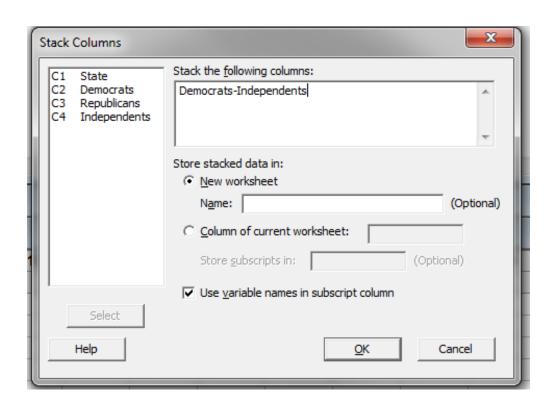
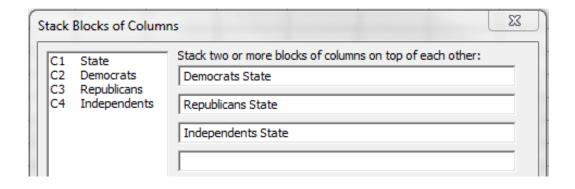
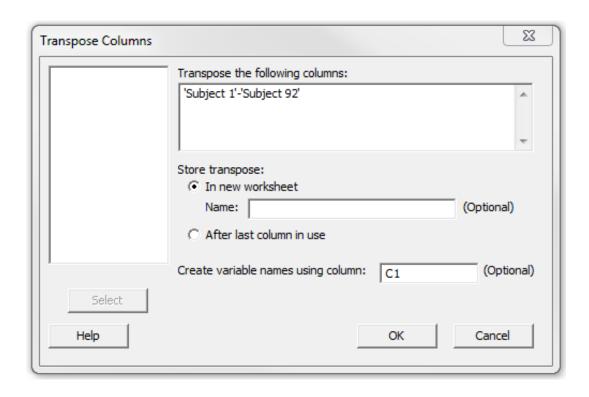

Chapter 1, Worksheet, Data Management, and the Calculator

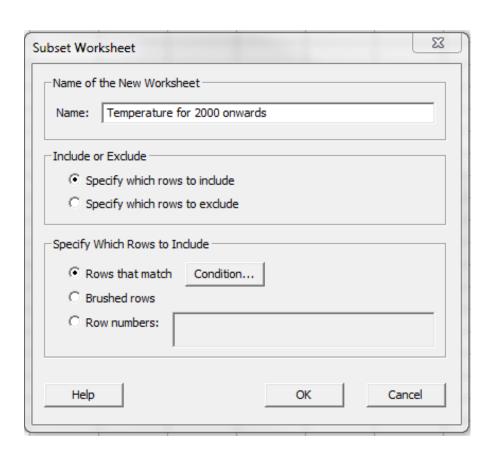

+	C1	C2	C3	C4	C5	C6	C7	C8
	Pulse1	Pulse2	Ran	Smokes	Sex	Height	Weight	Activity
1	64	88	1	2	1	66.00	140	2
2	58	70	1	2	1	72.00	145	2
3	62	76	1	1	1	73.50	160	3
4	66	78	1	1	1	73.00	190	1
5	64	80	1	2	1	69.00	155	2
6	74	84	1	2	1	73.00	165	1
7	84	84	1	2	1	72.00	150	3
8	68	72	1	2	1	74.00	190	2
9	62	75	1	2	1	72.00	195	2
10	76	118	1	2	1	71.00	138	2
11	90	94	1	1	1	74.00	160	1

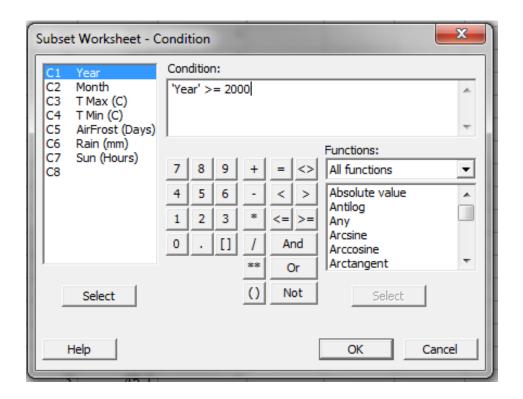


	State	Democrats	Republicans	Independents
1	Alabama	0	2	0
2	Alaska	0	2	0
3	Arizona	0	2	0
4	Arkansas	2	0	0
5	California	2	0	0
6	Colorado	1	1	0
7	Connecticut	2	0	0
8	Delaware	2	0	0
9	Florida	1	1	0
10	Georgia	0	2	0
11	Hawaii	2	0	0
12	Idaho	0	2	0
13	Illinois	2	0	0
	1 P		4	^

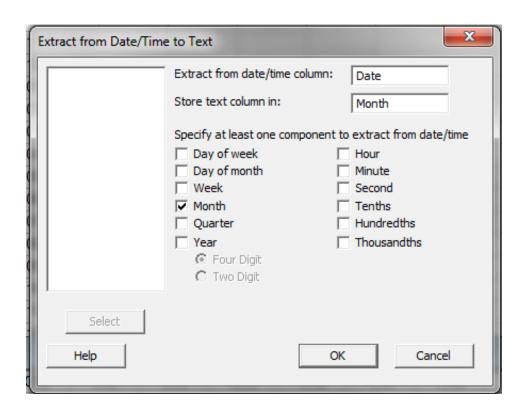


+	C1-T	C2
	Subscripts	
1	Democrats	0
2	Democrats	0
3	Democrats	0
4	Democrats	2
5	Democrats	2
6	Democrats	1
7	Democrats	2
8	Democrats	2
9	Democrats	1
10	Democrats	0
11	Democrats	2
12	Democrats	0

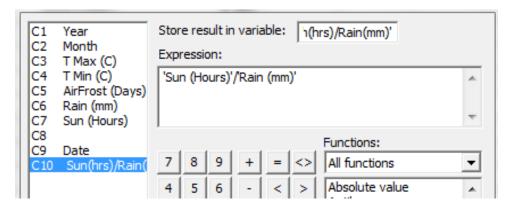



+	C1-T	C2	C3-T
	Subscripts		
1	Democrats	0	Alabama
2	Democrats	0	Alaska
3	Democrats	0	Arizona
4	Democrats	2	Arkansas
5	Democrats	2	California
6	Democrats	1	Colorado
7	Democrats	2	Connecticut
8	Democrats	2	Delaware

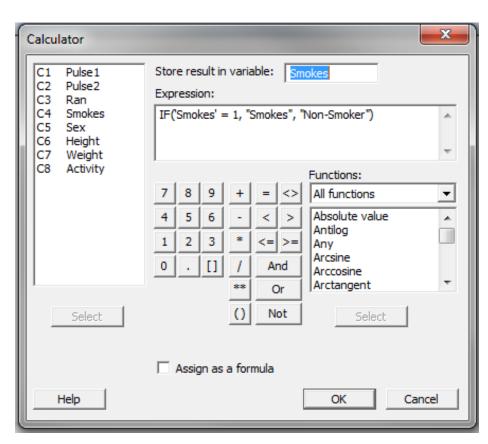
+	C1-T	C2	C3	C4	C5	C6	C7	
		Subject 1	Subject 2	Subject 3	Subject 4	Subject 5	Subject 6	;
1	Pulse1	64	58	62.0	66	64	74	
2	Pulse2	88	70	76.0	78	80	84	
3	Ran	1	1	1.0	1	1	1	
4	Smokes	2	2	1.0	1	2	2	
5	Sex	1	1	1.0	1	1	1	
6	Height	66	72	73.5	73	69	73	
7	Weight	140	145	160.0	190	155	165	
8	Activity	2	2	3.0	1	2	1	
0								

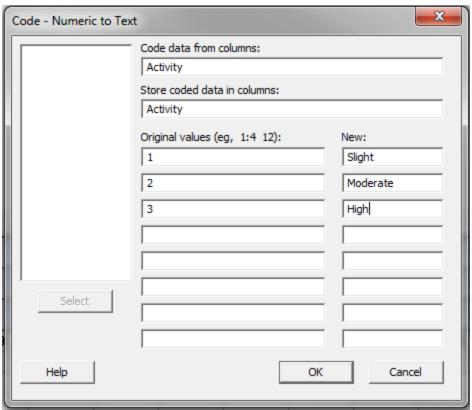


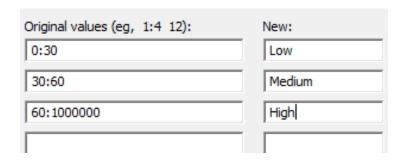
+	C1-T	C2-T	C3	C4	C5	C6
	Year	Month	T Max (C)	T Min (C)	AirFrost (Days)	Rain (mm)
1	1853	1	8.4	2.7	4	62.8
2	1853	2	3.2	-1.8	19	29.3
3	1853	3	7.7	-0.6	20	25.9
4	1853	4	12.6	4.5	0	60.1
5	1853	5	16.8	6.1	0	59.5
6	1853	6	20.1	10.7	0	82.0
7	1853	7	21.2	12.2	0	86.2
8	1853	8	20.2	10.8	0	72.3
9	1853	9	17.3	8.4	0	51.3
10	1853	10	13.9	7.4	0	102.3
11	1853	11	8.7	2.3	10	49.6
12	1853	12	3.7	-1.3	19	10.7
13	1854	1	6.7	1.5	11	54.5
14	1854	2	8.0	0.6	12	22.6
15	1854	3	11.2	2.2	8	10.6



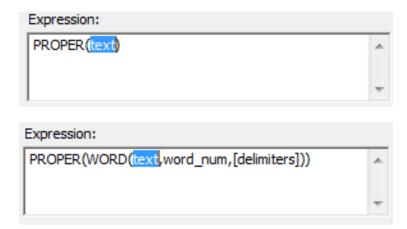
Date
05/01/2000
06/01/2000
07/01/2000
08/01/2000
09/01/2000
10/01/2000
11/01/2000
12/01/2000
01/01/2001

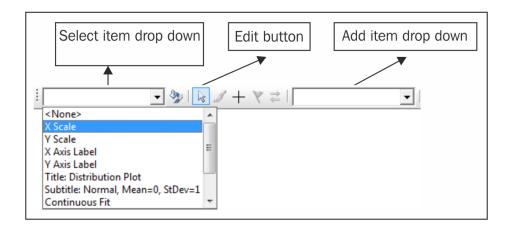


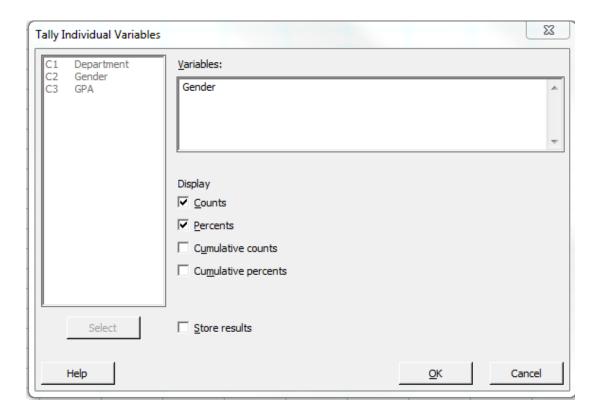

C6	C7
Rain (mm)	Sun (Hours)
67.7	189.8
19.4	164.6
28.5	161.2
58.3	209.4
87.2	126.1
119.5	83.9
99.1	69.2
99.8	51.9
57.4	83.3
68.6	85.0



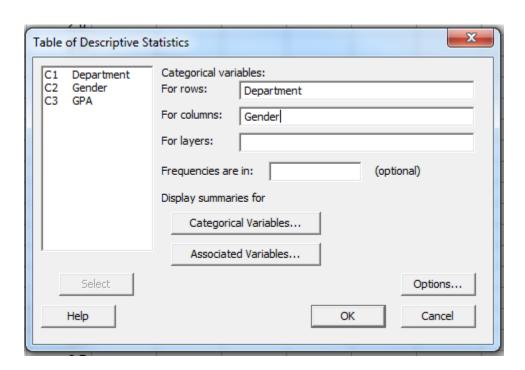
C10 🗸
Rain/Sun
0.72021
0.59160
1.61597
1.87447


