XML document to a specific URL, encoding which method to
call. RESTful web services also allow methods to dynamically generate content in a
freer sense than what is allowed in SOAP. Furthermore, RESTful web services do not
have the same problems with versioning since it is easier to aggregate parameters and
features without breaking existing code. And last not least, it is often possible to call
RESTful web services from a browser, without the need for special tools. On the Web,
it has been shown that loosely coupled interfaces (such as RESTful interfaces are) win
over hardly coupled interfaces, even if the hardly coupled interfaces provide more
functionality, at least when it comes to web services.

Fundamentals of HTTP

[42]

The Semantic Web and Web 3.0
Before we finish the theoretical overview of the HTTP protocol and start looking
how to practically use it in applications for Internet of Things, it is worth mentioning
recent (and some not so recent) developments in the field.

As more and more communication was done over HTTP that was not related to
fetching hypertext documents over the Internet; it was understood that the basic
premise and original abstraction of the Web was needed. Instead of URLs pointing
to "pages", which is a human concept, URLs should point to data, or even better all
types of data should be able to be identified using URIs, and if possible, even URLs.
This change in abstraction is what is referred to as linked data.

But what is the best way to represent data? At that time, data could be encoded using
XML, but this didn't mean it could be "understood" or processed, or meaningful
relationships extracted between distributed sets of data. A different method was
needed. It was understood, that all knowledge humans can communicate in language,
can be expressed, albeit not in a Nobel peace prize winning manner, using triples
consisting of a subject (who does or relates something), a predicate (what is happening,
relating, or being done) and an object (on or to what is something being done or
related). All three are represented by URIs (or URLs), and objects can also be literals.
If an object is represented by an URI (or URL) it can in turn also be a subject that
relates to a large set of objects. The abstraction of all types of data into such Semantic
Triples has resulted in the coining of the web of linked data as the Semantic Web.

Data in the Semantic Web is represented either using Resource Description
Framework (RDF), readable by machines, or Terse RDF Triple Language
(TURTLE). As the data representation is standardized, it is possible to fetch and
process distributed data in a standardized manner using the SPARQL Protocol
and RDF Query Language (SPARQL for short, pronounced "sparkle"). SPARQL
is for distributed data on the web, what SQL is for distributed data in tables in a
relational database. In a single operation, you can select, join, and process data
from the Internet as a unit, without having to code programs that explicitly fetch
data from different locations, join them, and process them before returning the
data to the requester.

F
Sensor Data Query

Parameters
Sensor data is formed by the following components:

•	 Each device reports data from one or more nodes. Each node is identified by its
node identifier. In larger systems, nodes might be partitioned into data sources.
In this case, nodes are identified by a source identifier and a node identifier.
In even larger systems, nodes are identified using a triple of source identifier,
cache type, and node identifier. But for all our purposes, it is sufficient to
identify nodes by their node identifiers.

•	 Each node-reporting sensor data does so with timestamps. No data can be
reported without a valid timestamp.

•	 For each timestamp representing a point in time, one or more sensor data
fields are reported. These fields can be numerical, string-valued, Boolean-
valued, date- and time-valued, timespan-valued, and enumeration-valued.

•	 Each field has a field name. This field name is a string and should be human
readable, but at the same time, well defined so that it can be machine
understandable. It must not be localized.

•	 Each field has a value, depending on the type of field it is. Numerical fields
also have an optional unit and information about the number of decimals
used. In the context of sensor data, 1.210 m3 is not the same as 1.2 m3. The
first has more precision, the second less. You could not say whether the
physical magnitude measured by the second is larger or smaller than the
first value, for instance, even though it would probably be larger and the
numerical number smaller.

Sensor Data Query Parameters

[44]

•	 Each field has a readout type classification, which categorizes as a
momentary value, peak value, status value, identification value, computed
value, or historical value. If not explicitly specified, it is assumed to be a
momentary value.

•	 Each field has a field status or quality of service level. This specifies whether
the value is missing, automatically estimated, manually estimated, manually
read, automatically read, offset in time, occurred during a power failure,
has a warning condition, has an error condition, is signed, has been used
in billing, its bill has been confirmed, or is the last value in a series. If not
specified, it is simply assumed the field is an automatically read value.

•	 Each field has optional localization information, which can be used to
translate the field name into different languages.

Often, as in our case, a sensor or meter has a lot of data. It is definitely not desirable
to return all data to everybody requesting information. In our case, the sensor can
store up to 5,000 records of historical information. How can we motivate exporting
all this information to somebody only wanting to see momentary values? We can't.
The ReadoutRequest class in the Clayster.Library.IoT.SensorData namespace
helps us parse the sensor data request query in an interoperable fashion and lets the
application know what type of data is requested. The following information can be
sent to the web resource, and is parsed by the ReadoutRequest object:

•	 Any limitations of what field names to report. In our case, if the requester is
only interested in temperature, why send light and motion values as well?

•	 Any limitations of what nodes to report. In our case, this parameter is not
very important since we will only report values using one node, the sensor
itself. But in a multinode thing, this parameter tells the thing from which
things data should be exported.

•	 Any limitations on what readout types to report. In our case, is the requester
interested in momentary values or historical values, and of which time base?

•	 Any limitations on what time interval is desired. If only a specific time
interval is of interest, it can drastically reduce data size, if the thing has
a lot of historical data.

•	 Any information about external credentials used in distributed transactions.
External credentials in distributed transactions will be covered more in detail
in later chapters. Sometimes, when assessing who has the right to see what,
it is important to know who the final recipient of the data is.

Appendix F

[45]

The following table lists the query parameters understood by the ReadoutRequest
class. Query parameters in this case are case insensitive, meaning that it is possible
to mix uppercase and lowercase characters in the parameter names and the
ReadoutRequest object will still recognize them.

Parameter Description
nodeId This is the ID of a node to read.
cacheType This is the cache type used to identify the node.
sourceId This is the source ID used to identify the node.
from This only reports data from this point in time, and newer

data.
to This only reports data up to this point in time, and older data.
when This is used when readout is desired. It is not supported

when running as an HTTP server.
serviceToken This is the token that identifies the service making the

request.
deviceToken This is the token that identifies the device making the request.
userToken This is the token that identifies the user making the request.
all This is the Boolean value that indicates whether all readout

types are desired. If no readout types are specified, it is
assumed all are desired.

historical This is the Boolean value that indicates whether all historical
readout types are desired, regardless of time base.

momentary This is the Boolean value that indicates whether momentary
values are desired.

peak This is the Boolean value that indicates whether peak values
are desired.

status This is the Boolean value that indicates whether status values
are desired.

computed This is the Boolean value that indicates whether computed
values are desired.

identity This is the Boolean value that indicates whether identity
values are desired.

historicalSecond This is the Boolean value that indicates whether historical
second values are desired.

historicalMinute This is the Boolean value that indicates whether historical
minute values are desired.

historicalHour This is the Boolean value that indicates whether historical
hour values are desired.

Sensor Data Query Parameters

[46]

Parameter Description
historicalDay This is the Boolean value that indicates whether historical day

values are desired.
historicalWeek This is the Boolean value that indicates whether historical

week values are desired.
historicalMonth This is the Boolean value that indicates whether historical

month values are desired.
historicalQuarter This is the Boolean value that indicates whether historical

quarter values are desired.
historicalYear This is the Boolean value that indicates whether historical

year values are desired.
historicalOther This is the Boolean value that indicates whether historical

values of another time base are desired.

G
Security in HTTP

Publishing things on the Internet is risky. Anybody with access to the thing might
also try to use it with malicious intent. For this reason, it is important to protect all
public interfaces with some form of user authentication mechanism, to make sure
only approved users with correct privileges are given access to the device.

As discussed in the introduction to HTTP, there are several types of user
authentication mechanisms to choose from. High-value entities are best protected
using both server-side and client-side certificates over an encrypted connection
(HTTPS). But this book concerns itself with things not necessarily of high individual
value. But still, some form of protection is necessary.

We are left with two types of authentication; both will be explained in this chapter.
The first is the WWW-authentication mechanism provided by the HTTP protocol
itself. This mechanism is suitable for automation. The second is a login process
embedded into the web application itself, and using sessions to maintain user login
credentials. This appendix builds on the Sensor project, and shows how important
HTTP-based interfaces are protected using both WWW-authentication for machine-
to-machine (M2M) communication and a login/session based solution for human-
to-machine scenarios.

WWW-authentication
To add WWW-authentication to some of our web resources, we begin by adding the
following reference at the top of our main application file:

using Clayster.Library.Internet.HTTP.ServerSideAuthentication;

Security in HTTP

[48]

There are several different types of authentication mechanisms you can choose from.
Basic authentication is the simplest form of authentication. Here, the username and
password are sent in clear text to the server, which validates them. This method
is not recommendable, for obvious reasons. Another mechanism is the digest
authentication method. It is considered obsolete because it is based on MD5 hashes.
Since a weakness has been found in MD5 (without nonce values), the method is
no longer recommended. But it is a simple method, and the MD5 Digest method,
using nonce values, still provides some form of security so we will use it here for
illustrative purposes. To activate the digest authentication method, register it with
the HTTP server as follows:

HttpServer.RegisterAuthenticationMethod (
 new DigestAuthentication ("The Sensor Realm",
 GetDigestUserPasswordHash));

Registration should be done for the HTTPS server as well. If stronger protection is
desired, such methods can be implemented by simply creating a class that inherits
from the HttpServerAuthenticationMethod base class.

Now that we have registered at least one WWW-authentication method on the server,
we flag which web resources must be authenticated this way, before access is granted
to the resource. The following code enables WWW-authentication for our sensor data
export resources, by sending true in the third parameter during registration:

HttpServer.Register ("/xml", HttpGetXml, true);
HttpServer.Register ("/json", HttpGetJson, true);
HttpServer.Register ("/turtle", HttpGetTurtle, true);
HttpServer.Register ("/rdf", HttpGetRdf, true);

User credentials
Before we can calculate our Digest User Password Hash, needed for the Digest
authentication method, we need to know what user credentials are valid first.
We will build a very simple authentication model, with only one user. To be
able to change the password, we will need a class to persist the credentials.
We therefore create a new class to be used with with the object database:

public class LoginCredentials : DBObject
{
 private string userName = string.Empty;
 private string passwordHash = string.Empty;

 public LoginCredentials ()

Appendix G

[49]

 : base (MainClass.db)
 {
 }
}

We publish the UserName property as follows:

[DBShortString(DB.ShortStringClipLength)]
public string UserName
{
 get { return this.userName; }
 set
 {
 if (this.userName != value)
 {
 this.userName = value;
 this.Modified = true;
 }
 }
}

Here we note two things: firstly, we place an attribute on the string property,
saying it is a short string. This means it has a maximum length of 250 characters,
which means it can be stored in a certain way, as well as be indexed. Long strings
can be of any length, but they are stored differently. Secondly, we note the special
set method implementation, where we set the Modified attribute only if the value
changes. By implementing properties in this way, we can use UpdateIfModified()
instead of Update(), and save database access when objects have not changed.

The vigilant observer has already noted that the UserName class does not contain a
password property, but a password hash property. This is very important. Passwords
should never be stored anywhere, if you can avoid it. Most Internet authentication
mechanisms today support the use of intermediate hash values to be used instead of
passwords directly. This allows these hash values to be stored instead of storing the
original password. We will take advantage of this fact and only store the password
hash. We do this by publishing the property in the following manner:

[DBEncryptedShortString]
public string PasswordHash
{
 get { return this.passwordHash; }
 set
 {
 if (this.passwordHash != value)

Security in HTTP

[50]

 {
 this.passwordHash = value;
 this.Modified = true;
 }
 }
}

Note here that we also add an attribute, letting the object database know that the
property is not only a short string, but that it should also be encrypted before storing
the value. It can be said that this encryption is considered a weak form of encryption.
But at least the data is not stored in clear text.

Loading user credentials
At the end of the class, we add a static method that allows us to load any credential
object persisted. Since we only one such object is allowed, we choose to delete any
other objects found, created after the first object:

public static LoginCredentials LoadCredentials ()
{
 return MainClass.db.FindObjects<LoginCredentials> ().
 GetEarliestCreatedDeleteOthers ();
}

In the main class, we create a private static variable that will hold the user
credentials object:

private static LoginCredentials credentials;

During the initialization phase, we also load the object from the object database. If no
such object is found, we create a default object, with default user name Admin, and a
default password Password:

credentials = LoginCredentials.LoadCredentials ();
if (credentials == null)
{
 credentials = new LoginCredentials ();
 credentials.UserName = "Admin";
 credentials.PasswordHash = CalcHash ("Admin", "Password");
 credentials.SaveNew ();
}

Appendix G

[51]

Calculating the hash
We are now ready to calculate the hash value to use in our authentication scheme.
The digest authentication method stipulates that the password hash must be
calculated over the string formed by concatenating the user name with a colon
(":") the realm, another colon, and finally the password. We do this, as follows:

private static string CalcHash (string UserName, string Password)
{
 return Clayster.Library.Math.ExpressionNodes.Functions.
 Security.MD5.CalcHash (string.Format (
 "{0}:The Sensor Realm:{1}", UserName, Password));
}

We are now ready to create the GetDigestUserPasswordHash() interface method
that the digest method needs, in order to know whether an authenticating user is
valid or not:

private static void GetDigestUserPasswordHash (string UserName,
 out string PasswordHash, out object AuthorizationObject)
{
 lock (credentials)
 {
 if (UserName == credentials.UserName)
 {
 PasswordHash = credentials.PasswordHash;
 AuthorizationObject = UserName;
 }
 else
 {
 PasswordHash = null;
 AuthorizationObject = null;
 }
 }
}

Two comments can be made on the implementation in the preceding code:
firstly, the method looks up a username and returns null values if a user with
that name is not found. Otherwise, the corresponding password hash is also
returned. The digest method only authorizes a user if the password hash provided
by the user is equal to the password hash provided by the interface method,
GetDigestUserPasswordHash(). Secondly, the authorization object returned
will be available to any web methods made if authentication is successful. It is
implementation-specific. But it provides a mechanism whereby web methods can
retrieve information about the user currently authenticated. We will not use this
feature, so we only return the username. But it could be a pointer to the user data
record or similar information as well.

Security in HTTP

[52]

Running the application now and trying to access any of the data export resources
from a browser will prompt the user with a user login window. To get the data,
enter the username Admin and password Password to continue.