Pulse1	Pulse2	Ran	Smokes	Sex	Height	Weight	Activity
64	88	1	2	1	66.00	140	2
58	70	1	2	1	72.00	145	2
62	76	1	1	1	73.50	160	3
66	78	1	1	1	73.00	190	1
64	80	1	2	1	69.00	155	2
74	84	1	2	1	73.00	165	1
			-				-

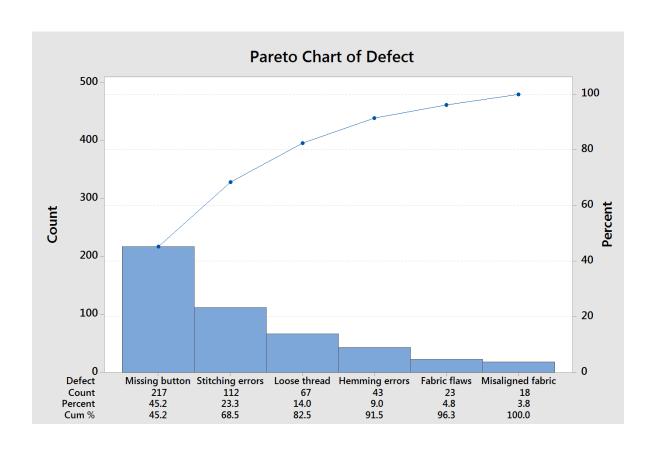


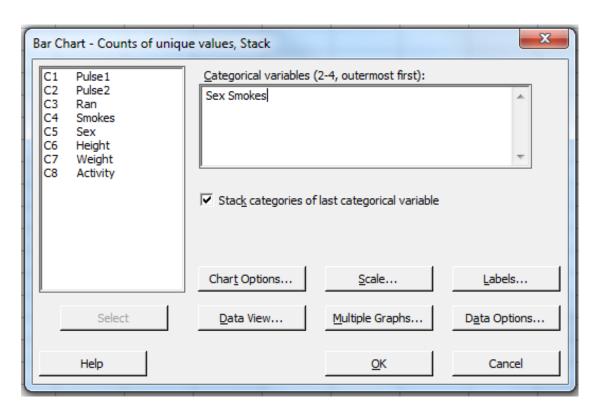


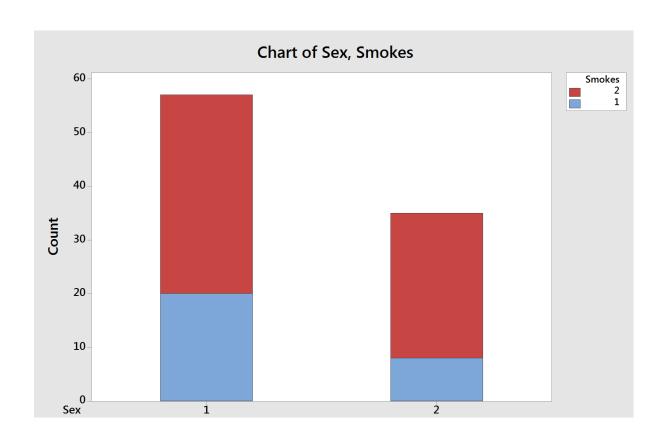
Volunteer	Surname
Joan Sherrif	Sherrif
Nicholas Kouiden	Kouiden
Robert thompson	Thompson
katie mclane	Mclane
Sarah roberts	Roberts

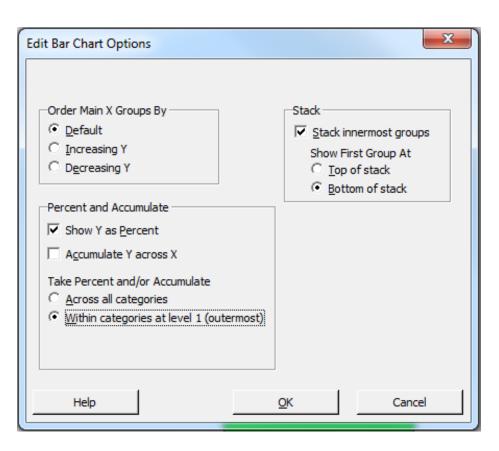

Chapter 2, Tables and Graphs

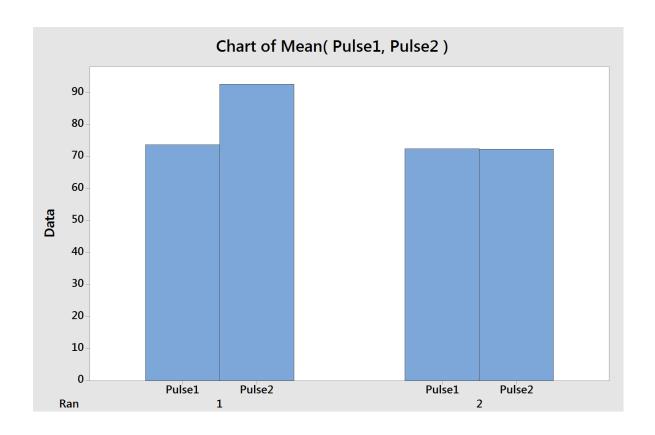
Tally for Discrete Variables: Gender

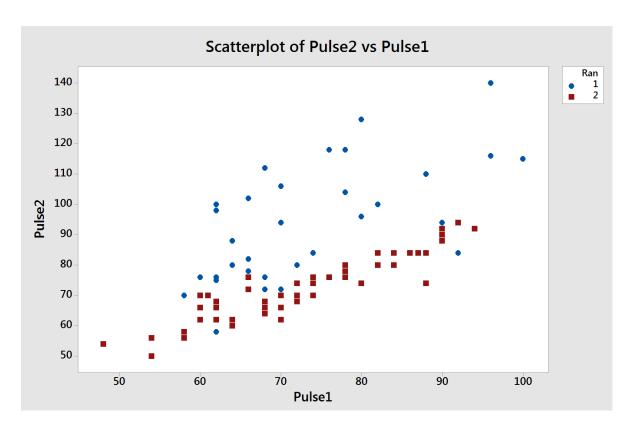

Gender	Count	Percent
F	26	52.00
M	24	48.00
N=	50	

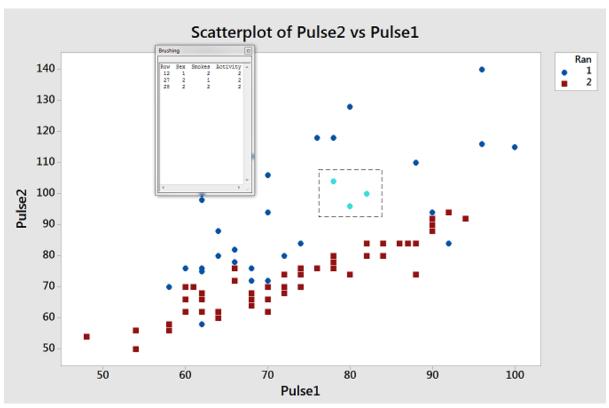


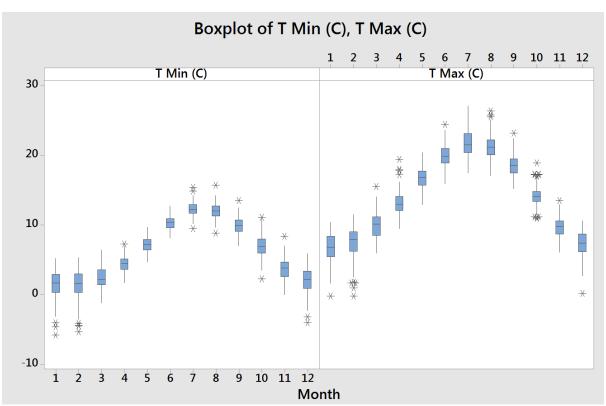

Tabulated statistics: Department, Gender

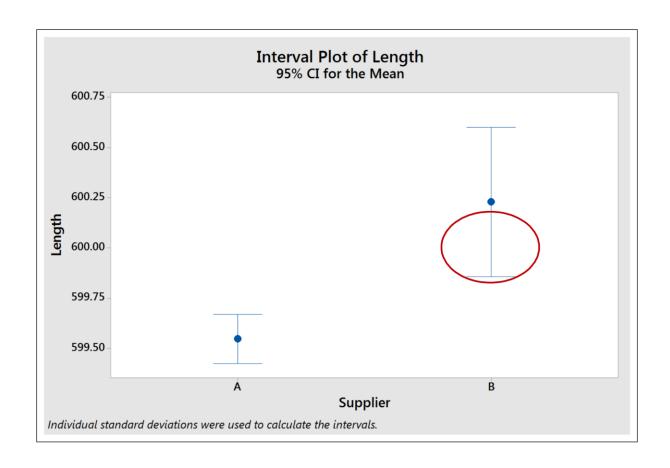

Rows: Department		Columns	: Gender
	F	M	A11
Economics	2.833	3.070	2.928
	15	10	25
Stats	3.027	2.793	2.896
	11	14	25
All		2.908	2.912
	26	24	50
Cell Content	s: GP		an unt