Web form login
We have now secured our machine-to-machine (M2M) interfaces. We now want
to secure our human-to-machine (H2M) interfaces. This is preferably done using
a web form login procedure and sessions, as described in the introduction to the
HTTP protocol.

The first thing we need to do is to update the generation of our root web page,
the contents in the try clause in our HttpGetRoot() method, as follows. Here,
we need to add the following highlighted code:

string SessionId = req.Header.GetCookie ("SessionId");

resp.ContentType = "text/html";
resp.Encoding = System.Text.Encoding.UTF8;
resp.ReturnCode = HttpStatusCode.Successful_OK;

if (CheckSession (SessionId))
{
 resp.Write ("<html><head><title>Sensor</title></head>");
 resp.Write ("<body><h1>Welcome to Sensor</h1>");
 resp.Write ("<p>Below, choose what you want to do.</p>");
 resp.Write ("");
 resp.Write ("Update login credentials.");
 resp.Write ("View Data");
 resp.Write ("");
 resp.Write ("View data as XML using REST");
 resp.Write ("");
 resp.Write ("View data as JSON using REST");
 resp.Write ("");
 resp.Write ("View data as TURTLE using REST");
 resp.Write ("");
 resp.Write ("View data as RDF using REST");
 resp.Write ("");
 resp.Write ("Data in a HTML page with graphs");
 resp.Write ("</body></html>");
} else
 OutputLoginForm (resp, string.Empty);

Appendix G

[53]

We first check whether there is a cookie for us, with the identity of SessionId.
This cookie is site-specific, so we don't need to worry that it will be confused with
cookies from other sites. We then call the CheckSession() method to make sure
the session is a valid session, and not a fabricated or old session identity. If the
session is valid, we continue by displaying the menu as we did before, with one
additional item; a link to a page with the /credentials path, where the user can
change their username and password, if desired. If the session is not valid, the
OutputLoginForm() method is called. This method generates a user login form,
together with an optional message to the user, as follows:

private static void OutputLoginForm (HttpServerResponse resp,
 string Message)
{
 resp.Write ("<html><head><title>Sensor</title></head>");
 resp.Write ("<body><form method='POST' action='/' ");
 resp.Write ("target='_self' autocomplete='true'>");
 resp.Write (Message);
 resp.Write ("<h1>Login</h1>");
 resp.Write ("<p><label for='UserName'>");
 resp.Write ("User Name:</label>
");
 resp.Write ("<input type='text' name='UserName'/></p>");
 resp.Write ("<p><label for='Password'>");
 resp.Write ("Password:</label>
");
 resp.Write ("<input type='password' name='Password'/></p>");
 resp.Write ("<p><input type='submit' value='Login'/></p>");
 resp.Write ("</form></body></html>");
}

This little form will look as follows when viewed in a browser:

Security in HTTP

[54]

Receiving a POST request
When the user enters their credentials and clicks the Login button, an HTTP POST
message is sent to the resource specified in the action attribute in the form tag.
In our case, the form is posted back to the / resource. So we need to add a POST
web handler when we register the resources, as follows:

HttpServer.Register ("/", HttpGetRoot, HttpPostRoot, false);

The basic structure of this web resource handler is the same as the previous ones,
and shouldn't need much explanation at this point:

private static void HttpPostRoot (HttpServerResponse resp,
 HttpServerRequest req)
{
 networkLed.High ();
 try
 {
 }
 finally
 {
 networkLed.Low ();
 }
}

The major difference between a GET and POST operation is that the client encodes
data with the POST operation. The HTTP server decodes this data using information
available in the request and available MIME decoders, and makes the decoded object
available in the Data property of the request object. We expect a FormParameters
object, containing our form parameters, and anything else should return a bad request
error message back to the client. We implement this as follows, all within the try
section in the preceding code snippet:

FormParameters Parameters = req.Data as FormParameters;
if (Parameters == null)
 throw new HttpException (
 HttpStatusCode.ClientError_BadRequest);

Now that we know a form has been posted, we extract the username and password
from the form, and see whether any such user is known by the system:

string UserName = Parameters ["UserName"];
string Password = Parameters ["Password"];
string Hash;
object AuthorizationObject;

Appendix G

[55]

GetDigestUserPasswordHash (UserName,
 out Hash, out AuthorizationObject);

If the user does not exist, the hash and authorization object will be null. If the user
exists, but the stored hash is different from the hash you get using the provided
username and password, you know that the password provided is wrong. Regardless
of whether it is the user name that is wrong or the password that is wrong, (so that the
client cannot deduce whether a username exists in the system or not), you return the
same error message back to the client:

if (AuthorizationObject == null ||
 Hash != CalcHash (UserName, Password))
{
 resp.ContentType = "text/html";
 resp.Encoding = System.Text.Encoding.UTF8;
 resp.ReturnCode = HttpStatusCode.Successful_OK;

 Log.Warning ("Invalid login attempt.", EventLevel.Minor,
 UserName, req.ClientAddress);
 OutputLoginForm (resp, "<p>The login was incorrect. " +
 "Either the user name or the password was " +
 "incorrect. Please try again.</p>");

Note that we always log an invalid login attempt. This makes it possible, at a later
stage, to build in monitors that monitor invalid login attempts in the network, to
detect malicious intrusion attempts.

Improving navigation experience
using PRG
If the login attempt was successful, we log that information too, but we also create
a session for the user and return it in a cookie back to the client. The client will send
this cookie to the server each time a request is made.

One thing is important to note in the following code: instead of returning a successful
operation (200) and a corresponding page, we return a See Other redirection status
code, and point the browser back to the same resource. This response code will trigger
the browser to reload the page, but using GET instead. Now that the user is logged
in, the session will be detected and the proper page displayed. This communication
pattern is called the PRG pattern, or POST/Redirect/GET pattern.

Security in HTTP

[56]

It is often used to avoid navigation problems in browsers, where users use the back
and forward buttons to go back and forth between pages. By using the See Other
response code, the server makes sure the POST operation is removed from the history
of the browser and is replaced by a GET to the same resource. This prevents the user
being bombarded with questions if they want the browser to re-send information back
to the server, something that would also confuse the server. Our implementation of all
that we just discussed is this:

} else
{
 Log.Information ("User logged in.", EventLevel.Minor,
 UserName, req.ClientAddress);

 string SessionId = CreateSessionId (UserName);
 resp.SetCookie ("SessionId", SessionId, "/");
 resp.ReturnCode = HttpStatusCode.Redirection_SeeOther;
 resp.AddHeader ("Location", "/");
 resp.SendResponse ();
}

Creating sessions
When we create sessions, we need a data structure that allows us to quickly find
a session, provided its identity, but also a structure that allows us to remove old
unused sessions. For this reason, we create two static dictionaries, one to look up
the last time a session was referenced and by whom, and another sorted dictionary
that can be used to look up the session ID given the last time it was referenced:

private static Dictionary<string,
 KeyValuePair<DateTime, string>> lastAccessBySessionId =
 new Dictionary<string, KeyValuePair<DateTime, string>> ();

private static SortedDictionary<DateTime,string>
 sessionIdByLastAccess =
 new SortedDictionary<DateTime, string> ();

We will also need a well-defined session timeout (which we set to two minutes)
and a random number generator:

private static readonly TimeSpan sessionTimeout =
 new TimeSpan (0, 2, 0);
private static Random gen = new Random ();

Appendix G

[57]

The creation of the session identity is easy. It has to be sufficiently complex so that
a client cannot guess it using a reasonable amount of effort. For our purposes, it is
sufficient to use a GUID. We create it as follows:

private static string CreateSessionId (string UserName)
{
 string SessionId = Guid.NewGuid ().ToString ();
 return SessionId;
}

Before returning the session identity to the caller, we must insert it into our data
structure defined previously. We do this in the following way. We note here that
it is theoretically possible that two sessions are created simultaneously. Since one
of the dictionaries uses a DateTime-valued key, we need to check for this eventuality.
If this happens, we add a small random number amount of ticks to the timestamp of
the session ID, until no such key is used. For all practical purposes, this is sufficient.
We also need to execute any code accessing the data structures within a critical
section to make sure only one thread at a time accesses the data structure. We do
this using the lock statement:

DateTime Now = DateTime.Now;

lock (lastAccessBySessionId)
{
 while (sessionIdByLastAccess.ContainsKey (Now))
 Now = Now.AddTicks (gen.Next (1, 10));

 sessionIdByLastAccess [Now] = SessionId;
 lastAccessBySessionId [SessionId] =
 new KeyValuePair<DateTime, string> (Now, UserName);
}

Validating a session
Each time a request is made to a web resource, referencing a session, the web resource
needs to validate the session. This means the application needs to make sure that the
session exists, it is not too old, but also update the last access timestamp of the session
to make sure it is kept alive as long as it is used.

To validate a session, we create the following method that returns true if a session
exists and is valid and false if it does not exist or is invalid. The method also returns
the name of the user last using the session, if found:

internal static bool CheckSession (string SessionId,
 out string UserName)

Security in HTTP

[58]

{
 KeyValuePair<DateTime, string> Pair;
 DateTime TP;
 DateTime Now;

 UserName = null;

The first obvious check is to see whether the session identity is found in the data
structure. Make sure that all access to the session data structures are made in a critical
section, to make sure data is not corrupted if multiple threads access it simultaneously:

 lock (lastAccessBySessionId)
 {
 if (!lastAccessBySessionId.TryGetValue (SessionId,
 out Pair))
 return false;

The next check is to make sure the session found in memory is not an old one that
should have been discarded:

 TP = Pair.Key;
 Now = DateTime.Now;

 if (Now - TP > sessionTimeout)
 {
 lastAccessBySessionId.Remove (SessionId);
 sessionIdByLastAccess.Remove (TP);
 return false;
 }

If the session is valid, we update the information about the session to make sure it is
remembered by the current timestamp. Care has to be taken to make sure it does not
collide with another session:

 sessionIdByLastAccess.Remove (TP);
 while (sessionIdByLastAccess.ContainsKey (Now))
 Now = Now.AddTicks (gen.Next (1, 10));

 sessionIdByLastAccess [Now] = SessionId;
 UserName = Pair.Value;
 lastAccessBySessionId [SessionId] =
 new KeyValuePair<DateTime, string> (Now,
 UserName);
 }

 return true;
}

Appendix G

[59]

If we are not interested in the user name of a given session, and only want to validate
the session itself, we add the following simple version of the same method:

private static bool CheckSession (string SessionId)
{
 string UserName;
 return CheckSession (SessionId, out UserName);
}

Now that we have a way to check the current session, we need to make sure it is
used in all our web services that are not protected by WWW-authentication. We add
the following code to each such web handler. If somebody tries to access one of these
resources and the user is not using a valid session, the user is negated access to the
resource and redirected to the root resource where the login-form will be displayed:

string SessionId = req.Header.GetCookie ("SessionId");
if (!CheckSession (SessionId))
 throw new HttpTemporaryRedirectException ("/");

Note that if a call does not have the cookie, the GetCookie() method returns the
empty string, which will always make the CheckSession() method fail. Note that
we do not add this code to the resources with WWW-authentication enabled, since
these must be possible to reach by machines, not logging in to the web application,
thus not creating sessions either.

Removing old sessions
To avoid memory leaks, the application must remove old sessions from memory.
We can use the fact that we have a sorted dictionary where session identities are
sorted by last access time to understand that the first entries will be the oldest
entries. We can also use the fact that it is very seldom an entry needs to be removed
to create a method that begins by looping through available records, and breaking
the loop when entries are found that are newer than the limit required for removal.
We cannot remove entries while looping since that would destroy the enumerator of
the dictionary, so we need to store them in a temporary structure and remove them
later. We begin with declaring the method:

private static void RemoveOldSessions ()
{
 Dictionary<string,KeyValuePair<DateTime, string>>
 ToRemove = null;
 DateTime OlderThan = DateTime.Now.Subtract (sessionTimeout);
 KeyValuePair<DateTime, string> Pair2;
 string UserName;

Security in HTTP

[60]

 lock (lastAccessBySessionId)
 {
 foreach (KeyValuePair<DateTime,string>Pair
 in sessionIdByLastAccess)
 {
 if (Pair.Key <= OlderThan)
 {
 if (ToRemove == null)
 ToRemove = new Dictionary<string,
 KeyValuePair<DateTime, string>>();

 if (lastAccessBySessionId.TryGetValue (
 Pair.Value, out Pair2))
 UserName = Pair2.Value;
 else
 UserName = string.Empty;

 ToRemove [Pair.Value] =
 new KeyValuePair<DateTime, string>
 (Pair.Key, UserName);
 } else
 break;
 }

Now that we have identified the sessions to remove, we can safely remove them
without destroying enumerators. We also make sure we log information about the
removal of a session, so that we can match each login with when the corresponding
session ends:

 if (ToRemove != null)
 {
 foreach (KeyValuePair<string,
 KeyValuePair<DateTime, string>>Pair in ToRemove)
 {
 lastAccessBySessionId.Remove (Pair.Key);
 sessionIdByLastAccess.Remove
 (Pair.Value.Key);

 Log.Information ("User session closed.",
 EventLevel.Minor, Pair.Value.Value);
 }
 }
 }
}

Appendix G

[61]

From where do we call the RemoveOldSessions() method? It has to be called
regularly. So the best place is at the end of the measurement timer, after turning
the measurement LED off:

} finally
{
 measurementLed.Low ();
 RemoveOldSessions ();
}

Overriding WWW-authentication
Running the application now will allow the user to log in and navigate through its
pages. But when navigating to any of the sensor data export pages, a second login
dialog will appear, requesting user credentials to get access. This is because we have
said these resources are protected by the WWW-authentication mechanism built into
the HTTP protocol itself. To get access to these resources if you're logged in to the web
page and browse the resources using from a session, you need to override the standard
WWW-authentication mechanism provided by the HTTP protocol. Luckily, this is
not difficult to do. What we need to do is simply create a new WWW-authentication
mechanism, a mechanism that doesn't send any challenge to the client, and accepts as
the authenticated user, if a valid session identity is provided in the request header's
cookies. We begin by defining the authentication mechanism as follows:

public class SessionAuthentication :
 HttpServerAuthenticationMethod
{
 public SessionAuthentication ()
 {
 }
}

To make sure a challenge is not sent to the client, we return an empty challenge as
follows:

public override string Challenge
{
 get
 {
 return string.Empty;
 }
}

Security in HTTP

[62]

Then we authenticate any user with a valid session identity provided as a cookie:

public override object Authorize (HttpHeader Header,
 HttpServer.Method Method, IHttpServerResource Resource,
 System.Net.EndPoint RemoteEndPoint, out string UserName,
 out UnauthorizedReason Reason)
{
 string SessionId = Header.GetCookie ("SessionId");

 if (MainClass.CheckSession (SessionId, out UserName))
 {
 Reason = UnauthorizedReason.NoError;
 return UserName;
 }
 else
 {
 Reason = UnauthorizedReason.OldCredentialsTryAgain;
 return null;
 }
}

We also need to register the new authentication method with the HTTP server
during application initialization. This is done in the same way as we registered
the digest authentication method, as follows:

HttpServer.RegisterAuthenticationMethod (
 new SessionAuthentication ());

Now when navigating to these resources from within a session, no additional
WWW-authentication is required. But anybody trying to access these resources
outside of a session will be prompted with a WWW-authentication login dialog box.