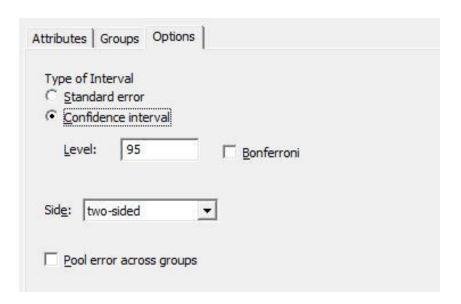

ı

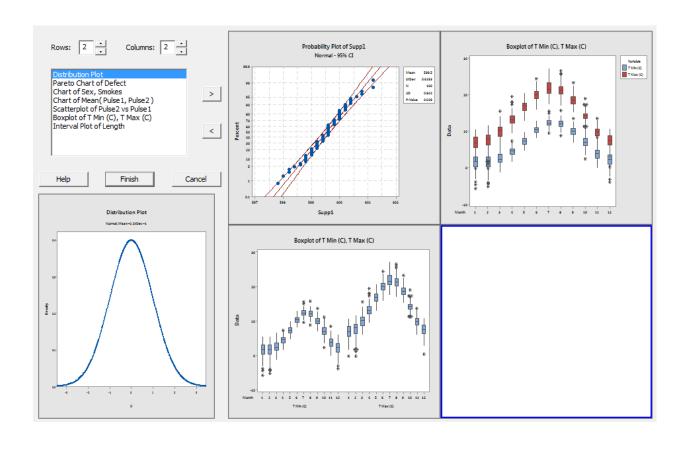


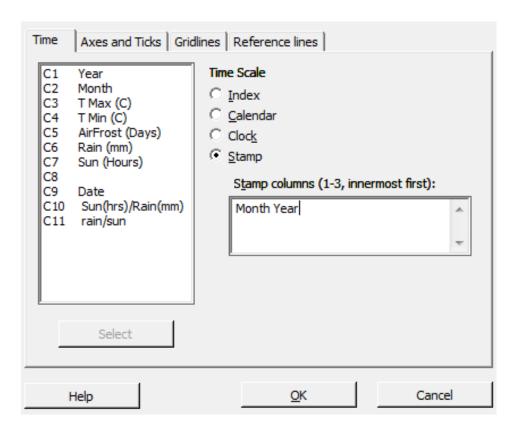


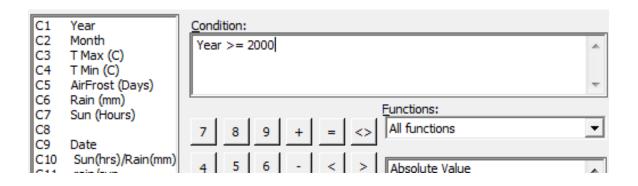


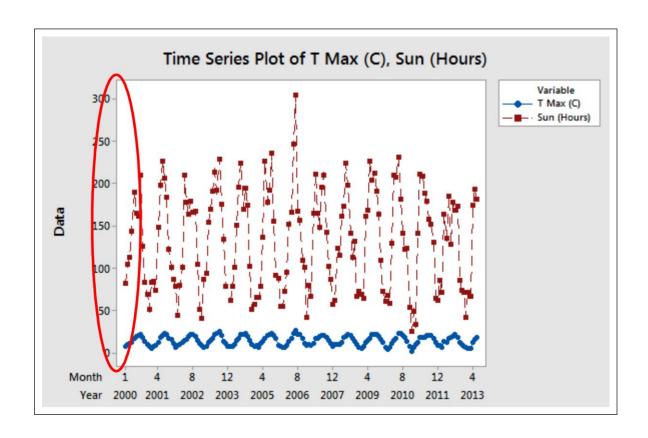


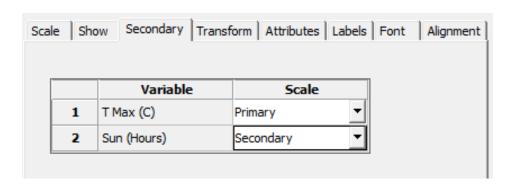


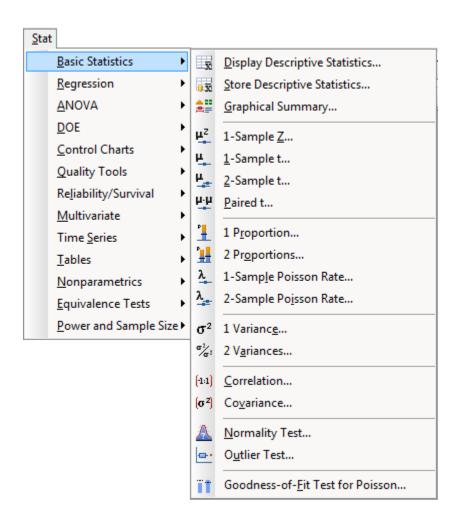


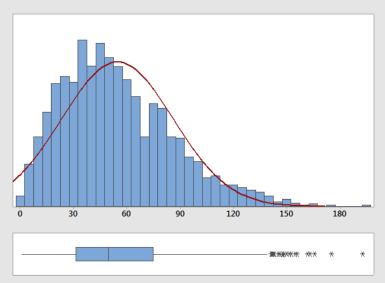




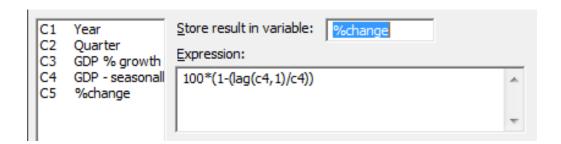


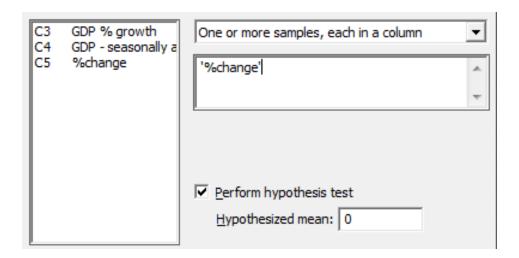






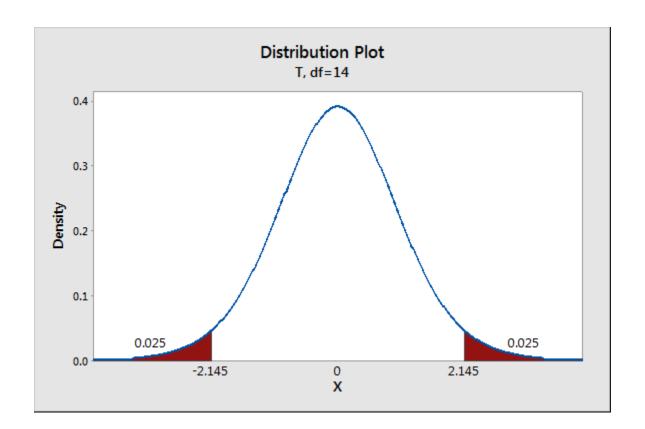
Chapter 3, Basic Statistical Tools




Anderson-Darling Normality Test				
A-Squared	18.20			
P-Value	<0.005			
Mean	54.743			
StDev	31.441			
Variance	988.521			
Skewness	0.757477			
Kurtosis	0.361225			
N	1926			
Minimum	0.500			
1st Quartile	31.275			
Median	49.750			
3rd Quartile	74.825			
Maximum	192.900			
95% Confidence In	terval for Mean			
53.338	56.148			
95% Confidence Interval for Median				
48.000	51.350			
95% Confidence In	terval for StDev			
30.478	32.466			

95% Confidence Intervals

C1-T	C2-T	C3	C4
Year	Quarter	GDP % growth	GDP - seasonally adjusted
2009	Q2	-0.2	349261
2009	Q3	0.4	350643
2009	Q4	0.4	352091
2010	Q1	0.6	354177
2010	Q2	0.7	356701
2010	Q3	0.6	358885
2010	Q4	-0.4	357324
2011	Q1	0.5	359114
2011	Q2	0.1	359405
2011	Q3	0.6	361599
2011	Q4	-0.1	361130
2012	Q1	-0.1	360880
2012	Q2	-0.4	359538
2012	Q3	0.9	362914
2012	Q4	-0.3	361846
2013	Q1	0.3	362932


Specify values for any two of the following:			
Sample sizes:	15		
<u>D</u> ifferences:			
Po <u>w</u> er values:	0.8 0.9		
Standard deviation:	0.43		

C1-T	C2-T	C3	C4
Year	Quarter	GDP % growth	GDP - seasonally adjusted
2009	Q2	-0.2	349261
2009	Q3	0.4	350643
2009	Q4	0.4	352091
2010	Q1	0.6	354177
2010	Q2	0.7	356701
2010	Q3	0.6	358885
2010	Q4	-0.4	357324
2011	Q1	0.5	359114
2011	Q2	0.1	359405
2011	Q3	0.6	361599
2011	Q4	-0.1	361130
2012	Q1	-0.1	360880
2012	Q2	-0.4	359538
2012	Q3	0.9	362914
2012	Q4	-0.3	361846
2013	Q1	0.3	362932

Specify values for any two of the following:				
Sample sizes:				
Differences:	123			
Power values:	.8.9			
Standard deviation:	1			

	Sample	Target	
Difference	Size	Power	Actual Power
1	17	0.8	0.807037
1	23	0.9	0.912498
2	6	0.8	0.876418
2	7	0.9	0.929070
3	4	0.8	0.938936
3	4	0.9	0.938936

The sample size is for each group.

Code data from columns: Smokes	
Store coded data in columns:	
Smokes	
Original values (eg, 1:4 12):	New: Smokes
2	Does not Smoke


```
Sex X N Sample p
1 37 57 0.649123
2 27 35 0.771429
```

```
Difference = p(1) - p(2)
```

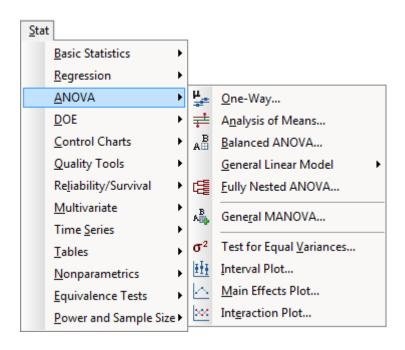
Estimate for difference: -0.122306

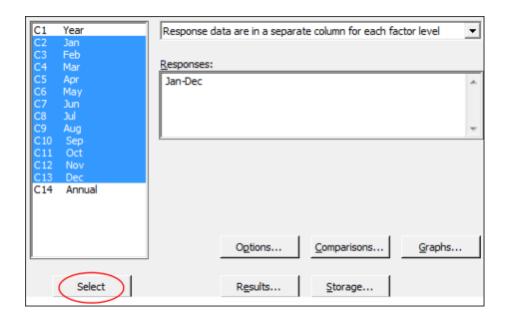
95% CI for difference: (-0.308592, 0.0639809)

Test for difference = 0 (vs not = 0): Z = -1.29 P-Value = 0.198

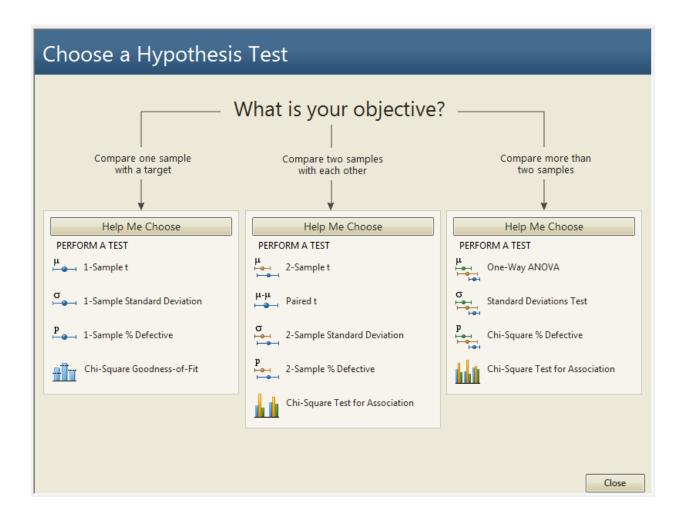
Enter your own sample names or use the defaults. Type in the data for the two samples.

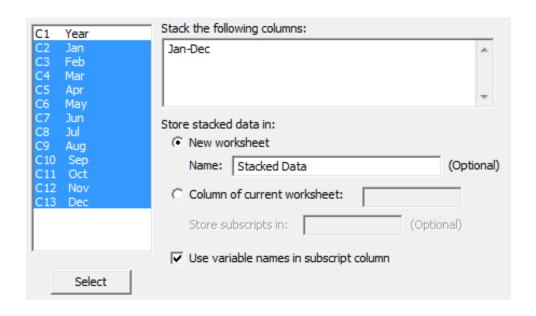
Sample Name	Total Number Tested	Number of Defectives
After	150	6
Before	200	21

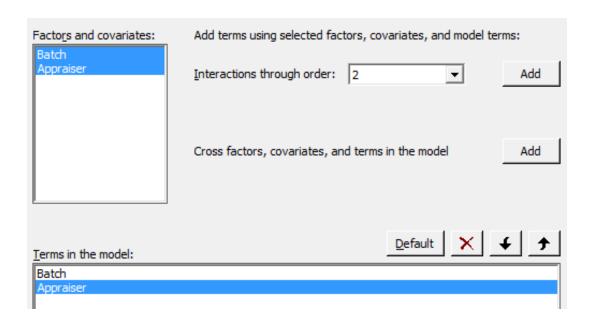

Test setup -


What do you want to determine?

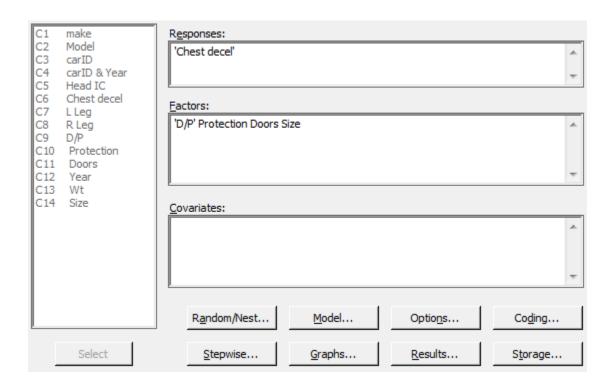

- Is the % defective of After greater than the % defective of Before?
- Is the % defective of After less than the % defective of Before?
- C Is the % defective of After different from the % defective of Before?

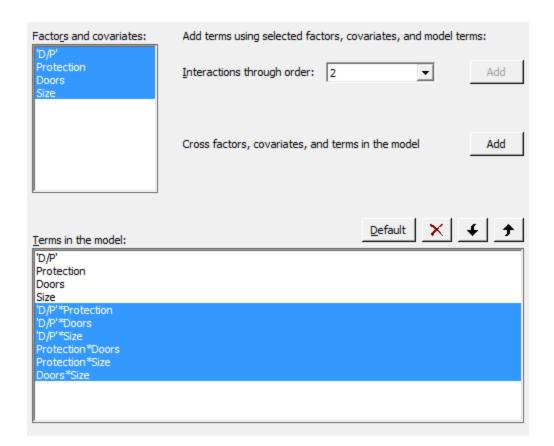

Enlisted	Service	Gender
392392	Army	Male
234002	Navy	Male
167164	Marine Corps	Male
206734	Air Force	Male
29374	Coast Guard	Male
59672	Army	Female
41294	Navy	Female
11049	Marine Corps	Female
51361	Air Force	Female
3854	Coast Guard	Female


Chapter 4, Using Analysis of Variance



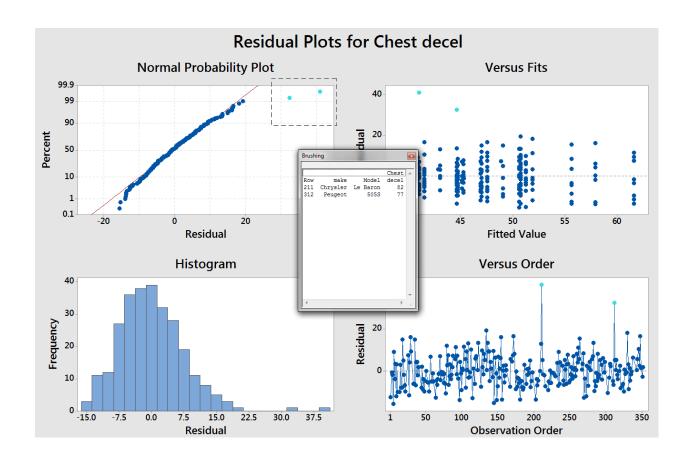
C1 NOISE C2 SIZE	Responses: NOISE	
C3 TYPE C4 SIDE	Model: SIZE TYPE SIDE	_
		*


Appraiser	Batch1	Batch2	Batch3	Batch4
Α	7.75	7.25	8.75	7.50
Α	7.50	7.25	8.50	7.50
В	8.00	7.50	8.00	6.75
В	7.50	6.75	8.25	7.00
С	7.25	7.00	8.50	7.25
С	7.00	7.50	8.25	7.00
D	7.50	6.25	8.00	6.75
D	7.75	6.50	8.50	7.00


s	Stack two or more blocks of columns on top of each other:	
	Batch1 Appraiser	
Γ	Batch2 Appraiser	
Γ	Batch3 Appraiser	
[Batch4 Appraiser	
1		
s	Store stacked data in:	
	New worksheet	
	Name: Stacked results (Optional))
	C. Caliman of a mark madeleasts	

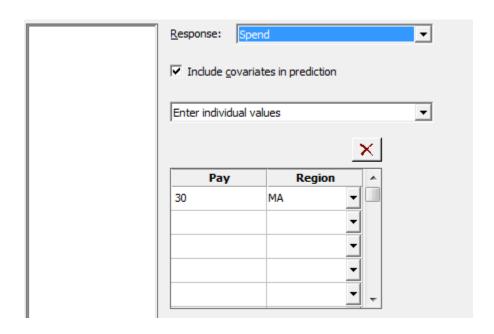
Factor/Covariat	te	Nested in specified factors		
Batch				
Appraiser				
actor type:	Туре			
	Type Random Random	<u> </u>		

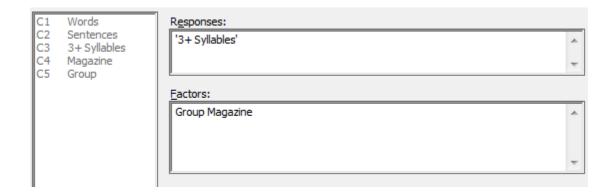
$$F = \mathit{MS}_{\mathit{batch}} \ / \ \mathit{MS}_{\mathit{Batch*Appraiser}}$$



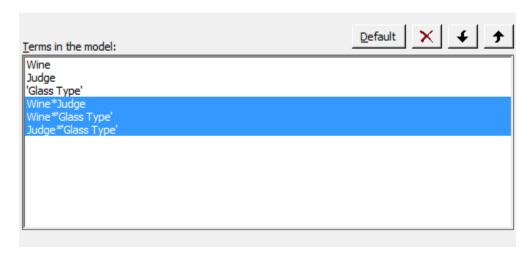
Analysis of Variance

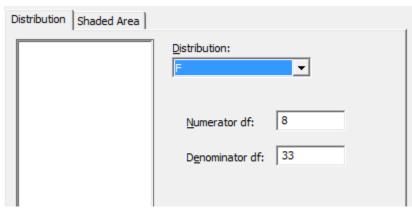
Source	DF	Adj SS	Adj MS	F-Value	P-Value
D/P	1	458.1	458.06	7.67	0.006
Protection	4	538.3	134.57	2.25	0.064
Doors	1	659.6	659.60	11.04	0.001
Size	5	3243.9	648.79	10.86	0.000
D/P*Protection	4	96.6	24.15	0.40	0.806
D/P*Doors	1	130.2	130.15	2.18	0.141
D/P*Size	5	95.5	19.10	0.32	0.901
Doors*Size	5	203.0	40.60	0.68	0.639
Error	248	14818.2	59.75		
Lack-of-Fit	35	2234.6	63.85	1.08	0.358
Pure Error	213	12583.6	59.08		
Total	274	22757.9			

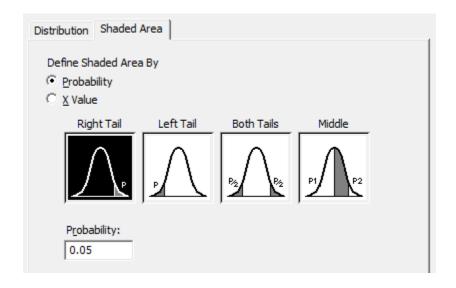

Analysis of Variance

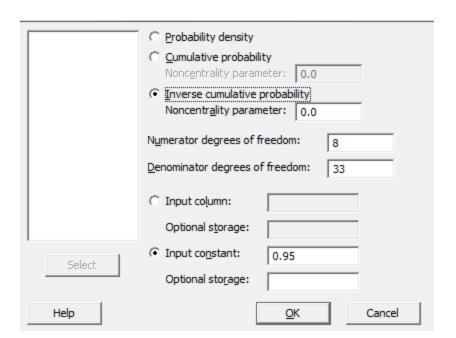

Source	DF	Adj SS	Adj MS	F-Value	P-Value
D/P	1	2487.4	2487.37	41.94	0.000
Doors	1	851.0	851.00	14.35	0.000
Size	5	3600.6	720.11	12.14	0.000
Error	267	15836.9	59.31		
Lack-of-Fit	54	3253.3	60.25	1.02	0.447
Pure Error	213	12583.6	59.08		
Total	274	22757.9			

Analysis of Variance

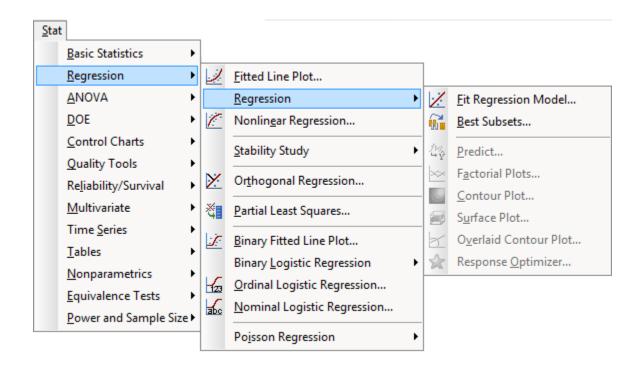

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Pay	1	6.8875	6.88753	24.09	0.000
Region	8	3.0162	0.37702	1.32	0.269
Pay*Region	8	3.1138	0.38922	1.36	0.249
Error	33	9.4356	0.28593		
Lack-of-Fit	31	9.2775	0.29927	3.79	0.230
Pure Error	2	0.1581	0.07903		
Total	50	55.6447			

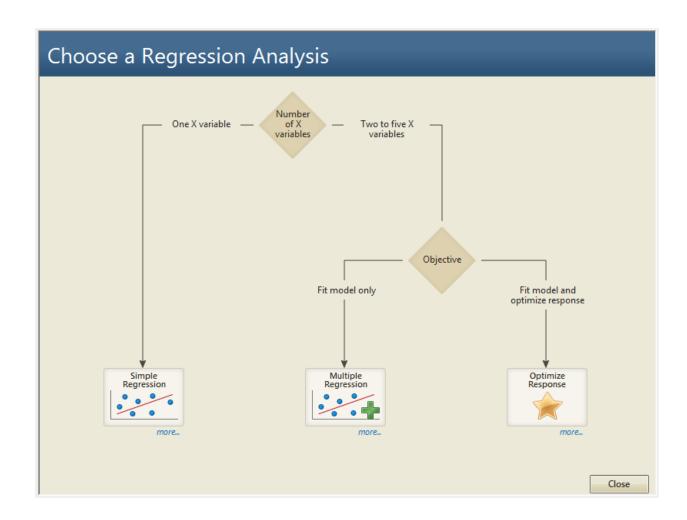


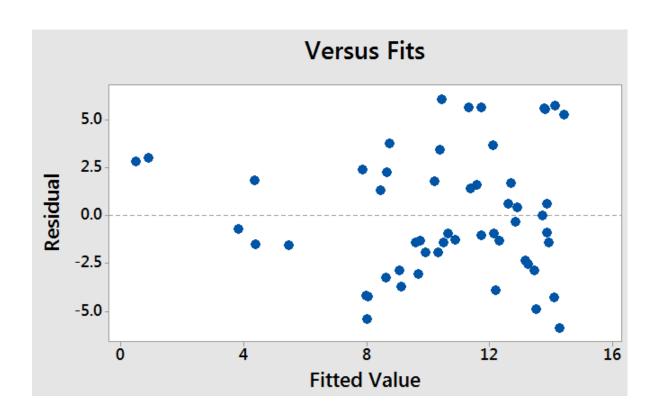


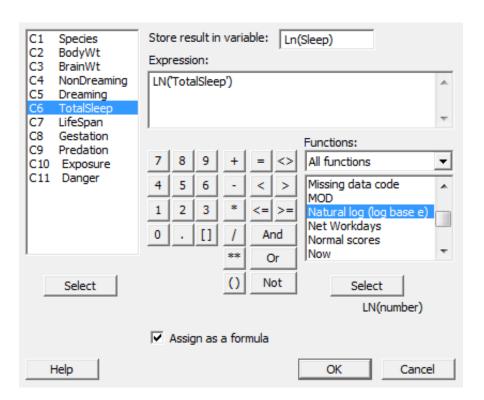

Judge	Wine1	Wine2	Wine3	Glass Type
Α	23	18	26	1
Α	20	16	23	2
Α	22	19	25	1
В	25	22	28	1
В	23	19	25	2
В	22	19	25	2
С	20	17	23	2
С	23	19	25	1
С	23	19	27	2