Editing user credentials
To complete the authentication feature, we must allow the user or owner to edit
the user credentials, so that they can be personalized. We've already put a link to a
/credentials resource on our first page. We now register this resource, as follows:

HttpServer.Register ("/credentials", HttpGetCredentials,
 HttpPostCredentials, false);

The HttpGetCredentials() method checks the session and returns the credential
forms, generated by OutputCredentialsForm(). We put the form in a separate
method, so that we can call it from the POST method handler as well:

Appendix G

[63]

private static void HttpGetCredentials (HttpServerResponse resp,
 HttpServerRequest req)
{
 networkLed.High ();
 try
 {
 string SessionId = req.Header.GetCookie ("SessionId");
 if (!CheckSession (SessionId))
 throw new HttpTemporaryRedirectException ("/");

 resp.ContentType = "text/html";
 resp.Encoding = System.Text.Encoding.UTF8;
 resp.ReturnCode = HttpStatusCode.Successful_OK;

 OutputCredentialsForm (resp, string.Empty);
 } finally
 {
 networkLed.Low ();
 }
}

The generation of the credentials form is also straightforward, repeating what we did
with earlier forms, except we now add a few more input fields:

private static void OutputCredentialsForm (
 HttpServerResponse resp, string Message)
{
 resp.Write ("<html><head><title>Sensor</title></head><body>");
 resp.Write ("<form method='POST' action='/credentials' ");
 resp.Write ("target='_self' autocomplete='true'>");
 resp.Write (Message);
 resp.Write ("<h1>Update Login Credentials</h1>");
 resp.Write ("<p><label for='UserName'>");
 resp.Write ("User Name:</label>
");
 resp.Write ("<input type='text' name='UserName'/></p>");
 resp.Write ("<p><label for='Password'>");
 resp.Write ("Password:</label>
");
 resp.Write ("<input type='password' name='Password'/></p>");
 resp.Write ("<p><label for='NewUserName'>");
 resp.Write ("New User Name:</label>
");
 resp.Write ("<input type='text' name='NewUserName'/></p>");
 resp.Write ("<p><label for='NewPassword1'>");
 resp.Write ("New Password:</label>
");
 resp.Write ("<input type='password' ");

Security in HTTP

[64]

 resp.Write ("name='NewPassword1'/></p>");
 resp.Write ("<p><label for='NewPassword2'>");
 resp.Write ("New Password again:</label>
");
 resp.Write ("<input type='password' ");
 resp.Write ("name='NewPassword2'/></p>");
 resp.Write ("<p><input type='submit' value='Update'/></p>");
 resp.Write ("</form></body></html>");
}

When viewing the form in a browser, it will look as follows:

Updating user credentials
When a user presses the Update button a POST message is sent to the same resource
/credentials path. This is defined in the form tag of the HTML page. We've already
registered the method handler. We create the method in the usual manner:

private static void HttpPostCredentials (HttpServerResponse resp,
 HttpServerRequest req)
{
 networkLed.High ();
 try
 {
 string SessionId = req.Header.GetCookie ("SessionId");
 if (!CheckSession (SessionId))
 throw new HttpTemporaryRedirectException ("/");

Appendix G

[65]

 } finally
 {
 networkLed.Low ();
 }
}

We expect the POST request is made together with a set of form parameters. If not
we consider it a bad request:

FormParameters Parameters = req.Data as FormParameters;
if (Parameters == null)
 throw new HttpException (
 HttpStatusCode.ClientError_BadRequest);

All the following validations will, if they fail, return messages in HTML to the user.
So, on the HTTP level, these errors are still considered OK. We therefore tell the
client the type of content being returned and that the operation went well:

resp.ContentType = "text/html";
resp.Encoding = System.Text.Encoding.UTF8;
resp.ReturnCode = HttpStatusCode.Successful_OK;

We extract the parameters from the form first. We don't have to check whether
the parameters exist or not. If they don't exist in the form, the empty string will
be returned for the corresponding parameter:

string UserName = Parameters ["UserName"];
string Password = Parameters ["Password"];
string NewUserName = Parameters ["NewUserName"];
string NewPassword1 = Parameters ["NewPassword1"];
string NewPassword2 = Parameters ["NewPassword2"];

We must look for the current user credentials again, to make sure the correct user
hasn't left their computer with the browser pointing to our device, and somebody
else passes by and changes the credentials, just for the fun of it:

string Hash;
object AuthorizationObject;

GetDigestUserPasswordHash (UserName, out Hash,
 out AuthorizationObject);

Security in HTTP

[66]

If the credentials provided are not correct, we return the form again, with
an appropriate error message to the user with the help of the following code.
We also log the invalid attempt to the event log, so that we later can detect
intrusion attempts in the network (if we want to):

if (AuthorizationObject == null ||
 Hash != CalcHash (UserName, Password))
{
 Log.Warning ("Invalid attempt to change login credentials.",
 EventLevel.Minor, UserName, req.ClientAddress);
 OutputCredentialsForm (resp, "<p>Login credentials " +
 "provided were not correct. Please try again.</p>");

A common mistake is to misspell a password. When changing the credentials,
this can be fatal, since you might not figure out how you misspelled the password.
For this reason, it is always important to provide two password fields and make sure
that they are equal. If not, an appropriate error message must be returned to the user:

} else if (NewPassword1 != NewPassword2)
{
 OutputCredentialsForm (resp,
 "<p>The new password was not entered correctly. " +
 "Please provide the same new password twice.</p>");

Some form of limit on username and password complexity is also a good idea.
In our example, we will be satisfied if the username and password are not empty:

} else if (string.IsNullOrEmpty (UserName) ||
 string.IsNullOrEmpty (NewPassword1))
{
 OutputCredentialsForm (resp, "<p>Please provide a " +
 "non-empty user name and password.</p>");

We must also make sure that somebody does not try to break the application
by sending a very long username. The length of the password is not important,
since we compute a hash of it anyway:

} else if (UserName.Length > DB.ShortStringClipLength)
{
 OutputCredentialsForm (resp, "<p>The new user name " +
 "was too long.</p>");

Appendix G

[67]

If all is well and the new credentials pass all tests, we log this fact and update the
credentials object. Note that our implementation of LoginCredentials is such
that the Modified property only becomes true if we actually set a new value to any
of the properties. This means the object will only be saved to the database, if actually
saved. After saving the object, we use the PRG pattern described earlier to redirect
the user to the main page instead of returning a success response. This prevents
problems in the browser if navigating back and forth in the navigator history.
This is demonstrated by the following code snippet:

} else
{
 Log.Information ("Login credentials changed.",
 EventLevel.Minor, UserName, req.ClientAddress);

 credentials.UserName = NewUserName;
 credentials.PasswordHash =
 CalcHash (NewUserName, NewPassword1);
 credentials.UpdateIfModified ();

 resp.ReturnCode = HttpStatusCode.Redirection_SeeOther;
 resp.AddHeader ("Location", "/");
 resp.SendResponse ();
}

H
Delayed Responses in HTTP

There are various ways to send events using HTTP — for instance, our sensor project
implements an HTTP server on a sensor. One way to send events is to delay the
response to a specific type of request, and only send the response when something
interesting happens or when the request times-out. This solution has the benefit that
it can be used to send events to clients not directly reachable from the sensor. We will
dedicate this appendix to showing how we can inform interested parties of events
that occur on the device when they occur, without the need for constant polling of
the device. This architecture will lend itself naturally to a subscription pattern, where
different parties can subscribe to different types of events in a natural fashion. It builds
on the sensor project presented in the book.

Pending events
Firstly, we must recognize that an HTTP server cannot send data to anybody without
a previous request. So, in our case, an entity interested in certain types of events
on the sensor must first make a request to the device. This request will act as a
subscription to the events concerned.

Normally, the HTTP server will respond immediately when processing the request.
But, for these event subscriptions, the server will not respond. Instead, it will put
the events in a list of pending event subscriptions. When an event occurs, the device
looks through the list of pending event subscriptions to see if the event matches
what is looked for. If so, a response is formed and returned to the client requesting
the information.

Delayed Responses in HTTP

[70]

The time between the request and the response can theoretically be very long.
But the TCP layer in the network will drop a connection if no communication
is done over it in a given amount of time. This time may vary across networks.
We need to consider this and introduce a timeout parameter in the request. If no
event occurs during this time, a response must be returned anyway, so as to not
lose the TCP connection on which the HTTP protocol works.

Now, anybody interested in events from the sensor has an efficient means of
achieving this and does not need to poll the device very quickly in order to have
updated information. It sends an event subscription request to the sensor, and
waits for a response. As soon as it receives a response, it sends a new request and
waits for its response. . . And so on. As soon as events that the interested party
is interested in occur, they will be sent. Events of no interest will not be sent.
In this way, communication is very efficient, and allows for entities to subscribe
to different types of information.

Defining a pending event
We need a data representation in our sensor of what a pending event is. We will
create four types of events:

•	 If the temperature value differs from a given set value by more
than a specified amount

•	 If the light value differs from a given set value by more than a
specified amount

•	 If the motion value differs from a given set value
•	 If nothing happens for a given number of seconds

We recognize that an entity may be interested in a combination of the above.
So we create the following class to represent what an entity is interested in:

public class PendingEvent
{
 private HttpServerResponse response;
 private ISensorDataExport exportModule;
 private string contentType;
 private double? temp = null;
 private double? tempDiff = null;
 private double? light = null;
 private double? lightDiff = null;
 private bool? motion = null;
 private DateTime timeout;

Appendix H

[71]

We need to remember the HTTP response object to send any responses to, as well
as a sensor data export module and its corresponding content type, representing
the format in which to send the data when the event occurs. We also add a timeout
parameter that represents the latest point in time at which a response has to be
returned to the subscriber, regardless of events or not.

We then use nullable data types (using the question mark) to represent what an
entity is interested in. If the corresponding value is null, the entity is not interested
in the corresponding field. If it is not null, it represents an interest. For temperature,
two parameters define the event. First temp, which corresponds to the temperature
the subscriber has, and then tempDiff, which corresponds to the maximum allowed
difference between the actual temperature in the sensor and the value available in
temp, before the sensor needs to send an event back to the subscriber. Light is handled
in the same way, using the two nullable member variables: light and lightDiff.
Since the motion detector is binary, it is sufficient to have only one nullable member
variable motion, representing the value known to the subscriber, if present. If the
actual value differs from this, an event has to be returned to the subscriber.

We create a constructor containing all the necessary information, as follows:

public PendingEvent (double? Temp, double? TempDiff,
 double? Light, double? LightDiff, bool? Motion, int Timeout,
 HttpServerResponse Response, string ContentType,
 ISensorDataExport ExportModule)
{
 this.temp = Temp;
 this.tempDiff = TempDiff;

 this.light = Light;
 this.lightDiff = LightDiff;

 this.motion = Motion;

 this.timeout = DateTime.Now.AddSeconds (Timeout);
 this.response = Response;
 this.contentType = ContentType;
 this.exportModule = ExportModule;
}

Delayed Responses in HTTP

[72]

We also need to publish some of the properties for later use, when the application
sends the event back to the subscriber:

public HttpServerResponse Response
{
 get{ return this.response; }
}

public string ContentType
{
 get{ return this.contentType; }
}

public ISensorDataExport ExportModule
{
 get{ return this.exportModule; }
}

Triggering an event
We also add a method that sends the current values to the object; the object returns
if the event is triggered or not:

public bool Trigger (double Temp, double Light, bool Motion)
{
 if (this.motion.HasValue && this.motion.Value ^ Motion)
 return true;

 if (this.temp.HasValue && this.tempDiff.HasValue &&
 Math.Abs (this.temp.Value-Temp) >= this.tempDiff.Value)
 return true;

 if (this.light.HasValue && this.lightDiff.HasValue &&
 Math.Abs (this.light.Value - Light) >=
 this.lightDiff.Value)
 return true;

 if (DateTime.Now >= this.timeout)
 return true;

 return false;
}

Appendix H

[73]

Registering event subscription resources
In the main application, we register four asynchronous web resources that entities
can use to subscribe to events, one web resource for each data format we support.
Remember that synchronous web resources are responded to within the context of a
working thread maintained by the HTTP server, and that asynchronous web resources
are responded to outside the context of the HTTP server. Since we will not respond
to subscription requests right away, we need to define them as asynchronous web
resources (the fourth parameter control if they are synchronous, the third if they
require www-authentication):

HttpServer.Register ("/event/xml",
 HttpGetEventXml, true, false);
HttpServer.Register ("/event/json",
 HttpGetEventJson, true, false);
HttpServer.Register ("/event/turtle",
 HttpGetEventTurtle, true, false);
HttpServer.Register ("/event/rdf",
 HttpGetEventRdf, true, false);

Publishing event subscription resources
We want to add links to our event subscription resources on our root page, so we can
test it. In our HttpGetRoot() method, after checking the session, we first construct a
set of event subscription parameters representing the current state of the sensor, and
the fact that we are interested in any change more than one unit from the current value:

StringBuilder sb = new StringBuilder ();
string EventParameters;

lock (synchObject)
{
 sb.Append ("?Temperature=");
 sb.Append (XmlUtilities.DoubleToString (temperatureC, 1));
 sb.Append ("&TemperatureDiff=1&Light=");
 sb.Append (XmlUtilities.DoubleToString (lightPercent, 1));
 sb.Append ("&LightDiff=10&Motion=");
 sb.Append (motionDetected ? "1" : "0");
 sb.Append ("&Timeout=25");
}

EventParameters = sb.ToString ();

Delayed Responses in HTTP

[74]

We then insert the new links to our page at the end:

resp.Write ("Wait for an Event");
resp.Write ("<a href='/event/xml");
resp.Write (EventParameters);
resp.Write ("'>Return XML data when event occurs.");
resp.Write ("<a href='/event/json");
resp.Write (EventParameters);
resp.Write ("'>Return JSON data when event occurs.");
resp.Write ("<a href='/event/turtle");
resp.Write (EventParameters);
resp.Write ("'>Return TURTLE data when event occurs.");
resp.Write ("<a href='/event/rdf");
resp.Write (EventParameters);
resp.Write ("'>Return RDF data when event occurs.");
resp.Write ("</body></html>");

Our root page will now look as follows:

Adding event subscription method
handlers
In the main application, we define a list of pending events that entities can subscribe
to, as follows:

private static List<PendingEvent> pendingEvents =
 new List<PendingEvent> ();

Appendix H

[75]

For each data format supported, we define the method handlers as follows.
Each method handler simply calls a generic method handler that registers the
corresponding event subscription in the list of pending events. Each method also
provides the generic method with the corresponding sensor data export module
required to export the data when the event occurs, as well as the corresponding
content type:

private static void HttpGetEventXml (HttpServerResponse resp,
 HttpServerRequest req)
{
 HttpGetEvent (resp, req, "text/xml",
 new SensorDataXmlExport (resp.TextWriter));
}

private static void HttpGetEventJson (HttpServerResponse resp,
 HttpServerRequest req)
{
 HttpGetEvent (resp, req, "application/json",
 new SensorDataJsonExport (resp.TextWriter));
}

private static void HttpGetEventTurtle (HttpServerResponse resp,
 HttpServerRequest req)
{
 HttpGetEvent (resp, req, "text/turtle",
 new SensorDataTurtleExport (resp.TextWriter, req));
}

private static void HttpGetEventRdf (HttpServerResponse resp,
 HttpServerRequest req)
{
 HttpGetEvent (resp, req, "application/rdf+xml",
 new SensorDataRdfExport (resp.TextWriter, req));
}

The structure of the generic method is similar to previous web methods
we've implemented:

private static void HttpGetEvent (HttpServerResponse resp,
 HttpServerRequest req, string ContentType,
 ISensorDataExport ExportModule)
{
 networkLed.High ();
 try
 {
 }
 finally
 {

Delayed Responses in HTTP

[76]

 networkLed.Low ();
 }
}

Parsing event query parameters
In the try-clause, we start parsing the query parameters. We begin with the required
Timeout parameter, stating the maximum number of seconds to wait for an event to
occur before returning a response:

int Timeout;
if (!req.Query.TryGetValue ("Timeout", out s) ||
 !int.TryParse (s, out Timeout) || Timeout <= 0)
 throw new HttpException (
 HttpStatusCode.ClientError_BadRequest);

We then parse the optional Temperature and TemperatureDiff query parameters.
Both are required to exist and be valid for us to accept the parameters in the
event subscription:

double? Temperature = null;
double? TemperatureDiff = null;
double d, d2;
string s;
if (req.Query.TryGetValue ("Temperature", out s) &&
 XmlUtilities.TryParseDouble (s, out d) &&
 req.Query.TryGetValue ("TemperatureDiff", out s) &&
 XmlUtilities.TryParseDouble (s, out d2) && d2 > 0)
{
 Temperature = d;
 TemperatureDiff = d2;
}

Similarly, we parse the optional Light and LightDiff query parameters, and if they
exist and are valid, we include them in the event subscription:

double? Light = null;
double? LightDiff = null;
if (req.Query.TryGetValue ("Light", out s) &&
 XmlUtilities.TryParseDouble (s, out d) &&
 req.Query.TryGetValue ("LightDiff", out s) &&
 XmlUtilities.TryParseDouble (s, out d2) && d2 > 0)
{
 Light = d;
 LightDiff = d2;
}

Appendix H

[77]

Parsing the optional Motion query parameter is simpler, since it is only one
Boolean parameter:

bool? Motion = null;
bool b;
if (req.Query.TryGetValue ("Motion", out s) &&
 XmlUtilities.TryParseBoolean (s, out b))
 Motion = b;

If the event subscription doesn't contain any valid event subscription information,
we return a bad request error immediately. It is unnecessary to add the pending
event, simply to wait for it to time out:

if (!(Temperature.HasValue || Light.HasValue || Motion.HasValue))
 throw new HttpException (
 HttpStatusCode.ClientError_BadRequest);

Finally, we add the parsed event subscription to our list of pending events:

lock (synchObject)
{
 pendingEvents.Add (new PendingEvent (Temperature,
 TemperatureDiff, Light, LightDiff, Motion, Timeout,
 resp, ContentType, ExportModule));
}

Checking for new events
We are now ready to check for new events. Our SampleSensorValues() method,
called regularly to sample new values, is the ideal place to check for new events,
since new measurements are fresh off the press. Still within the critical section, before
releasing the locked synchronization object, we loop through any pending events and
verify whether they are triggered by the new measured sensor values. If the event is
triggered, a corresponding response containing all the sensor's momentary values is
returned immediately to the subscriber and the event is removed from the list.

PendingEvent Event;
int i = 0;
int c = pendingEvents.Count;

while (i < c)
{
 Event = pendingEvents [i];

 if (Event.Trigger (temperatureC,

Delayed Responses in HTTP

[78]

 lightPercent, motionDetected))
 {
 pendingEvents.RemoveAt (i);
 c--;

 HttpGetSensorData (Event.Response,
 Event.ContentType, Event.ExportModule,
 new ReadoutRequest (ReadoutType.MomentaryValues));
 Event.Response.SendResponse ();

 } else
 i++;
}

Note here that it is not sufficient to only export the sensor data to the response object.
Since we are outside the context of the HTTP server, we need to say that the response
is complete and also that we do not intend to write anything else to the client. We do
this by calling the SendResponse() method on the Response object.

Testing event subscriptions
We are now ready to test our event subscription functionality. For instance, the
following URL will wait either until 25 seconds have passed, or the light density
changes from 81.3 percent by at least 5 units of a percent. The response would be
all momentary values of the sensor, in XML format at http://192.168.0.29/
event/xml?Light=81.3&LightDiff=5&Timeout=25.

The following URL would wait until 25 seconds have passed, or motion is detected
before this. The response is returned in JSON format at http://192.168.0.29/
event/xml?Motion=0&Timeout=25.

Several fields can be monitored at the same time. For instance, the following URL
will wait a maximum of 25 seconds for a change in temperature of 1 degree from 21.2
degrees, a change in light density of more than 5 units of a percent from 81.3 percent,
or for the motion to stop. Results are returned in XML at http://192.168.0.29/
event/xml?Temperature=21.2&TemperatureDiff=1&Light=81.3&LightDiff=5&M
otion=1&Timeout=25.

Why 25 seconds? Here we assume there is a risk that the TCP connection may be
dropped after 30 seconds of inactivity. Having a timeout of 25 seconds, gives us a
5-second margin before such an event.

I
Fundamentals of UPnP

As soon as HTTP gained popularity, the protocol started to be used in ways not
originally conceived of. Instead of transferring hypertext documents with embedded
content from servers to clients viewing them, the HTTP protocol became a popular
tool for machines calling services on other machines with what is known today
as web services. But HTTP as it was defined, even with technologies such as web
services, did not provide sufficient tools for solutions in ad hoc networks. (Ad hoc
networks are networks with no predefined topology or configuration, where devices
adapt themselves to the surrounding environment.) One attempt to solve this
problem was the initiative that is now known as Universal Plug and Play (UPnP for
short). It has become the standard protocol for consumer electronics; it adapts itself
to home or office networks with almost no manual configuration. This appendix will
introduce the UPnP protocol to the reader and show how it can be used by things
to automatically connect to equipment in its surroundings and how their existing
interfaces can be utilized in distributed applications. It will also discuss current
extensions of UPnP into the Internet of Things and the Cloud.

Extending HTTP
For many reasons, HTTP quickly became very popular. These reasons include ease of
use through standard software such as browsers, versatility in transporting content
through the use of internet media types, and a simple way to identify resources in
a distributed network using URLs and so on. This made HTTP very easy to extend
from its initial purpose. It is not strange that HTTP was used as a means to achieve
machine-to-machine communication in networks, regardless of its limitations;
if something works, you take that and build what is missing on top.

Fundamentals of UPnP

[80]

Finding resources in the network
There are various ways to make things interact in a network using HTTP, as we saw
in Chapter 2, The HTTP Protocol. But how do things find each other in the first place?
In ad hoc networks, participants do not know beforehand what resources exist. How
does the computer find a printer in the network? Or how does a security system
find available cameras in the network? Before any meaningful conversation can
take place, participants in the conversation need to find each other. Early solutions
relied on manual configuration, where a human operator configured each device
or machine in the network so that they could talk to each other. How can such
configuration be done automatically?

Finding content quickly became a big problem for the evolving web. Most solutions
were based on active searching where search engines "crawl" the web, first searching
for computers using HTTP and then trying to figure out what content each and every
one hosted. This was mainly done by following links in hypertext documents, but
it can also be done by testing for different common patterns. This solution works
relatively well for human-readable content based on pages published on the web,
where the authors have an interest in publishing and referencing content, and
therefore makes sure it is registered correctly. But, for new devices in a network,
this is a poor solution. First of all, there will be no initial page with an initial link
pointing to the newly installed device in the network. Secondly, most things do not
host human-readable content based on pages, as such, but publish services. To figure
out what services exist and how they work simply using crawling techniques is not
practically possible. Another method was required.

It is also possible to find resources using a centralized bulletin board or registry that
can act as an arbiter between things in the network. Such a solution can very easily
use the HTTP protocol as it is defined. But it would requires knowledge of which
bulletin board to use, and how to use it, and an agreement between all participants
in the network to use it. Even though the required information to make this work
cannot be provided by the HTTP protocol itself, it can be provided by underlying
network technologies such as DNS and DHCP. But it will still require a new resource
to be introduced into the network, a resource that could fail and that would need
maintenance and configuration. For ad hoc networks, another solution was needed;
a solution that did not include additional components apart from the devices that
will find each other and the components forming the network itself.

Appendix I

[81]

Using UDP instead of TCP
The problem with using HTTP for finding new resources was that HTTP is based
on TCP, and as such is done over connections between two endpoints that must
know each other. UDP, on the other hand, does not have this limitation. In UDP
it is possible to send a datagram to a multicast address. Anybody subscribing to
messages sent to a multicast address will receive them, regardless of who the sender
is. Such multicast address subscription functionality is provided by the Internet
Group Message Protocol (IGMP) and is built into the network router or switch
being used in the network. If the router or switch fails, the network fails anyway,
so using multicast addressing does not introduce an additional component into the
network that can fail separately.

By making a brief alteration to how HTTP is used, making it use UDP and multicast
addresses instead of TCP and unicast addresses, it became possible to broadcast HTTP
requests on the network to nobody in particular. Anybody understanding the request
can also choose to respond. To make communication more efficient, responses can be
sent to the unicast address used by the original sender of the request. Using multi-cast
HTTP requests in this way, communication between things in the network becomes
possible, even though they are not aware of each other from the beginning. Sometimes,
HTTPU is used to denote HTTP over UDP, and HTTPMU to denote HTTP over
multicast UDP, as is shown in the following stack diagram.

Internet Protocol (IP)

(unicast/multicast IP addresses)

HTPU/HTTPMU

(resources)

UDP

(port #)

Local Area Network (LAN)

(MAC addresses)

Physical

(Cables, Radio, etc.)

There are three important things to keep in mind when using HTTP over UDP. Firstly,
UDP does not support connections, and so the delivery of datagrams, and hence also
the order of datagrams, is not guaranteed as it would be over TCP. This makes sending
large requests or responses over UDP non-trivial. Since packets are sent without any
additional header information, content is restricted to the size of one datagram, which
is about 64 kilobytes of information.

Fundamentals of UPnP

[82]

Secondly, sending a request openly, in the wild, may cause multiple devices to
respond. The sender must handle the case where nobody or more than one responds to
a given request. Last but not least is the problem of who is allowed to receive multicast
information. If information is sent in the clear, anybody subscribing to datagrams
sent to that particular multicast address will be able to receive it. The sender can
limit the number of router hops a datagram can travel before reaching the receiver.
By restricting the number of router hops possible, it is possible to restrict how far a
datagram travels in the network. This number is called Time to live (TTL).

The Simple Service Discovery Protocol
Using the fact that devices can communicate with each other without knowing the
IP addresses of each one, it was possible to create a new protocol based on HTTPU
and HTTPMU that formalizes methods for finding devices in the network. The
resulting protocol was named Simple Service Discovery Protocol (SSDP). SSDP
introduces two new HTTP methods: NOTIFY and M-SEARCH. The NOTIFY method
is used by a device or service to notify the network about its existence. In this way,
a device can learn about the existence of another without actively searching for it.
The M-SEARCH method, on the other hand, is used when a device actively searches
for other devices or services in the network.

SSDP specifies what multicast addresses to use, to facilitate interoperability. In IPv4
networks, the address used is 239.255.255.250. In IPv6 networks, four different
addresses are used: [FF02::C], [FF05::C], [FF08::C], and [FF0E::C] for link-local, site-
local, organization-local, and global multicasting capabilities, respectively, available
in IPv6. The port number is also restricted to 1900 for most requests, even though
this might vary in different applications. For instance, multicast event notification
in UPnP, which is based on SSDP, is done on port 7900.

Handling events using GENA
As we discussed in Chapter 2, The HTTP Protocol, one of the problems with HTTP
is how to handle asynchronous events. The method used in the previous chapter
is to use delayed responses, where the server delays the response to a request until
something happens. This method can be used even if the client resides behind a
firewall. Another method that can be used in local area networks allows both parties
to be clients of each other, allowing requests to be made in both directions. In this
method, the original client subscribes to events of a certain type from the original
server. This subscription is done in the form of a request/response pair, where the
client registers its interest in events of the particular type.