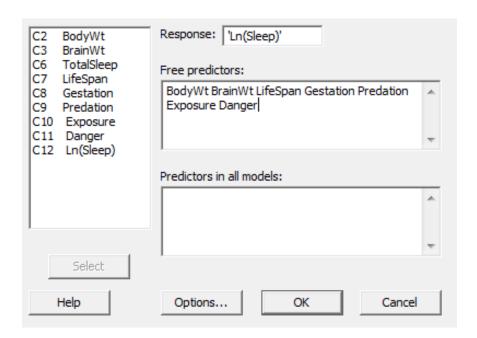
	Stack two or more blocks of columns on top of each other:
	Wine 1 Judge 'Glass Type'
	Wine2 Judge 'Glass Type'
	Wine3 Judge 'Glass Type'
	Store stacked data in:
	• New worksheet
1	Name: (Optional)
Colora	C Columns of current worksheet:
Select	
	Store subscripts in: (Optional)
	Use variable names in subscript column





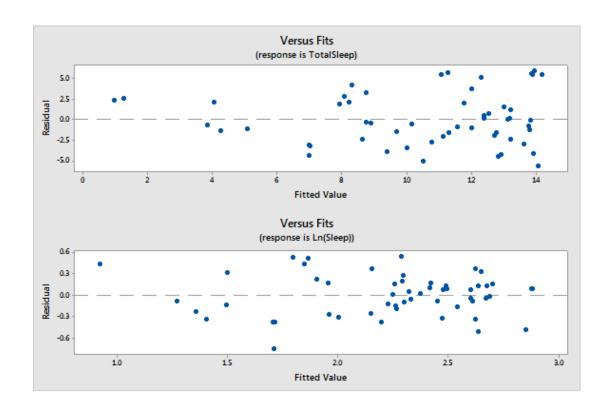

Chapter 5, Regression and Modeling the Relationship between X and Y





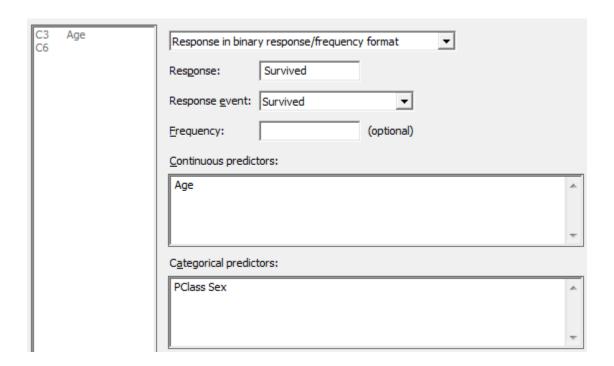
Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	16.60	1.08	15.40	0.000	
BodyWt	-0.00160	0.00146	-1.09	0.280	12.93
BrainWt	0.00232	0.00161	1.44	0.158	16.70
LifeSpan	-0.0398	0.0354	-1.13	0.266	2.80
Gestation	-0.01647	0.00621	-2.65	0.011	4.84
Predation	2.393	0.971	2.46	0.018	12.90
Exposure	0.633	0.559	1.13	0.263	4.80
Danger	-4.51	1.19	-3.80	0.000	17.71



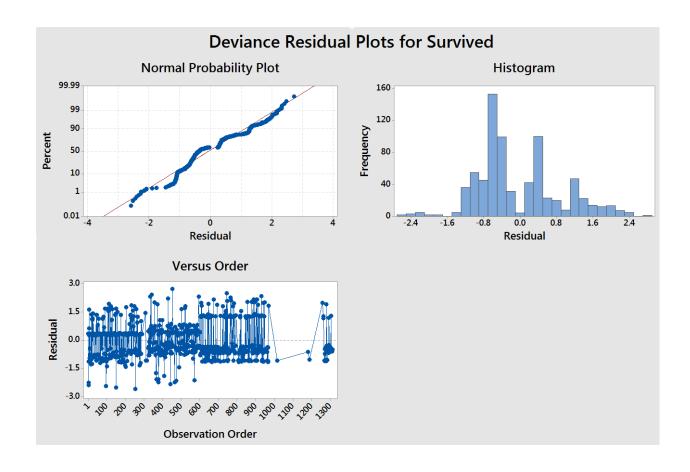
Analysis of Variance

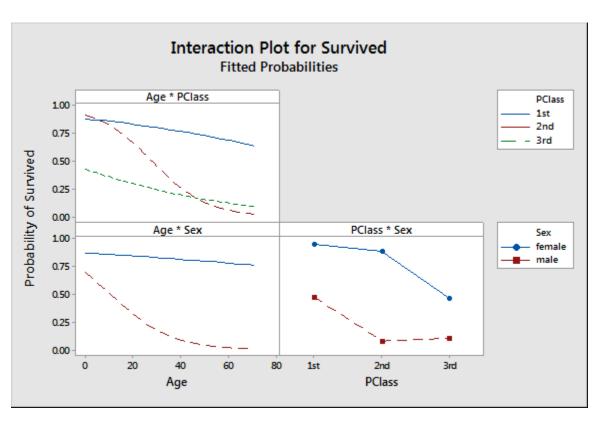
Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	10.5249	3.50829	40.23	0.000
Gestation	1	1.9890	1.98897	22.81	0.000
Predation	1	0.4688	0.46884	5.38	0.025
Danger	1	1.5108	1.51078	17.32	0.000
Error	50	4.3606	0.08721		
Lack-of-Fit	49	4.3547	0.08887	14.91	0.203
Pure Error	1	0.0060	0.00596		
Total	53	14.8855			

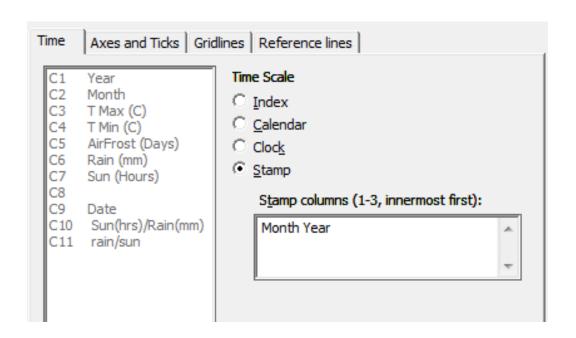

Model Summary

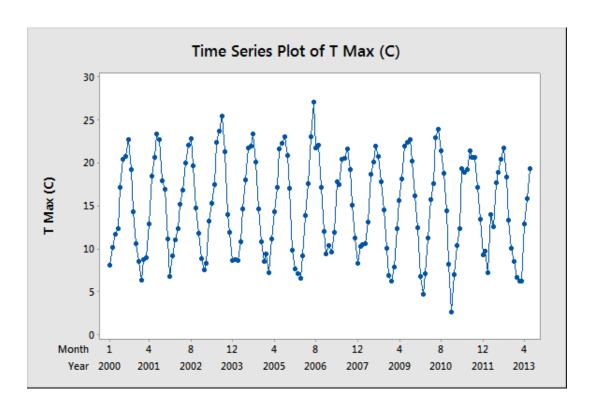
```
S R-sq R-sq(adj) R-sq(pred) 0.295318 70.71% 68.95% 65.70%
```


Coefficients					
Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	2.359	0.197	11.97	0.000	
Gestation	-0.002109	0.000409	-5.16	0.000	2.29
Predation	0.421	0.110	3.81	0.000	18.26
Danger	-0.174	0.135	-1.29	0.204	25.06
Exposure	0.0953	0.0568	1.68	0.101	5.44
Predation*Danger	-0.0868	0.0276	-3.15	0.003	37.37

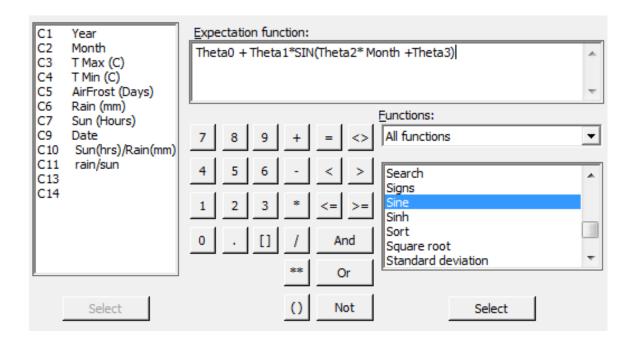

Code data from columns:	
Survived	
Store coded data in columns:	
Survived	
Original values (eg, 1:4 12):	New:
0	Casualty
1	Survived




Deviance Table


Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	9	383.60	42.6227	383.60	0.000
Age	1	0.46	0.4595	0.46	0.498
PClass	2	32.94	16.4720	32.94	0.000
Sex	1	1.25	1.2526	1.25	0.263
Age*PClass	2	8.64	4.3184	8.64	0.013
Age*Sex	1	13.64	13.6395	13.64	0.000
PClass*Sex	2	21.07	10.5354	21.07	0.000
Error	746	642.66	0.8615		
Total	755	1026.26			

$$Y = \ln\left(\frac{\pi}{1 - \pi}\right)$$

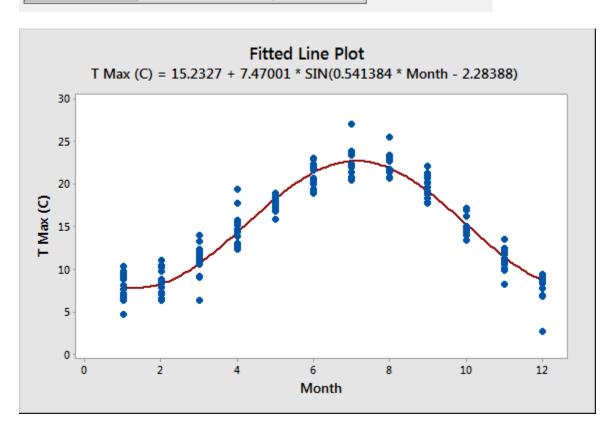

$$\theta_0 + \theta_1 * \sin(\theta_2 * Month + \theta_3)$$

 θ_0 = Mean temperature

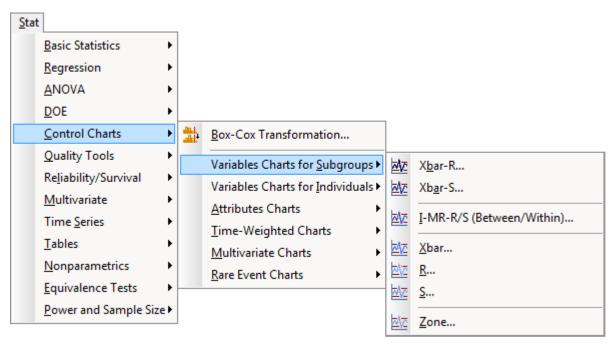
 θ_1 = Magnitude of the sine wave

$$\theta_2 = 2 * \pi / 12$$

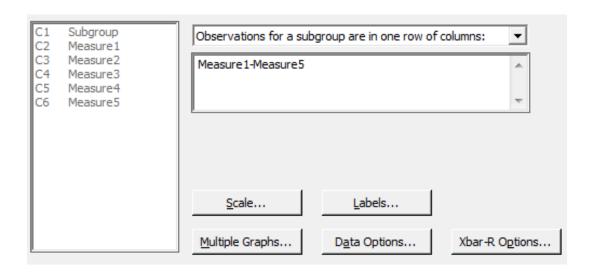
 θ_3 = Offset for the start of the sine wave

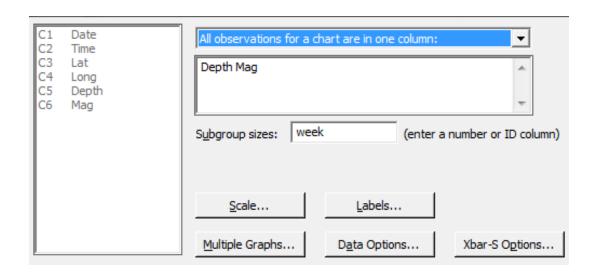


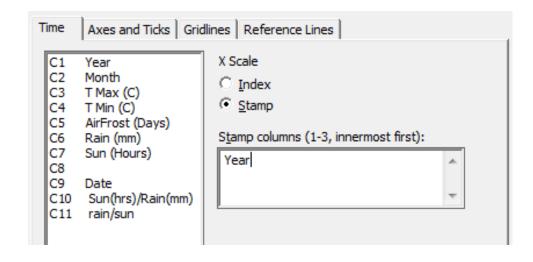
Function

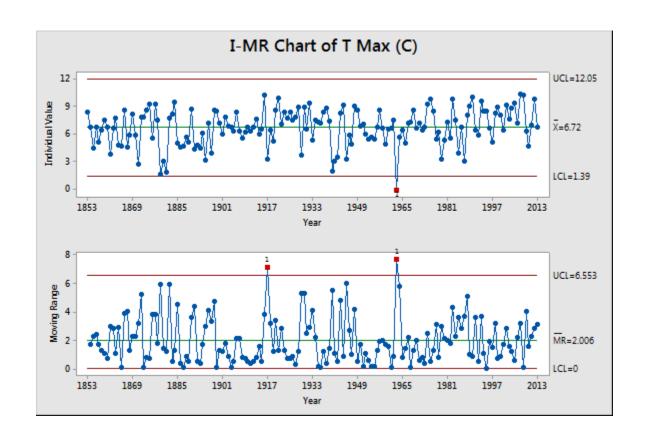

Theta0 + Theta1*SIN(Theta2* Month +Theta3)

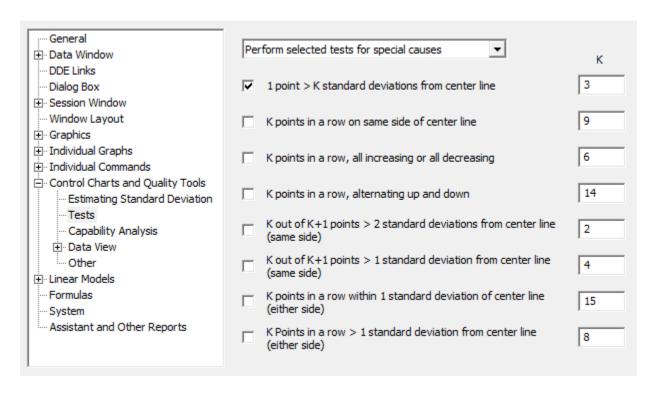
Required starting values:

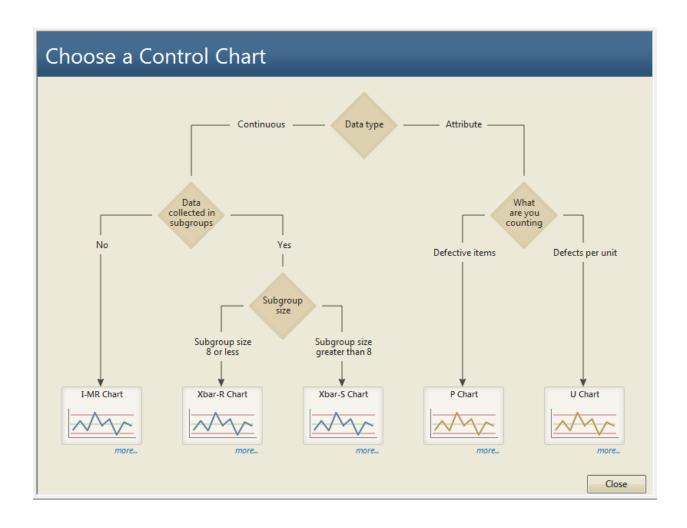

Parameter	Values	Locked
Theta0	15	
Theta1	10	
Theta2	0.52359878	
Theta3	0	

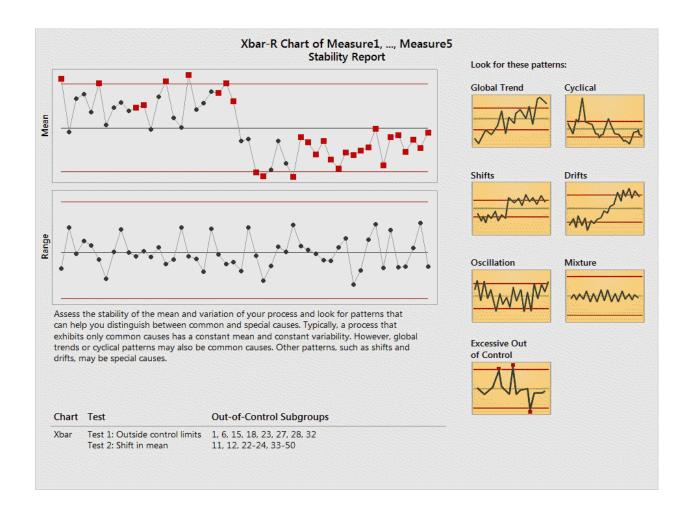


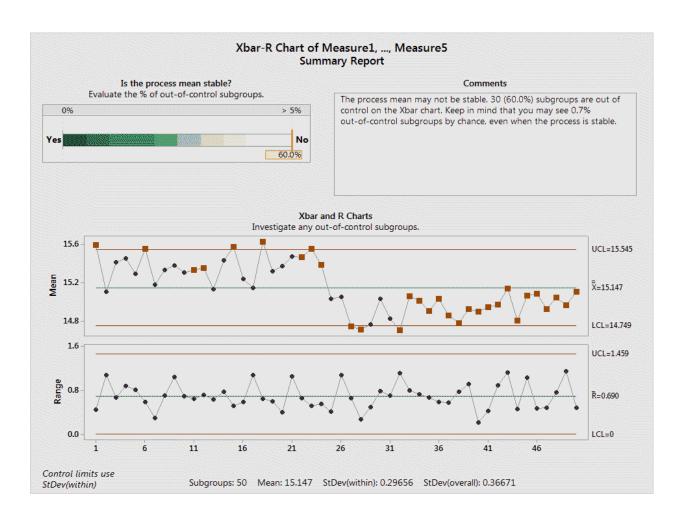

Chapter 6, Understanding Process Variation with Control Charts



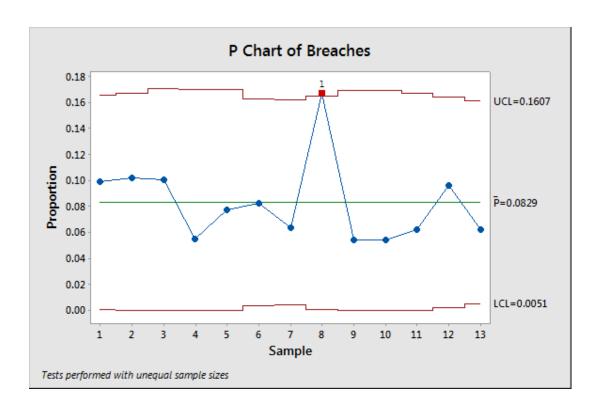

Subgroup	Measure1	Measure2	Measure3	Measure4	Measure5	Stacked [)ata S	tacked Subgroup
1	15.84	15.55	15.39	15.45	15.75	1:	5.84	1
2	15.79	15.09	14.72	15.20	14.74	1:	5.55	1
3	15.73	15.35	15.06	15.40	15.52	1:	5.39	1
						1:	5.45	1
						1:	5.75	1
						1:	5.79	2
						1:	5.09	2
						14	1.72	2
						1	5.20	2
						14	1.74	2
					1	1:	5.73	3
						1:	5.35	3
					1	1:	5.06	3
					1	1:	5.40	3
					1	1:	5.52	3



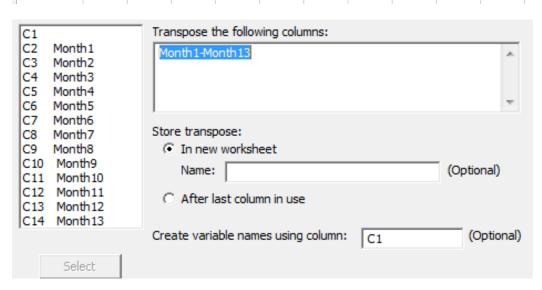




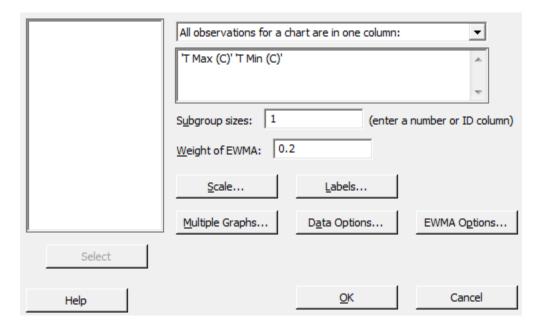
Check	Status	Report Card Description
Stability	<u> </u>	The process variation is stable. No subgroups are out of control on the R chart. However, the process mean may not be stable. 30 (60.0%) subgroups are out of control on the Xbar chart (you may see 0.7% out-of-control subgroups by chance, even when the process is stable). You should investigate out-of-control subgroups and omit those with special causes from the calculations.
Amount of Data	\checkmark	You do not need to be concerned about the precision of your control limits because 100 or more data points are included in the calculations.
Correlated Data	\checkmark	Your data passed the correlation test. The correlation between consecutive data points within each subgroup is less than 0.2
Alternative Charts	1	This chart is intended to monitor process control. If your primary objective is to explore your data or compare your process before and after a change, use the Graphical Analysis Control Charts or the Before/After Control Charts.



		1	2	3	4	5	6	7	8	9	10	11	12	13
/	A&E attendance	101	98	90	91	91	109	110	102	93	92	97	104	113
E	3reaches	10	10	9	5	7	9	7	17	5	5	6	10	7

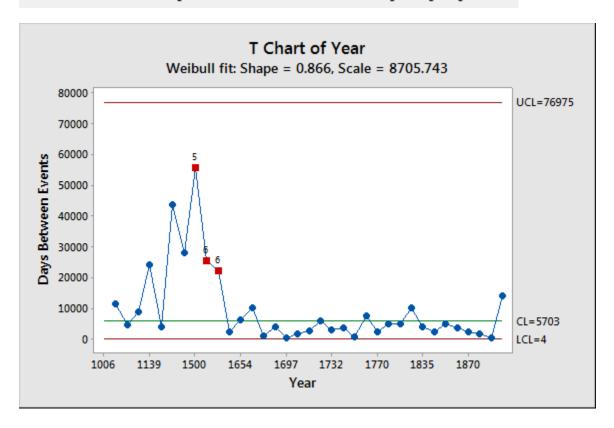

	Transpose the following columns:		
	'1'-'13'		A
			+
	Store transpose: • In new worksheet		
	Name:		(Optional)
	After last column in use		
,	Create variable names using column:	C1	(Optional)