Appendix I

[83]

At the same time, the client also provides a URL that can be used to send events to.
When an event is triggered, the server becomes the client (in an HTTP sense) and
sends the event to the original client (now a server). This process continues until
the original client unsubscribes from event notification, or the subscription expires
without having been renewed within a given time frame.

GENA extends normal HTTP (or HTTPU and HTTPMU, if UDP is desired) with
two methods for subscription and un-subscription: the SUBSCRIBE and UNSUBSCRIBE
methods, respectively. Subscriptions are maintained on each device and events are
propagated to each subscriber using the provided call-back URLs.

The drawbacks of using this type of event handling are that all participants must
reside in the same network, unprotected by firewalls. Another drawback is that all
participants must implement both HTTP clients and HTTP server stacks. But, if SSDP
is to be used to communicate with unknown devices, all parties need to have both
client and server stacks implemented anyway, so adding GENA to the stack does not
add a lot of code. And if the purpose of the solution is to provide event capabilities
between devices in local area networks, such as in the home or in the office, GENA
provides a suitable solution.

Universal Plug & Play (UPnP)

(Device & Service Definitions)

UPnP Forum

SOAP

(WSDL/SCPD)

GENA

(SID)
SSDP Multicast events

HTTP

(URLs)

HTTPU/HTTPMU

(resources)

TCP

(port #)

UDP

(port #)

Internet Protocol (IP)

(unicast/multicast IP addresses)

Local Area Network (LAN)

(MAC addresses)

Physical

(Cables, Radio, etc.)

Fundamentals of UPnP

[84]

Tying it all together—UPnP
Using the previously mentioned protocols HTTP, HTTPU, HTTPMU, SSDP, and
GENA, it is possible to create an architecture that enables devices to discover each
other and what services they publish. Devices can also subscribe to events from each
other, and asynchronous sending of events is also possible. All that needs to be done
is to describe the details of how this is performed. This is exactly what UPnP does.

UPnP defines an object hierarchy for UPnP-compliant devices. Each device consists of a
root device. Each root device can publish zero or more services and embedded devices.
Each embedded device can iteratively by itself publish more services and embedded
devices. Each service in turn publishes a set of actions and a set of state variables.
Actions are methods that can be called on the service using SOAP web service method
calls. Actions take a set of arguments. Each argument has a name, a direction (if it is
input or output) and a state variable reference. From this reference, the data type of the
argument is deduced. State variables define the current state of a service, and each one
has a name, data type, and variable value. Furthermore, state variables can be normal,
evented, and/or multicast-evented. When evented state variables change value, these
values are propagated to the network through event messages. Normally evented state
variables are sent only to subscribers using normal HTTP. Multicast-evented state
variables are propagated through multicast HTTPMU NOTIFY messages on the SSDP
multicast addresses being used, but using port number 7900 instead of 1900. There's no
need to subscribe to such event variables in order to be kept updated on their values.

Simplifying the service architecture
The main invention of UPnP was the creation of a simplified device and service
architecture that is easy to implement, simple to discover and automate, and at the
same time versatile enough to avoid limiting device manufacturers in what they
want to accomplish.

Each UPnP-compatible device in the network is described in a Device Description
Document (DDD), an XML document hosted by the device itself. When the device
makes its presence known to the network, it always includes a reference to the
location of this document. Interested parties then download the document, and any
referenced material, to learn what type of device this is, and how to interact with it.
The document includes some basic information understandable by machines, such
as UPnP version information, Device Type, Universal Device Name (UDN), and a
Universal Product Code (UPC). It also includes information for human interfaces,
such as a friendly name, manufacturer information, model information, and some
graphical icons and links to a presentation web page for the device. Finally, the DDD
includes references to any embedded devices, if any, and references to any services
published by the device.

Appendix I

[85]

Each service published by a device is described in a stand-alone Service Control
Protocol Description (SCPD) document, each one an XML document also hosted
by the device. Even though SOAP is used to call methods on each service, UPnP-
compliant services are drastically reduced in functionality compared to normal
SOAP web services. SOAP and WSDL simply give devices too many options,
making interoperability a problem. For this reason, a simpler service architecture
is used. Instead of using WSDL to describe the service methods, the SCPD XML
document does this directly.

DDD Location

Version

Device Type

UDN

UPC

Friendly Name

Manufacturer

Model

Icons

Embedded devices

Version

Service Type

Service ID

SCPD

Control URL

Subscription URL

Variables

Name Arguments State Variables

Device

Service

Action

Apart from a machine-readable UPnP version number, a Service Type, Service ID,
Control URL, and an Event Subscription URL, the SCPD document basically consists
of two lists: a list of actions (or web service methods) published by the service and a list
of state variables managed by the service. State variables have a name, a data type, and
a value. The SCPD document lists these attributes, and also whether the corresponding
state variables are evented and/or multicast-evented. The number of possible data
types is also reduced compared to SOAP, so only simple data types are included. The
SCPD document completely avoids the complexity of describing web service method
calls, as has to be done in normal WSDL, by simply saying that web service methods
only have named arguments that correspond to the above-mentioned state variables.
This means that data types in web method calls are limited to the data types available
for state variables. Each argument also has a direction attribute, meaning each attribute
can be either an input or an output argument of the method call. One output argument
can also be assigned the return value of the action. The previous illustration displays a
simplified overview of the UPnP device architecture.

Fundamentals of UPnP

[86]

UPnP Forum
To achieve any type of interoperability in networks, a standardization body is
required. For UPnP, this standardization body is called UPnP Forum, and can be
found on http://upnp.org/. UPnP Forum is an open organization and anybody
can become a basic member. Apart from publishing documents about UPnP, the
organization also defines a set of standardized device description documents and
service control protocol description documents for various types of devices and
their corresponding services. Some of these interfaces have become very popular,
especially for use with consumer electronics and home entertainment. UPnP has
also become a cornerstone of Digital Living Network Alliance, (DLNA). For more
information you can visit http://www.dlna.org/.

The future of UPnP
UPnP is now undergoing important updates and additions to the original set
of specifications. These updates go under the name of UPnP+ and include three
important additions: Interfaces for Internet of Things (or Sensor Management),
interfaces for multi-screen applications, and the UPnP Cloud Annex, where UPnP
will take the leap from local area networks into the cloud, using XMPP technology.

http://upnp.org/
http://www.dlna.org/

J
Data Types in UPnP

One of the major restrictions UPnP has made to service architecture is related to
supported data types. UPnP only supports simple data types: integers, floating point
numbers, strings, characters, Boolean values, date and time values, uniform resource
identifiers (URIs), universally unique identifiers (UUIDs), and two representations
of binary data. This doesn't mean manufacturers cannot add custom data types to
their specification files, but it means that, in order to be able to use common tools
while expecting the device to be interoperable, you are limited to these data types.
For developers, it is important that they know about these data types. The following
table lists data types supported by Universal Plug and Play (UPnP):

Data type Description .NET equivalent
ui1 This is an unsigned 1-byte

integer
System.Byte

ui2 This is an unsigned 2-byte
integer

System.UInt16

ui4 This is an unsigned 4-byte
integer

System.UInt32

i1 This is an signed 1-byte integer System.SByte

i2 This is an signed 2-byte integer System.Int16

i4 This is an signed 4-byte integer System.Int32

int This is an signed integer with
an unspecified size

System.Numerics.BigInteger

r4 This is a 4-byte floating-point
number

System.Float

r8 This is an 8-byte floating-point
number

System.Double

number This is the same as r8 System.Double

Data Types in UPnP

[88]

Data type Description .NET equivalent
fixed.14.4 This is the same as r8 but has

no more than 14 digits to the
left of the decimal point and no
more than 4 to the right

System.Double

float This is a floating-point number
with an unspecified size

N/A

char This is a Unicode character System.Char

string This is the Unicode string System.String

date This is the date in a subset of
ISO 8601 format without time
data

System.DateTime

dateTime This is the date in ISO 8601
format with an optional time
but no time zone

System.DateTime

dateTime.tz This is the date in ISO 8601
format with an optional time
and an optional time zone

System.DateTimeOffset

time This is the time in a subset of
ISO 8601 format with no date
and no time zone

N/A

time.tz This is the time in a subset
of ISO 8601 format with an
optional time zone but no date

N/A

boolean This is a Boolean value
("0" or "1")

System.Boolean

bin.base64 This is a base64-encoded
binary array of data

N/A

bin.hex This is a hexadecimal
representation of a binary
array of data

N/A

uri This is a Universal Resource
Identifier

System.Uri

uuid This is a Universal Unique ID System.Guid

K
Camera Web Interface

To verify that the camera works, we create a simple web interface publishing a
simple HTML page displaying an image, showing a picture taken by the camera.
We register these two resources on our HTTP server as follows:

httpServer.Register ("/html", HttpGetHtmlProtected, false);
httpServer.Register ("/camera", HttpGetImgProtected, true);

We will later publish the same resources in our UPnP interface. The UPnP interface
differs from the normal web interface in that the UPnP works in the unprotected
local area network, while the web interface is supposed to be accessible from the
Internet. This means we need a protected and an unprotected version of the same
resource, which can be obtained by using the following code:

private static void HttpGetHtmlProtected (HttpServerResponse resp,
 HttpServerRequest req)
{
 HttpGetHtml (resp, req, true);
}

private static void HttpGetHtmlUnprotected (
 HttpServerResponse resp, HttpServerRequest req)
{
 HttpGetHtml (resp, req, false);
}

With the following code, we protect the web resource in the customary fashion, but
only if required:

private static void HttpGetHtml (HttpServerResponse resp,
 HttpServerRequest req, bool Protected)
{
 networkLed.High ();

Camera Web Interface

[90]

 try
 {
 if (Protected)
 {
 string SessionId = req.Header.GetCookie ("SessionId");
 if (!CheckSession (SessionId))
 throw new HttpTemporaryRedirectException ("/");
 }

Adding query parameters
We will make the web page customizable using query parameters in the URL.
In this way, we can create links containing a certain configuration of the camera.
To use query parameters, the following code is used:

LinkSpriteJpegColorCamera.ImageSize Resolution;
string Encoding;
byte Compression;

GetImageProperties (req, out Encoding, out Compression,
 out Resolution);

We do the parsing of the query parameters from a separate method, as shown in
the following code, to be able to reuse it from other resources:

private static void GetImageProperties (HttpServerRequest req,
 out string Encoding, out byte Compression,
 out LinkSpriteJpegColorCamera.ImageSize Resolution)
{

We begin by extracting what image encoding to use. If not present, we use the default
image encoding with the help of the following code:

if (req.Query.TryGetValue ("Encoding", out Encoding))
{
 if (Encoding != "image/jpeg" && Encoding != "image/png" &&
 Encoding != "image/bmp")
 throw new HttpException (
 HttpStatusCode.ClientError_BadRequest);
} else
 Encoding = defaultSettings.ImageEncoding;

Appendix K

[91]

Similarly, we extract the image compression level to use. If not provided, the next
code snippet sets the image compression as default:

string s;
if (req.Query.TryGetValue ("Compression", out s))
{
 if (!byte.TryParse (s, out Compression))
 throw new HttpException
 (HttpStatusCode.ClientError_BadRequest);
}
else
 Compression = defaultSettings.CompressionLevel;

Finally, the desired image resolution is extracted. If not found, the default image
resolution is used, as follows:

 if (req.Query.TryGetValue ("Resolution", out s))
 {
 if (!Enum.TryParse<LinkSpriteJpegColorCamera.ImageSize>
 ("_" + s, out Resolution))
 throw new HttpException (
 HttpStatusCode.ClientError_BadRequest);
 } else
 Resolution = defaultSettings.Resolution;
}

Generating the web presentation
The generation of the web page is simple and straightforward. We return an HTML
page that contains an IMG tag referencing our /camera resource. We will forward
any query parameters provided in the call to the camera resource, but we will always
display the image in 640 x 480. This is shown in the following code:

 resp.ContentType = "text/html";
 resp.Encoding = System.Text.Encoding.UTF8;
 resp.Expires = DateTime.Now;
 resp.ReturnCode = HttpStatusCode.Successful_OK;
 resp.Write ("<html><head/><body><h1>Camera, ");
 resp.Write (DateTime.Now.ToString ());
 resp.Write ("</h1><img src='camera?Encoding=");
 resp.Write (Encoding);
 resp.Write ("&Compression=");
 resp.Write (Compression.ToString ());
 resp.Write ("&Resolution=");

Camera Web Interface

[92]

 resp.Write (Resolution.ToString ().Substring (1));
 resp.Write ("' width='640' height='480'/>");
 resp.Write ("</body><html>");
 }
 finally
 {
 networkLed.Low ();
 }
}

Creating the image resource
As for the web resource method, the image resource method will be used both in our
web interface, where it needs protection, and in the local network, where it doesn't.
For this, we create the following two methods:

private static void HttpGetImgProtected (HttpServerResponse resp,
 HttpServerRequest req)
{
 HttpGetImg (resp, req, true);
}

private static void HttpGetImgUnprotected (
 HttpServerResponse resp, HttpServerRequest req)
{
 HttpGetImg (resp, req, false);
}

Protection is then done using the following code, but only if required:

private static void HttpGetImg (HttpServerResponse resp,
 HttpServerRequest req, bool Protected)
{
 networkLed.High ();
 try
 {
 if (Protected)
 {
 string SessionId =
 req.Header.GetCookie ("SessionId");
 if (!CheckSession (SessionId))
 throw new HttpException (HttpStatusCode.
 ClientError_Forbidden);
 }

Appendix K

[93]

We allow for customization of the resource by permitting input parameters in
the query. We define two additional variables that will be used later on when
transferring the image from the camera to the application:

LinkSpriteJpegColorCamera.ImageSize Resolution;
string Encoding;
byte Compression;
ushort Size;
byte[] Data;

GetImageProperties (req, out Encoding, out Compression,
 out Resolution);

Configuring the camera
Access to the camera has to be locked so that only one thread at a time accesses
it. This is important to remember since web requests can come in from multiple
requests. The lock method is used to lock the access to the camera:

lock (cameraLed)
{
 try
 {
 cameraLed.High ();