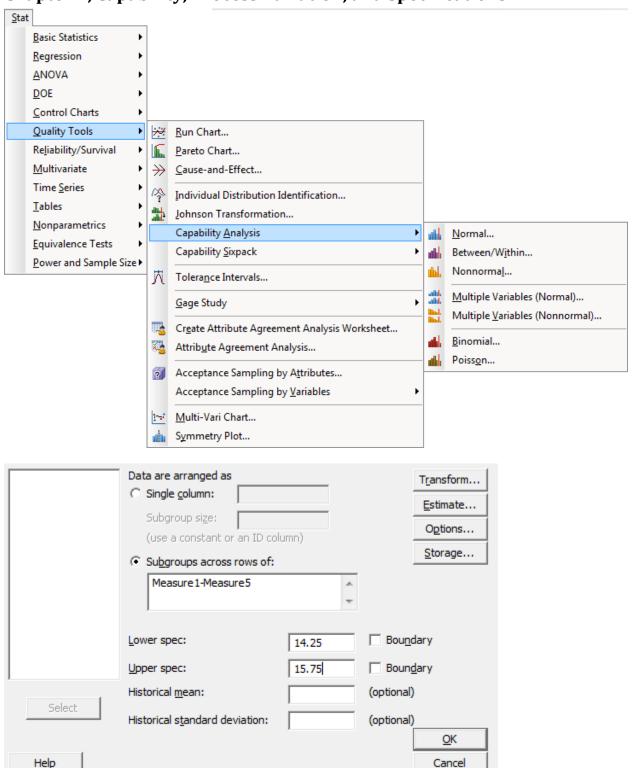
$$p \pm 3 \sqrt{\frac{p(1-p)}{n_i}}$$

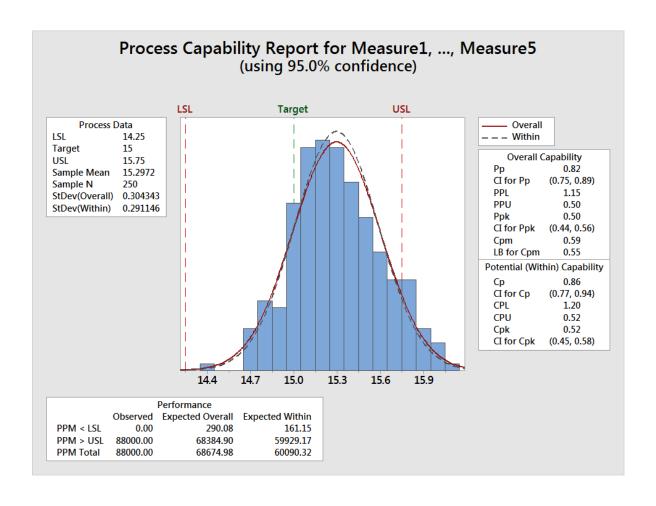


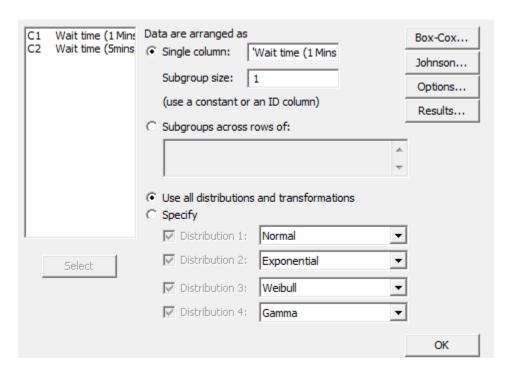
Parameters Estimate S Limits Tests	Stages Display Storage					
Place bounds on control limits Lower standard deviation limit bound: Upper standard deviation limit bound:						
When subgroup sizes are unequal, calcul Using actual sizes of the subgroups Assuming all subgroups have size:	ate control limits					

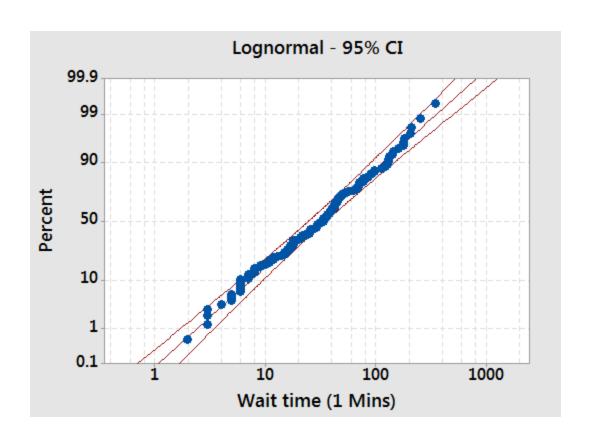
	Month1	Month2	Month3	Month4	Month5	Month6	Month7	Month8	Month9	Month10	Month11	Month12	Month13
Falls	1	4	3	4	2	3	5	2	0	2	6	2	5
Beds Occupied	1048	996	918	995	866	896	876	930	832	830	829	822	912


$$u \pm 3\sqrt{\frac{\mu}{n_i}}$$

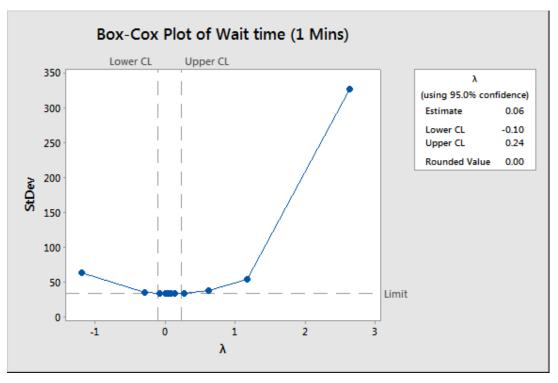

EWMAChart 'T Max (C) ' 1.

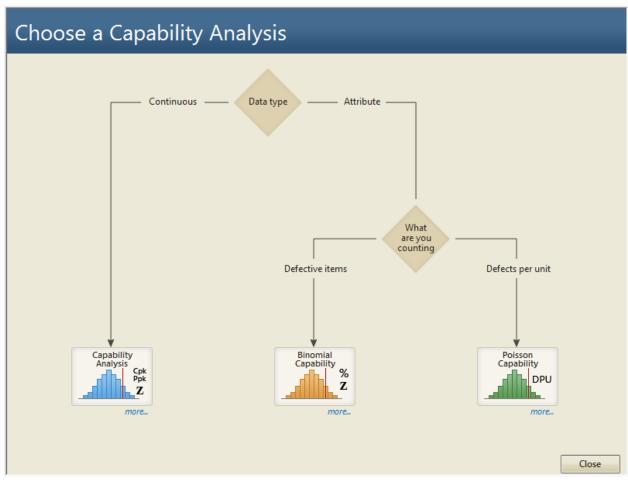

NOTE *** Closed graph: Graph4


* ERROR * Could not process command with missing subgroup mean.



Chapter 7, Capability, Process Variation, and Specifications

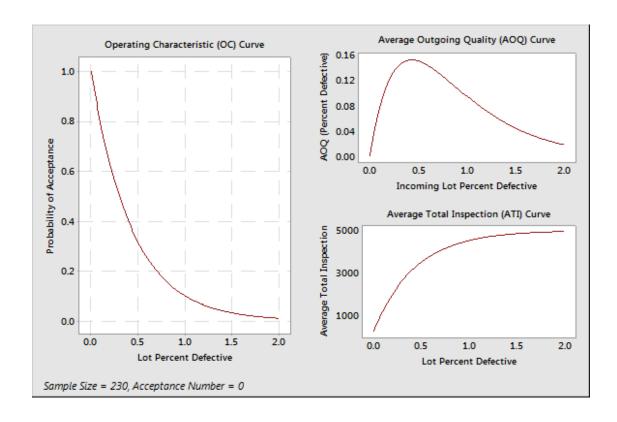


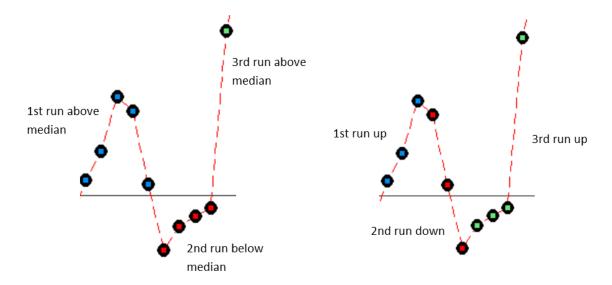


Goodness of Fit Test

Distribution	AD	P	LRT P
Normal	10.511	<0.005	
Box-Cox Transformation	0.394	0.371	
Lognormal	0.394	0.371	
3-Parameter Lognormal	0.420	*	0.857
Exponential	1.110	0.087	
2-Parameter Exponential	0.906	0.141	0.003
Weibull	1.124	<0.010	
3-Parameter Weibull	0.632	0.103	0.001
Smallest Extreme Value	17.844	<0.010	
Largest Extreme Value	4.453	<0.010	
Gamma	1.226	<0.005	
3-Parameter Gamma	0.765	*	0.003
Logistic	6.810	<0.005	
Loglogistic	0.455	0.217	
3-Parameter Loglogistic	0.548	*	0.235
Johnson Transformation	0.306	0.562	

$$PpU = \frac{UCL - X_{0.5}}{X_{0.99865} - X_{0.5}}$$

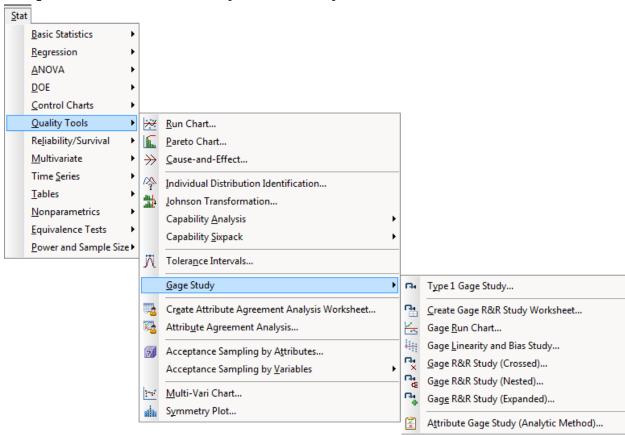

Baseline process	data		
How are your o	data arranged in the w	orksheet?	
Data are in on	e column		T
Column:	Before		
Subgroup size:	1		
	,		
Improved proces	s data		
How <u>a</u> re your	data arranged in the v	vorksheet?	
Data are in on	e column		T
Column:	After		
Subgroup size:	1		
Process requirem	ents		
Lower spec:	14.25	(at least 1 spec limit is required)	
Upper spec:	15.75		
<u>T</u> arget:	15	(optional)	


```
Sample Size 67
Critical Distance (k Value) 2.66087
Maximum Standard Deviation (MSD) 0.259840

Z.LSL = (mean - lower spec)/standard deviation
Z.USL = (upper spec - mean)/standard deviation
Accept lot if standard deviation <= MSD, Z.LSL >= k and Z.USL >= k; otherwise reject.
```

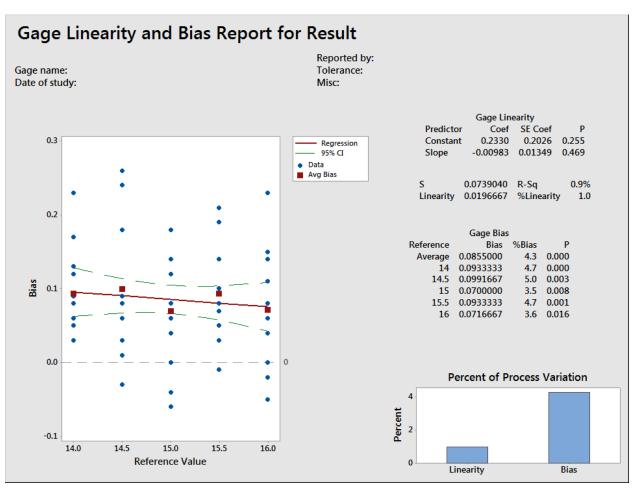
Average outgoing quality limit (AOQL) = 0.200 at 0.394 percent defective.