If the desired resolution is not the resolution currently configured, we need to
reconfigure the resolution of the camera and reset it. If the reset procedure fails,
which can happen, we will assume the camera is back to its default baud rate and
we need to reset it to 115,200 baud. There is room here for more advanced error
management. The resetting of the baud rate is done with the following code:

if (Resolution != currentResolution)
{
 try
 {
 camera.SetImageSize (Resolution);
 currentResolution = Resolution;
 camera.Reset ();
 } catch (Exception)
 {
 camera.Dispose ();
 camera = new LinkSpriteJpegColorCamera (
 LinkSpriteJpegColorCamera.BaudRate.Baud__38400);
 camera.SetBaudRate (

Camera Web Interface

[94]

 LinkSpriteJpegColorCamera.BaudRate.Baud_115200);
 camera.Dispose ();
 camera = new LinkSpriteJpegColorCamera (
 LinkSpriteJpegColorCamera.BaudRate.Baud_115200);
 }
}

If the desired compression ratio differs from the current ratio, we reconfigure the
camera accordingly, as follows:

if (Compression != currentCompressionRatio)
{
 camera.SetCompressionRatio (Compression);
 currentCompressionRatio = Compression;
}

Taking the picture
With the following code, we ask the camera to take a picture and then download it.
Notice that the camera always returns a JPEG image:

camera.TakePicture ();
Size = camera.GetJpegFileSize ();
Data = camera.ReadJpegData (Size);

For now, we are done with the camera, so we release it for this time as follows:

 errorLed.Low ();
 }
 catch (Exception ex)
 {
 errorLed.High ();
 Log.Exception (ex);
 throw new HttpException (
 HttpStatusCode.ServerError_ServiceUnavailable);
 }
 finally
 {
 cameraLed.Low ();
 camera.StopTakingPictures ();
 }
}

Appendix K

[95]

Encoding and returning the photo
We now have a binary-encoded image. But the image is JPEG-encoded. If another
encoding is desired, we first need to re-encode the image as follows:

if (Encoding != "imgage/jpeg")
{
 MemoryStream ms = new MemoryStream (Data);
 Bitmap Bmp = new Bitmap (ms);
 Data = MimeUtilities.EncodeSpecificType (Bmp, Encoding);
}

Returning the image is then simple:

 resp.ContentType = Encoding;
 resp.Expires = DateTime.Now;
 resp.ReturnCode = HttpStatusCode.Successful_OK;
 resp.WriteBinary (Data);
 }
 finally
 {
 networkLed.Low ();
 }
}

L
Text Encoding on the Web

The available software for Internet of Things might not be as fault-tolerant as
normal HTTP-based web applications. To avoid some complexities for the receiver,
it is important to avoid returning data that can cause problems for the receiver.
One such complication is the byte order mark (BOM) of text-based content.

Normally, encoding of text stored in files is done by prefixing the text content with
a byte sequence called the BOM. For instance, Unicode (UTF-16) uses the sequences
0xfe and 0xff or 0xff and 0xfe, depending on the byte order of characters, to tell the
receiver Unicode is used. UTF-8 uses 0xef, 0xbb, and 0xbf, for instance. Normally,
this is invisible to end users since applications that load and save the text content
interpret it for the user.

However, when returning text content via a web server, text-encoding is specified
using the Content-Type HTTP header as well. Any BOM here might confuse the
receiver, especially if the byte order mark implies a different encoding from what
is specified by the HTTP header. Furthermore, should the client recognize the BOM
and remove it or handle it as part of the actual string? It gets more complicated when
transmitting XML over HTTP. Then, you have three possible encodings to handle:
first the byte order mark, then the value of the Content-Type header, and finally the
encoding attribute available in the XML header itself.

When returning dynamic text content, this is normally not a problem since
dynamically generated strings do not have byte order marks. But if you return
text content stored in files and treat them as pure binary files, this may become
a problem if two or three of the encodings do not match.

Text Encoding on the Web

[98]

To avoid problems when working with text files, first try to avoid returning them
as binary files, as this might return the byte order mark as well and also confuse the
receiver, especially if a different encoding is provided in the Content-Type header.
If working with XML documents you return over HTTP, make sure the XML header
encoding, if available, actually matches the encoding used when transmitting the
document or avoid the encoding attribute in the header to obviate problems. When
working with embedded resources that you return over HTTP, as in our examples,
make sure you save them in a text editor where you can choose to save them without
the byte order mark.

Sending Mail with Snapshots
The UPnP-enabled controller provides an environment where we know of all still
image cameras in the network, we are subscribed to the corresponding services, and
we know what encoding parameters they use. Let's now use this information to do
something interesting in our control application; let's take photos from all available
cameras in the network, when an alarm goes off.

Mail settings
Before we send anything, we need to know where to send it. For this, we create a
MailSettings class whose objects we can persist in the object database. We will
leave the details of this class to the reader, since we have done several similar classes
earlier. (Code for the class is available when downloading the source code for this
chapter.) We need an instance of the settings class in the application:

internal static MailSettings mailSettings;

During application initialization, we load the previous mail settings. If none, we
create a new set of settings. The developer can put their own mail settings in the
default values, to test the mail feature.

mailSettings = MailSettings.LoadSettings ();
if (mailSettings == null)
{
 mailSettings = new MailSettings ();
 mailSettings.Host = "Enter mailserver SMTP host name here.";
 mailSettings.Port = 25;
 mailSettings.Ssl = false;
 mailSettings.From = "Enter address of sender here.";
 mailSettings.User = "Enter SMTP user account here.";
 mailSettings.Password = "Enter SMTP user password here.";

M

Sending Mail with Snapshots

[100]

 mailSettings.Recipient =
 "Enter recipient of alarm mails here.";
 mailSettings.SaveNew ();
}

We also leave it to the reader to create a web interface where the mail settings can
be edited.

Connecting to a mail server
When we have mail settings, we can set up our connection to a Simple Mail Transfer
Protocol (SMTP) mail server. In the Clayster.Library.Internet.SMTP namespace,
there exists a static class that helps us transmit mail, as shown in the following code:

SmtpOutbox.Host = mailSettings.Host;
SmtpOutbox.Port = mailSettings.Port;
SmtpOutbox.Ssl = mailSettings.Ssl;
SmtpOutbox.From = mailSettings.From;
SmtpOutbox.User = mailSettings.User;
SmtpOutbox.Password = mailSettings.Password;
SmtpOutbox.OutboxPath = "MailOutbox";
SmtpOutbox.Start (Directory.GetCurrentDirectory ());

In the last call to the Start method, we provide a folder where outgoing mail
messages can be stored if they cannot be transmitted at once. If there are temporary
connection problems, the message will get sent later.

Once started, we must also make sure we remember to terminate the SMTP outbox
when the application closes. This is done as follows:

SmtpOutbox.Terminate ();

Starting mail generation
We want to send a mail when an alarm is triggered. To do this, we update the
ControlHttp method, where the control command is issued to set the alarm.
We have:

case 1:	 // Update Alarm
 bool b;

 lock (synchObject)

Appendix M

[101]

 {
 b = lastAlarm.Value;
 }

 HttpUtilities.Get ("http://Peter:Waher@192.168.0.23/ws/?" +
 "op=SetAlarmOutput&Value=" + (b ? "true" : "false"));

To this, we start a thread if the alarm goes off. The thread will capture photos from
available cameras and send a mail:

if (b)
{
 Thread T = new Thread (SendAlarmMail);
 T.Priority = ThreadPriority.BelowNormal;
 T.Name = "SendAlarmMail";
 T.Start ();
}
break;

The mail generation thread then starts preparing a HTML-formatted message.
HTML-formatted messages also allow for the embedding of images.

private static void SendAlarmMail ()
{
 MailMessage Msg = new MailMessage (mailSettings.Recipient,
 "Motion Detected.", string.Empty, MessageType.Html);
 StringBuilder Html = new StringBuilder ();
 IUPnPService[] Cameras;
 int c;

 Html.Append ("<html><head/><body><h1>Motion detected</h1>");
 Html.Append ("<p>Motion has been detected while the " +
 "light is turned off.</p>");

We also make sure to get a snapshot of available cameras in the network:

lock (stillImageCameras)
{
 c = stillImageCameras.Count;
 Cameras = new IUPnPService[c];
 stillImageCameras.Values.CopyTo (Cameras, 0);
}

Sending Mail with Snapshots

[102]

To manage what we need to do in this method, we will need the following additional
variables:

List<WaitHandle> ThreadTerminationEvents=new List<WaitHandle> ();
Dictionary<string,string> VariableValues;
string Resolution;
string ContentType;
string Extension;
ManualResetEvent Done;
int i, j;

Designing our mail
For each camera, we will take three shots with 5 seconds between each, at least.
Each camera will be handled by a separate thread and the results are placed in a table
with three column. Each camera will be presented on a separate row in the table:

if (c > 0)
{
 Html.Append ("<h2>Camera Photos</h2>");
 Html.Append ("<table cellspacing='0' ");
 Html.Append ("cellpadding='10' border='0'>");

 for (i = 0; i < c; i++)
 {
 Html.Append ("<tr>");

If the application has received the resolution and encoding state variables from the
camera, we will assume the camera is working:

lock (stateVariables)
{
 if (!stateVariables.TryGetValue (
 Cameras [i].Device.UDN, out VariableValues))
 VariableValues = null;
}

if (VariableValues != null &&
 VariableValues.TryGetValue ("DefaultResolution",
 out Resolution) &&
 VariableValues.TryGetValue ("DefaultEncoding",
 out ContentType))
{

Appendix M

[103]

We create three table cells for three photos from the camera. We will have to invent
file names for the images that we will embed in the final mail. Embedded resources in
mails are accessed using the cid:<content id> URI scheme.

Extension = MimeUtilities.GetDefaultFileExtension (ContentType);

for (j = 1; j <= 3; j++)
{
 Html.Append ("<td align='center'><img src='cid:cam");
 Html.Append ((i + 1).ToString ());
 Html.Append ("img");
 Html.Append (j.ToString ());
 Html.Append (".");
 Html.Append (Extension);
 Html.Append ("' width='");
 Html.Append (Resolution.Replace ("x", "' height='"));
 Html.Append ("'/></td>");
}

Note that we can generate the above without actually knowing the size of the final
image, since the camera has already reported its default resolution to us.

Spawning photo collection threads
We will also spawn a new thread for capturing photos from the camera. To know
when the thread is done, we create a ManualResetEvent object that the thread
signals when it is done. We can send one object to the thread method. Since we
want to send multiple variable values, we embed them all into one object array
that counts as one object.

Done = new ManualResetEvent (false);
ThreadTerminationEvents.Add (Done);

Thread T = new Thread (GetPhotos);
T.Priority = ThreadPriority.BelowNormal;
T.Name = "GetPhotos#" + (i + 1).ToString ();
T.Start (new object[]{ i, Cameras [i], ContentType,
 Extension, Msg, Done });

If we don't have the named state variables, we will assume something is wrong and
simply state that the camera is not available:

 } else
 Html.Append ("<td colspan='3'>Camera " +
 "not accessible at this time.</td>");

Sending Mail with Snapshots

[104]

 Html.Append ("</tr>");
 }
}

Finally, we end the HTML portion of the mail as follows:

Html.Append ("</table></body></html>");

Waiting for threads to finish
Before we can send the mail, we need the photo collection threads to terminate.
For each thread, we have created a ManualResetEvent object. We wait for all
these to complete, but not for more than 30 seconds:

if (ThreadTerminationEvents.Count > 0)
 WaitHandle.WaitAll (ThreadTerminationEvents.ToArray (),
 30000);

Each thread has now embedded its corresponding photos into the mail message.
We put our generated HTML into the mail message body and send it:

 Msg.Body = Html.ToString ();
 SmtpOutbox.SendMail (Msg, mailSettings.From);
}

Getting photos from the camera
The first thing we do in the thread that collects photos is to extract the parameters
sent to it in the object array. This is done with the following code:

private static void GetPhotos (object State)
{
 object[] P = (object[])State;
 int i = (int)P [0];
 IUPnPService Service = (IUPnPService)P [1];
 string ContentType = (string)P [2];
 string Extension = (string)P [3];
 MailMessage Msg = (MailMessage)P [4];
 ManualResetEvent Done = (ManualResetEvent)P [5];
 DateTime Next = DateTime.Now;

Executing actions on a service is easy. A Variables collection is used to pass
parameters to and from the action. We get the image URL for the camera,
by calling the GetDefaultImageURL action as follows:

Appendix M

[105]

try
{
 UPnPAction GetDefaultImageURL =
 Service ["GetDefaultImageURL"];
 Variables v = new Variables ();
 GetDefaultImageURL.Execute (v);
 string ImageURL = (string)v ["RetImageURL"];

We then parse the URL of the image and open an HTTP connection to the camera:

ParsedUri ImageURI = Web.ParseUri (ImageURL);
HttpResponse Response;
int ms;
int j;

using (HttpSocketClient Client = new HttpSocketClient (
 ImageURI.Host, ImageURI.Port,
 ImageURI.UriScheme is HttpsUriScheme,
 ImageURI.Credentials))
{
 Client.ReceiveTimeout = 20000;

Before requesting a photo, we wait for the correct time, 5 seconds have to pass
(at least) between photos:

for (j = 1; j <= 3; j++)
{
 ms = (int)System.Math.Round (
 (Next - DateTime.Now).TotalMilliseconds);
 if (ms > 0)
 Thread.Sleep (ms);

We then request the photo and embed it into our mail message. Note that we don't
need to decode the image and re-encode it into the mail message. We already know
the content type of the image and have it encoded accordingly.

 Response = Client.GET (ImageURI.PathAndQuery, ContentType);
 Msg.EmbedObject ("cam" + (i + 1).ToString () + "img" +
 j.ToString () + "." + Extension,
 ContentType, Response.Data);

 Log.Information ("Click.", EventLevel.Minor,
 Service.Device.FriendlyName);

 Next = Next.AddSeconds (5);
}

Sending Mail with Snapshots

[106]

Signalling thread completion
When the photos have been collected, we close our connection and signal thread
completion by setting the ManualResetEvent object passed to the thread. We make
sure to log any exceptions that may occur and put the thread completion signal
within a final statement, to make sure it is executed regardless of what happens
in the method:

 }
 }
 catch (ThreadAbortException)
 {
 Thread.ResetAbort ();
 }
 catch (Exception ex)
 {
 Log.Exception (ex);
 }
 finally
 {
 Done.Set ();
 }
}

Trying out the new camera
Now that we have four Raspberry Pi's running—one with a sensor, one with an
actuator, one with a camera, and a controller controlling all three—we can put them
to good use. For instance, we can see who it is that sneaks into our office and steals
our resistors…

N
Tracking Cameras

Now that we have a camera that publishes itself and its services using UPnP, we can
track the available cameras in the network and their settings. This appendix shows
how such tracking is done in the controller application.

Managing events using UPnP
As in our camera project, we need to create a UPnP interface for the network. To do
this, we need an HTTP server and an SSDP client:

private static HttpServer upnpServer;
private static SsdpClient ssdpClient;

First, we set up the HTTP server; the camera project used a similar technique:

upnpServer = new HttpServer (8080, 10, true, true, 1);
Log.Information ("UPnP Server receiving requests on port " +
 upnpServer.Port.ToString ());

We also set up the SSDP client in a similar manner:

ssdpClient = new SsdpClient (upnpServer, 10,
 true, true, false, false, false, 30);

When the application closes, we need to dispose of these two objects to make sure any
threads are closed as well. Otherwise, the application will not close properly:

ssdpClient.Dispose ();
upnpServer.Dispose ();

Tracking Cameras

[108]

In our controller application, we will listen to notifications from the UPnP-compliant
still-image cameras instead of actively publishing interfaces of our own. The SSDP
client maintains a list of the found devices and interfaces for us. All we need to do
is react to the changes in this list. We do this by adding an event handler for the
OnUpdated event, as follows:

ssdpClient.OnUpdated += NetworkUpdated;

We will maintain three lists in our application to keep track of the available cameras.
First is a list of still-image camera services available:

private static Dictionary<string, IUPnPService> stillImageCameras;

Then we need a list of subscriptions made to these services and when they expire:

private static SortedDictionary<DateTime, Subscription>
 subscriptions;

Lastly, we need a list of state variable values ordered by the unique device name of
the device reporting them:

private static Dictionary<string,Dictionary<string,string>>
 stateVariables;

Reacting to network updates
In our OnUpdated event handler, we can examine the SSDP client, which contains a
list of devices found in the network in the Devices property:

private static void NetworkUpdated (object Sender, EventArgs e)
{
 IUPnPDevice[] Devices = ssdpClient.Devices;

To detect which devices have been removed from the network, we first make a copy
of those we have already registered in our application:

Dictionary<string, IUPnPService> Prev =
 new Dictionary<string, IUPnPService> ();

lock (stillImageCameras)
{
 foreach (KeyValuePair<string, IUPnPService> Pair in
 stillImageCameras)
 Prev [Pair.Key] = Pair.Value;

Appendix N

[109]

We then loop through all the devices found and all their services to see whether we
can find a still-image camera service somewhere. If we do, we remove it from our list
first. Those left in the list will have been removed from the network:

foreach (IUPnPDevice Device in Devices)
{
 foreach (IUPnPService Service in Device.Services)
 {
 if (Service.ServiceType == "urn:schemas-" +
 "upnp-org:service:" +
 "DigitalSecurityCameraStillImage:1")
 {
 Prev.Remove (Device.UDN);

If we detect a new device with a still-image camera service available, we add it to
the list:

if (!stillImageCameras.ContainsKey (Device.UDN))
{
 stillImageCameras [Device.UDN] = Service;
 Log.Information ("Still image camera found.",
 EventLevel.Minor, Device.FriendlyName);

Subscribing to events
To be able to subscribe to events from the newly found service, we need to construct
a callback URL to which the device can report any changes made to its evented
state variables. To be able to create such a callback URL, we need to know which
IP address the current application should report to. On a platform with multiple
network adapters, we need to check which network adapter the device can be reached
on. But since we run our controller on a Raspberry Pi, we can assume only one
adapter is available. So we restrict our search to an IP address that uses the same IP
protocol as the device does. We know which IP address the device uses by looking at
its Location property, the URL of the device description document for its root device:

ParsedUri Location = Web.ParseUri (Device.Location);
string DeviceAddress = Location.Host;
System.Net.IPHostEntry DeviceEntry =
 System.Net.Dns.GetHostEntry (DeviceAddress);

Tracking Cameras

[110]

We also need the IP addresses of the current machine:

string HostName = System.Net.Dns.GetHostName ();
System.Net.IPHostEntry LocalEntry =
 System.Net.Dns.GetHostEntry (HostName);
string LocalIP = null;

We will then see whether we can find a pair of IP addresses that match protocols:

foreach (System.Net.IPAddress LocalAddress in
 LocalEntry.AddressList)
{
 foreach (System.Net.IPAddress RemoteAddress in
 DeviceEntry.AddressList)
 {
 if (LocalAddress.AddressFamily ==
 RemoteAddress.AddressFamily)
 {
 LocalIP = LocalAddress.ToString ();
 break;
 }
 }

 if (LocalIP != null)
 break;
}

If an IP address match is found, we can create the callback URL and subscribe to
events from the service. We request for a subscription of events for 5 minutes. The
service can change this time period if it desires and return a subscription identity
(SID), which we should store to be able to unsubscribe if needed. Note that the
callback URL makes a reference to a resource named /events. We will define this
resource a little later in this appendix. With the help of the following code, let's see
how a callback URL, to which subscribed events will be sent is created:

if (LocalIP != null)
{
 int TimeoutSeconds = 5 * 60;
 string Callback = "http://" + LocalIP + ":" +
 upnpServer.Port.ToString () + "/events/" + Device.UDN;
 string Sid = Service.SubscribeToEvents (Callback,
 ref TimeoutSeconds);

 AddSubscription (TimeoutSeconds,
 new Subscription (Device.UDN, Sid, Service, LocalIP));
}

The AddSubscription() method will be discussed later in this appendix.

Appendix N

[111]

Unregistering cameras that have
been removed
If cameras are removed from the network, it is important to update the internal
structures representing the network to avoid memory leaks. After having looped
through all the available devices and their services, any services still in our Prev list
must be devices that have been removed since the last network update. We remove
these from our list of cameras as well:

 }
 }
 }
}

foreach (KeyValuePair<string, IUPnPService> Pair in Prev)
{
 Log.Information ("Still image camera removed.",
 EventLevel.Minor, Pair.Value.Device.FriendlyName);
 stillImageCameras.Remove (Pair.Value.Device.UDN);

We also remove any subscriptions we have registered on the device:

foreach (KeyValuePair<DateTime, Subscription> Subscription in
 subscriptions)
{
 if (Subscription.Value.UDN == Pair.Key)
 {
 subscriptions.Remove (Subscription.Key);
 break;
 }
}

We also remove any state variables we have stored for the device. But we do this
outside the current lock statement to avoid creating a deadlock:

 }
 }

 lock (stateVariables)
 {
 foreach (KeyValuePair<string, IUPnPService> Pair in
 Prev)
 stateVariables.Remove (Pair.Value.Device.UDN);
 }
}

Tracking Cameras

[112]

Remembering active subscriptions
When we have finally subscribed to events on the service, we need to store our
active subscriptions together with the time when they expire. If we want to maintain
the subscription, we need to update the subscription before the subscription expires.
Any new subscriptions are stored in memory by calling the AddSubscription method.
This method stores the subscription in the subscriptions dictionary, which is sorted
on when the subscription expires. If multiple subscriptions expire at exactly the same
time, random ticks are added until the expiry timestamp is unique:

private static void AddSubscription (int TimeoutSeconds,
 Subscription Subscription)
{
 lock (stillImageCameras)
 {
 DateTime Timeout = DateTime.Now.AddSeconds (
 TimeoutSeconds);

 while (subscriptions.ContainsKey (Timeout))
 Timeout.AddTicks (gen.Next (1, 10));

 subscriptions [Timeout] = Subscription;
 }
}

Creating the subscription record
The subscription class is a trivial class we've created to maintain information about
an active subscription. It simply maintains information about four properties: the
unique device name (UDN) of the device, an SID, the local IP address used in the
callback URL, and a reference to the service object we subscribe to:

public class Subscription
{
 private string sid;
 private string udn;
 private string localIp;
 private IUPnPService service;

 public Subscription (string Udn, string Sid,
 IUPnPService Service, string LocalIp)

Appendix N

[113]

 {
 this.sid = Sid;
 this.udn = Udn;
 this.service = Service;
 this.localIp = LocalIp;
 }

These properties are then published in a read-only manner:

 public string UDN
 {
 get{return this.udn;}
 }

 public string SID
 {
 get{return this.sid;}
 }

 public IUPnPService Service
 {
 get{return this.service;}
 }

 public string LocalIp
 {
 get{return this.localIp;}
 }
}

Checking active subscriptions
We need to make sure we update the existing subscriptions or they will be timed
out on the corresponding devices, which will stop the flow of events. So we need to
regularly check whether we get close to the expiry time of our existing subscriptions.
In our ControlHttp method, we wait for control events to be issued to our actuator.
We check for changes to LEDs and changes to the alarm status. This check is done
using the following statement:

switch (WaitHandle.WaitAny (Handles, 1000))

Tracking Cameras

[114]

Here, Handles is an array of two event objects: the first represents the requirement to
update the LEDs of the actuator and the second represents the requirement to update
the alarm status. The wait times out after one second. In this switch statement, we
can add a default statement that will execute if no control command is to be issued.
This statement will therefore be called every second if no control command is to be
issued. We will use this to control our subscriptions:

default:
 CheckSubscriptions (30);
 break;

In the CheckSubscriptions method, we go through all the active subscriptions
to see whether there are any that will expire within the time frame specified in
the MarginSeconds parameter:

private static void CheckSubscriptions (int MarginSeconds)
{
 DateTime Limit = DateTime.Now.AddSeconds (MarginSeconds);
 LinkedList<KeyValuePair<DateTime, Subscription>>
 NeedsUpdating = null;
 int TimeoutSeconds;

Note that we only need to loop through the dictionary, for as long as entries
represent subscriptions expiring before the Limit margin time point, since the
dictionary is sorted on the time when subscriptions expire:

lock (stillImageCameras)
{
 foreach (KeyValuePair<DateTime, Subscription> Subscription
 in subscriptions)
 {
 if (Subscription.Key > Limit)
 break;

 if (NeedsUpdating == null)
 NeedsUpdating = new LinkedList<KeyValuePair<
 DateTime, Subscription>> ();

 NeedsUpdating.AddLast (Subscription);
 }
}

Appendix N

[115]

Updating subscriptions
If there are subscriptions that need updating, we begin by removing them from our
active subscription list:

if (NeedsUpdating != null)
{
 Subscription Subscription;

 foreach (KeyValuePair<DateTime, Subscription> Pair
 in NeedsUpdating)
 {
 lock (stillImageCameras)
 {
 subscriptions.Remove (Pair.Key);
 }

 Subscription = Pair.Value;

Then we try to update each subscription using the SID provided to us by the device.
We also have to suggest a new timeout, which we set to 5 minutes. Remember that
the suggested timeout can be updated by the device, if desired:

try
{
 TimeoutSeconds = 5 * 60;
 Subscription.Service.UpdateSubscription (Subscription.SID,
 ref TimeoutSeconds);
 AddSubscription (TimeoutSeconds, Subscription);

If the subscription update does not work, perhaps because the subscription has been
forgotten or has timed out, we attempt to create a new subscription:

} catch (Exception)
{
 try
 {
 string Udn = Subscription.Service.Device.UDN;
 TimeoutSeconds = 5 * 60;
 string Sid = Subscription.Service.SubscribeToEvents (
 "http://" + Subscription.LocalIp + "/events/" +
 Udn, ref TimeoutSeconds);
 AddSubscription (TimeoutSeconds, new Subscription (Udn,
 Sid, Subscription.Service, Subscription.LocalIp));

Tracking Cameras

[116]

If this fails as well, we try again in a minute if the device and service are still
available in the SSDP client:

 } catch (Exception)
 {
 AddSubscription (60, Subscription);
 }
 }
 }
 }
}

Receiving events
We have declared in our callback URL that a resource named /events will be used
to receive events on. It is now time to define this resource. There is a predefined web
resource called UPnPEvents in the Clayster.Library.Internet.UPnP namespace.
We define such a static resource variable in our application:

private static UPnPEvents events;

We then create an instance and register it with our HTTP server dedicated to UPnP:

events = new UPnPEvents ("/events");
upnpServer.Register (events);

This resource has an event called OnEventsReceived that is raised whenever an event
is received. We add an event handler for this event:

events.OnEventsReceived += EventsReceived;

In our event handler, we simply maintain the current state variable values sorted by
the UDN of the device hosting the service reporting the event. This makes it easy to
access them when necessary:

private static void EventsReceived (object Sender,
 UPnPPropertySetEventArgs e)
{
 Dictionary<string,string> Variables;
 string UDN = e.SubItem;

 lock (stateVariables)
 {
 if (!stateVariables.TryGetValue (UDN, out Variables))

Appendix N

[117]

 {
 Variables = new Dictionary<string, string> ();
 stateVariables [UDN] = Variables;
 }

 foreach (KeyValuePair<string,string> StateVariable
 in e.PropertySet)
 Variables [StateVariable.Key] =
 StateVariable.Value;
 }
}

O
Certificates and Validation

When working with communication based on SSL or TLS using certificates, you
need to make a decision on whether you want to validate the authenticity of these
certificates or not. The default option should always be to validate them. If for some
reason you cannot validate your certificates—perhaps because they are self-signed,
you are debugging or testing code, or because it is not important to authenticate the
other endpoint—and you only use SSL/TLS as a means to encrypt data, making it
difficult to eavesdrop, you can choose to trust all certificates. In trusted mode, you
can communicate with remote endpoints using SSL/TLS, even if the certificates are
not valid.

However, in trusting a certificate, you lose one of the key aspects of using certificates
in the first place: the ability to authenticate the remote endpoint. If you connect to a
server and it presents a certificate, the certificate should be validated to make sure
the server is who it claims to be. If the certificate is not valid, somebody might try
to pretend to be the server, just to be able to extract your user credentials or other
sensitive information. For this reason, trusting certificates should not be done in
production, where real and sensitive data is used.

Normally, on PCs, certificate validation does not pose a problem, as long as self-
signed certificates are not used. But on small devices, it might. When a certificate is
validated, the certificate itself and its credentials (or subject) are validated, and also
the entire chain of trust for the certificate. Each certificate is created by somebody, a
Certificate Authority (CA). Each time a certificate is created, a reference to the creator is
embedded into the certificate. So, when a certificate is validated, the issuer is contacted
first to not only validate the issuer, but also to make sure the corresponding certificate
has not been revoked. A certificate that has been compromised can be revoked, which
means all certificates based on the revoked certificate will automatically become
invalid. This allows applications to avoid being tricked by somebody creating false
certificates using stolen CA certificates, for instance, if detected. If the issuer in turn
has another issuer itself, the same process is continued until you come to a root CA.
This certificate will be a self-signed certificate.

Certificates and Validation

[120]

Certificates come in public and private versions. The public version can be shared
with anybody and is the version that is sent to clients during SSL/TLS negotiation.
It is used to encrypt data that is sent to the remote endpoint. The private part is
maintained securely by the remote endpoint and can be used to decrypt data that
is sent to it. Only the holder of the private version of the certificate can decrypt the
communication sent to it. During certificate validation, the security level of the
entire chain of certificates is no more secure than the security level maintained in
protecting the private version of the CA certificates, including the root certificate.

In order for a root certificate to validate properly, as for any self-signed certificate,
the public version has to be installed into the system so the operating system knows
it is safe to trust. Normal PC operating systems come with most common root
certificates installed. But the Mono and Raspberry Pi do not have the same support.
So, to make certificates validate on the Mono on Raspberry Pi, you might have to
install the corresponding CA certificates yourself.

Care should be taken to only install proper CA certificates.
Once a certificate is installed, all certificates issued by that
certificate will also become valid.

If you use the XMPP server at thingk.me, it uses a certificate issued by StartCom
Ltd. To make the certificate at thingk.me validate, we need to install the StartCom
Ltd. CA certificates into our Raspberry Pi. We start by downloading and installing
the root certificate with the following commands:

$ wget http://www.startssl.com/certs/ca.crt
$ sudo certmgr –add –c –m CA ca.crt
$ sudo certmgr –add –c Trust ca.crt

We use the sudo prefix to give the command superuser privileges.
It can be removed if you are logged in as the root.

StartCom also uses an intermediate CA server certificate that we will download and
install, as follows:

$ wget http://www.startssl.com/certs/sub.class1.server.ca.crt
$ sudo certmgr –add –c –m CA sub.class1.server.ca.crt
$ sudo certmgr –add –c Trust sub.class1.server.ca.crt

http://www.thingk.me
http://www.thingk.me

Appendix O

[121]

To verify that the certificates have been properly installed, we can issue the
following commands:

$ sudo certmgr -list -c Trust
$ sudo certmgr -list -c –m CA

The certmgr command is a tool that comes with the Mono.

If the certificates have been properly installed, you can run the applications against
thingk.me again, without having to trust the server certificate.

http://www.thingk.me

P
Chat Interfaces

XMPP was originally developed for instant messaging in chat applications. To create
an XMPP-enabled device that does not chat might not feel right. Furthermore, a chat
application is a great human-to-machine interface that can be used for informative
or debugging purposes. This appendix shows how simple it is to create a simple
chat interface for a sensor or an actuator.

The Clayster.Library.IoT.XmppInterfaces namespace contains a class that
implements a standard chat interface given an XMPP client and any sensor or
actuator interfaces already defined. It then uses a standard syntax that is easy
to remember and keeps the code to a minimum.

To create a chat server, just create an instance of the XmppChatServer class
as follows. It takes a reference to the XMPP client and the provisioning server,
and makes sure to negotiate all requests properly. Following are two optional
parameters that can be null if no such interface is available. The first is a reference
to a sensor server and the second is a reference to a control server.

xmppChatServer = new XmppChatServer (xmppClient,
 xmppProvisioningServer, xmppSensorServer, xmppControlServer);

Chat Interfaces

[124]

The chat interface adapts itself to the capabilities of the optionally provided sensor
and control interfaces. It checks what data fields and control parameters are available
and who has the right to see and control them. The following screenshot illustrates
an example chat session with our sensor:

Chat session with our sensor

Q
QR-Code

In our examples in this book, we use QR-code to transfer metadata information
about a device to its owner. This appendix shows a simple way to generate and
display such QR-code.

Generating a QR-code
A QR-code works like a two dimensional bar code and can encode a set of characters
into a simple black-and-white image. The QR-code is easy to scan and decode, for
instance using the camera on a smartphone. The inventor of the QR-code algorithm
has given a free license to everybody to use it, and so QR-code has become a popular
way of transmitting digital information using images. Instead of implementing code
to generate QR-code, or using a specific library, we will use the Google Chart API,
that can generate QR-code for us. All we need to do is send the string we want to
encode, and it returns the corresponding image.

What we want to do is to transmit the metadata registered earlier to the owner in the
form of a QR-code. This means we need to create a string containing the metadata
that is simple to recognize and decode. The metadata is comprised of tags, string
tags, and numerical tags. XEP-0347 stipulates that these tags are concatenated into
a long string, delimited by the semicolon character ";". The string representation of
a tag is formed by concatenating the tag name and the value, delimited by the colon
character ":". If the tag is numerical, the tag name is prefixed by the hash sign "#".
Finally, the entire string is prefixed by the string "IoTDisco;", so that it can be easily
recognized. For our device, the final string might look something as follows:

IoTDisco;MAN:clayster.com;MODEL:LearningIoT-Sensor;
 KEY:acf9f815f5c64925843541db03d0f09e

QR-Code

[126]

Now that we have our string, getting a QR-code from Google Chart API is easy.
The format of the URL for getting a small 48x48 QR-code is as follows:

https://chart.googleapis.com/chart?cht=qr&chs=48x48&
 chl=STRING_TO_ENCODE

Note that we use the HTTPS protocol instead of the HTTP
protocol to get the QR-code. We do this to avoid the possibility
of eavesdroppers extracting the KEY tag value, which only the
device and the owner are supposed to know.

We put our discovery string in the position of the chl query parameter value in
the URL. We need to URL-encode it first, however. This will transform any hash
characters to the character sequence %23. In our example, the final URL becomes:

https://chart.googleapis.com/chart?cht=qr&chs=48x48&
 chl=IoTDisco;MAN:clayster.com;MODEL:LearningIoT-Sensor;
 KEY:acf9f815f5c64925843541db03d0f09e

Entering this URL into a browser returns the following image, albeit much smaller:

QR-code containing metadata information

We code the preceding in a method called RequestQRCode, as follows:

private static void RequestQRCode ()
{
 Log.Information ("Loading QR Code.");

Appendix Q

[127]

We use the HttpSocketClient class to create a connection to the Google Chart API:

using (HttpSocketClient Client = new HttpSocketClient (
 "chart.googleapis.com", HttpSocketClient.DefaultHttpsPort,
 true, HttpSocketClient.Trusted))
{

Note that we choose to trust the certificate from chart.
googleapis.com. Even better would be not to trust it, but to
validate it, to make sure nobody extracts your KEY information
by pretending to be Google. This might require you to install
some CA certificates, however. See Appendix O, Certificates and
Validation for more information on how to do this.

Then we perform a GET operation to the resource:

HttpResponse Response = Client.GET ("/chart?cht=qr&chs=48x48& " +
 "chl=IoTDisco;MAN:clayster.com;MODEL:LearningIoT-Sensor;" +
 "KEY:" + xmppSettings.Key");

If the result is indeed a bitmap, we store it to avoid spamming the Google Image
API server:

if (Response.Header.IsImage)
{
 xmppSettings.QRCode = (Bitmap)Response.Image;
 xmppSettings.UpdateIfModified ();

And if no owner has been registered, we display the QR code as well:

 if (string.IsNullOrEmpty (xmppSettings.Owner))
 DisplayQRCode ();
 }
 }
}

In commercial applications, libraries should be used to create QR
codes, instead of using on-line APIs. This avoids the problem of
sending metadata about the things you create to a third party.

QR-Code

[128]

Displaying the QR-code
Now that we have a QR-code, we need to display it somehow so the user can scan
it and claim the device. In real life, such a QR-code might be placed on a sticker or
shown on a display or similar. In our examples, we will simply show the QR-code
in the Console window. It's a simple way to demonstrate the principle. We begin by
defining a method for displaying our QR-code:

private static void DisplayQRCode ()
{
 Bitmap Bmp = xmppSettings.QRCode;
 if (Bmp == null)
 return;

We get the dimensions of the bitmap and loop though all its pixels:

ConsoleColor PrevColor = Console.BackgroundColor;
int w = Bmp.Width;
int h = Bmp.Height;
int x, y;

for (y = 0; y < h; y++)
{
 for (x = 0; x < w; x++)
 {

We output each pixel as a two-space character sequence. We choose two, for the
simple reason that most terminal windows use a font where each character is
roughly twice as high as it is wide.

 if (Bmp.GetPixel (x, y).B == 0)
 Console.BackgroundColor = ConsoleColor.Black;
 else
 Console.BackgroundColor = ConsoleColor.White;

 Console.Out.Write (" ");
}

At the end of each line, we restore the original colors to make sure the rest of the
line is not discolored if the terminal window scrolls:

 Console.BackgroundColor = PrevColor;
 Console.Out.WriteLine ();
 }
}

Appendix Q

[129]

Testing our code in a console window will show something similar to the
following image:

QR-code being output in a terminal window

Claiming ownership of the device
Once you have the QR-code, the owner can scan and decode it. The resulting string can
be parsed to extract the metadata necessary to claim the ownership of the device. There
are smartphone applications that let you do all this, using the camera on the phone.
You can download one here: https://www.thingk.me/Provisioning/Api.xml.

https://www.thingk.me/Provisioning/Api.xml

Bill of Materials
This appendix contains a bill of materials for the boards used in the examples in
this book.

The sensor
The circuit diagram used in our sensor project is as follows:

R

Bill of Materials

[132]

To build this circuit, we need the following components or variants thereof:

Part Value Device
Reference

Package Description

ERR red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
MEAS yellow ZL-503YCA2 5 mm Round Type LED Standard 20 mA
NET yellow ZL-503YCA2 5 mm Round Type LED Standard 20 mA
ON green ZL-504G0CA10 5 mm Round Type LED Standard 20 mA
JP3 - 555-28027 1 x 03 Pins PIR Motion Detector
PMOD_AD2 12 bit PmodAD2 2 x 04 Pins A/D converter
R1 160 Ω CFA0207 Carbon Film Resistors, Standard
R2 160 Ω CFA0207 Carbon Film Resistors, Standard
R3 160 Ω CFA0207 Carbon Film Resistors, Standard
R4 160 Ω CFA0207 Carbon Film Resistors, Standard
R5 10 kΩ CFA0207 Carbon Film Resistors, Standard
R6 10 kΩ CFA0207 Carbon Film Resistors, Standard
R7 10 kΩ CFA0207 Carbon Film Resistors, Standard
TMP102 - TMP102 SOT563 Digital Temperature

Sensor Breakout
ZX-LDR - ZX-LDR 1x03 Pins Light Sensor Board
RPI_PIN_HDR - Raspberry Pi

Model B
2x13 Pins GPIO pin header,

included with
Raspberry Pi Model B

GPIO Ribbon - GPIO Ribbon 2x13 Pins GPIO Cable Ribbon
for Raspberry Pi

Appendix R

[133]

The actuator
The circuit diagram used in our actuator project is as follows:

To build this circuit, we need the following components or variants thereof:

Part Value Device
Reference

Package Description

DO1 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
DO2 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
DO3 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
DO4 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
DO5 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
DO6 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
DO7 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
DO8 red ZL-503RCA2 5 mm Round Type LED Standard 20 mA
ON green ZL-504G0CA10 5 mm Round Type LED Standard 20 mA
R1 160 Ω CFA0207 Carbon Film Resistors, Standard
R2 160 Ω CFA0207 Carbon Film Resistors, Standard

Bill of Materials

[134]

Part Value Device
Reference

Package Description

R3 160 Ω CFA0207 Carbon Film Resistors, Standard
R4 160 Ω CFA0207 Carbon Film Resistors, Standard
R5 160 Ω CFA0207 Carbon Film Resistors, Standard
R6 160 Ω CFA0207 Carbon Film Resistors, Standard
R7 160 Ω CFA0207 Carbon Film Resistors, Standard
R8 160 Ω CFA0207 Carbon Film Resistors, Standard
R9 160 Ω CFA0207 Carbon Film Resistors, Standard
SP1 - GT-1005 - Piezo Tweeter
RPI_PIN_HDR - Raspberry Pi

Model B
2 x 13 Pins GPIO PIN HEADERS,

Included with
Raspberry Pi Model B

GPIO Ribbon - GPIO Ribbon 2 x 13 Pins GPIO Cable Ribbon
for Raspberry Pi

The camera
The circuit diagram used in our camera project is as follows:

Appendix R

[135]

To build this circuit, we need the following components or variants thereof:

Part Value Device
Reference

Package Description

CAMERA - LinkSprite JPEG 1 x 04 Pins Infrared color camera,
Serial UART Interface

IC1 - 74HC04N DIP14 Hex INVERTER
ERR red ZL-503RCA2 5 mm Round

Type
LED Standard 20 mA

ON green ZL-504G0CA10 5 mm Round
Type

LED Standard 20 mA

NET yellow ZL-503YCA2 5 mm Round
Type

LED Standard 20 mA

CAM yellow ZL-503YCA2 5 mm Round
Type

LED Standard 20 mA

RX green ZL-504G0CA10 5 mm Round
Type

LED Standard 20 mA

TX yellow ZL-503YCA2 5 mm Round
Type

LED Standard 20 mA

R1 160 Ω CFA0207 Carbon Film Resistors, Standard
R2 160 Ω CFA0207 Carbon Film Resistors, Standard
R3 160 Ω CFA0207 Carbon Film Resistors, Standard
R4 160 Ω CFA0207 Carbon Film Resistors, Standard
R5 240 Ω CFA0207 Carbon Film Resistors, Standard
R6 240 Ω CFA0207 Carbon Film Resistors, Standard
RPI_PIN_HDR - Raspberry Pi

Model B
2 x 13 Pins GPIO PIN HEADERS,

Included with
Raspberry Pi Model B

GPIO Ribbon - GPIO Ribbon 2 x 13 Pins GPIO Cable Ribbon for
Raspberry Pi

	_GoBack
	_GoBack
	_GoBack