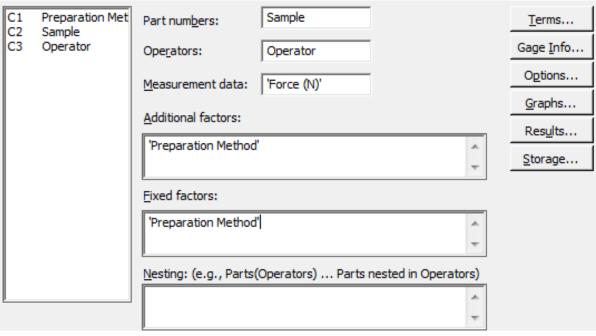
Compare User Defined S	ampling Plans		•	Options
Measurement type:	Go / no go (defective)			<u>G</u> raphs
Units for quality levels:	Percent defectiv	e	▼	
Acceptable quality level (AQL):	.1		
Rejectable quality level (RQL or LTPD):	1		
Sample sizes:	230			
Acceptance numbers:	0			
<u>L</u> ot size:		5000		
Lot size.		15555		



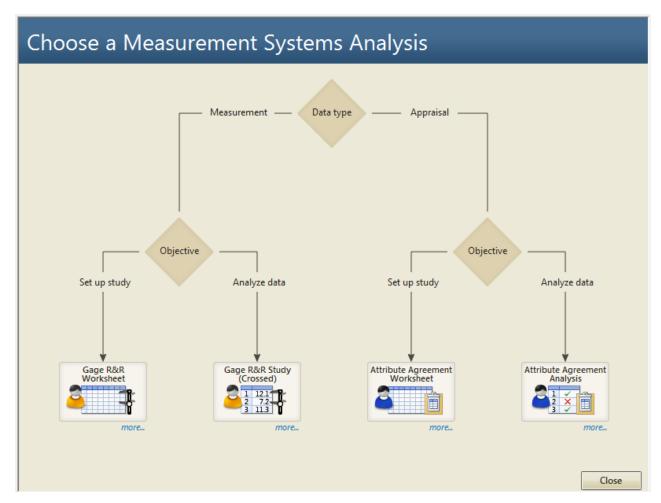
Runs about median

Runs up or down

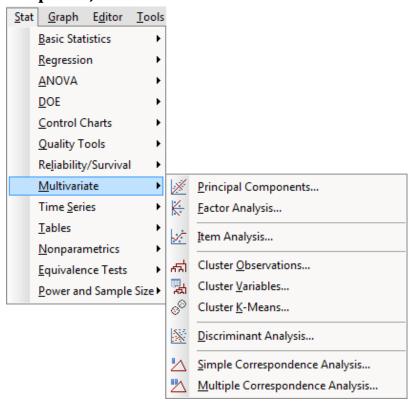

Chapter 8, Measurement Systems Analysis

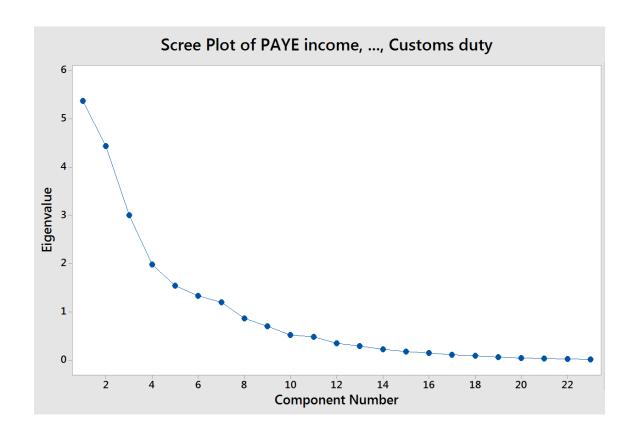


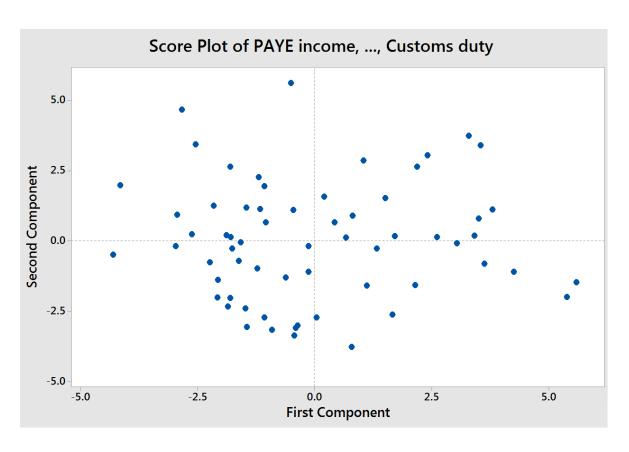
+							Pa	irt
		Trial	1	2	3	4	5	6
		1						
	đ	2						
	Operator A	Means						
	Ope	Range						
		1						
	Operator B	2						
		Means						
	Oper	Range						

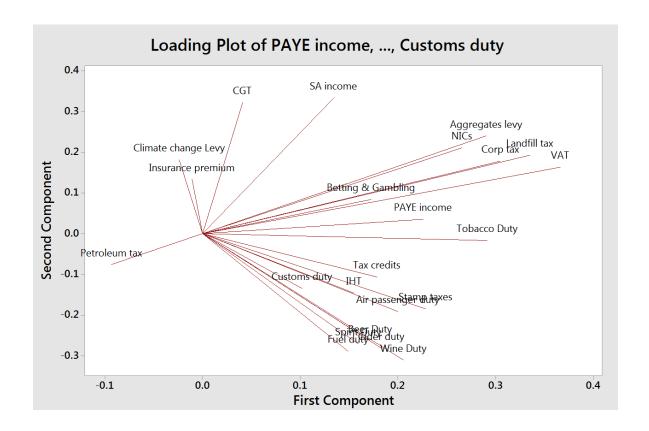


Store patterned data in: Operator Text values (eg, red "light blue"):	
Helen Robert	A
Number of times to list each <u>v</u> alue: Number of times to list the se <u>q</u> uence:	10

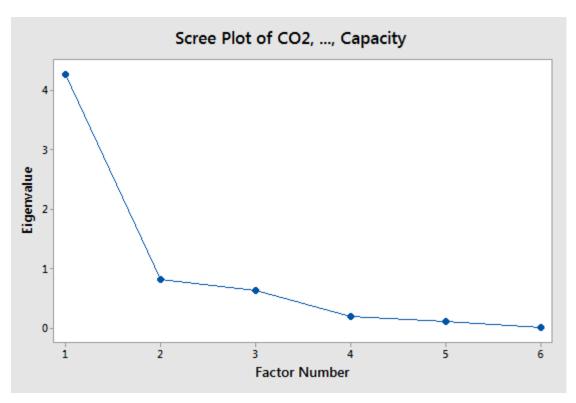


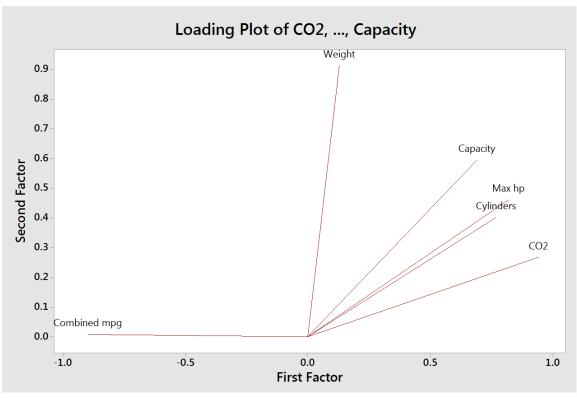

C1	C2	C3	C4
Part	Reference	Accepted	Trials
1	0.2500	20	20
2	0.2505	19	20
3	0.2510	16	20
4	0.2515	11	20
5	0.2520	5	20
6	0.2525	4	20
7	0.2530	1	20
8	0.2535	0	20



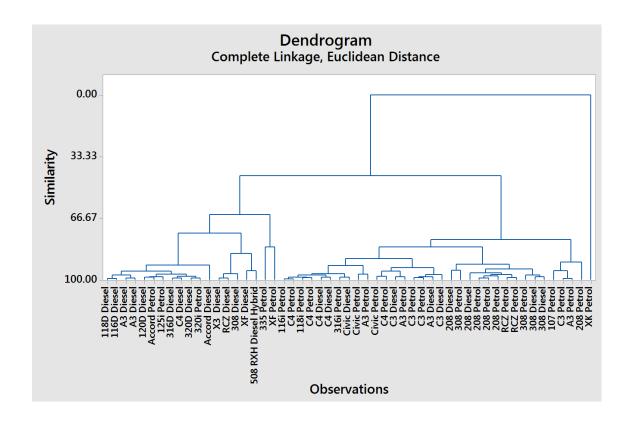

Chapter 9, Multivariate Statistics

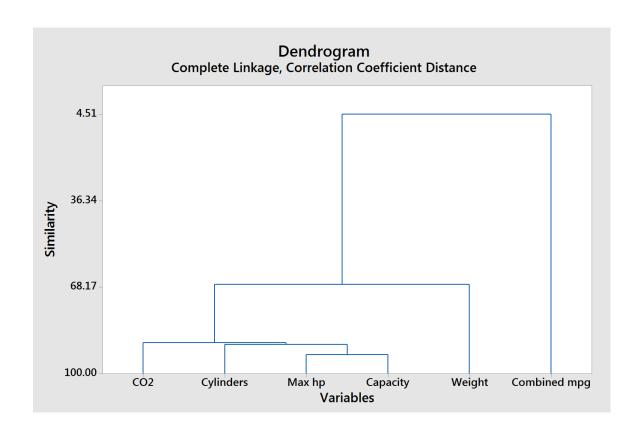
Variable	PC1	PC2
PAYE income	0.226	0.036
SA income	0.134	0.333
CGT	0.041	0.322
Tax credits	0.179	-0.106
NICs	0.266	0.212
VAT	0.366	0.163
Corp tax	0.305	0.178
Petroleum tax	-0.093	-0.076
Fuel duty	0.149	-0.288
IHT	0.155	-0.145
Stamp taxes	0.228	-0.184
Tobacco Duty	0.291	-0.017
Spirit Duty	0.159	-0.270
Beer Duty	0.171	-0.263
Wine Duty	0.206	-0.310
Cider duty	0.183	-0.282
Betting & Gambling	0.173	0.085
Air passenger duty	0.200	-0.191
Insurance premium	-0.011	0.134
Landfill tax	0.335	0.193
Climate change Levy	-0.024	0.182
Aggregates levy	0.291	0.240
Customs duty	0.102	-0.134

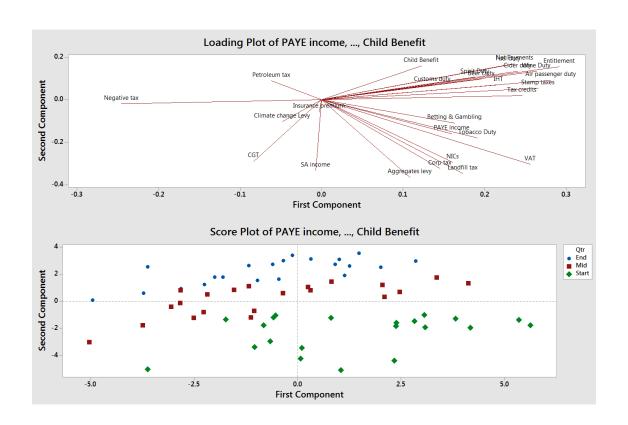

Principal Component Factor Analysis of the Correlation Matrix


Unrotated Factor Loadings and Communalities

Variable	Factor1	Factor2	Factor3	Factor4	Factor5	Fratane	Communality
variable	ractori	ractorz	ractors	ractor4	ractors	Factor6	Communality
C02	0.953	-0.223	-0.155	-0.032	0.103	0.072	1.000
Cylinders	0.866	-0.022	0.383	-0.306	-0.090	-0.008	1.000
Weight	0.555	0.735	-0.381	-0.078	-0.014	-0.002	1.000
Combined mpg	-0.781	0.442	0.435	0.036	-0.010	0.052	1.000
Max hp	0.941	0.005	0.078	0.255	-0.211	0.008	1.000
Capacity	0.892	0.185	0.330	0.143	0.200	-0.030	1.000
Variance	4.2583	0.8212	0.6209	0.1873	0.1033	0.0090	6.0000
% Var	0.710	0.137	0.103	0.031	0.017	0.002	1.000


Factor Score Coefficients


Variable	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C02	0.224	-0.272	-0.250	-0.170	1.000	8.015
Cylinders	0.203	-0.026	0.617	-1.634	-0.875	-0.914
Weight	0.130	0.896	-0.614	-0.416	-0.137	-0.257
Combined mpg	-0.183	0.539	0.701	0.192	-0.094	5.822
Max hp	0.221	0.006	0.125	1.359	-2.038	0.890
Capacity	0.209	0.225	0.532	0.762	1.932	-3.358



C1	Make	Store result in variable: Group	
C2	Model	Expression:	
C3	CO2	Expression:	
C4	Cylinders	CONCATENATE ('Model', " ", 'Fuel')	
C5	Weight		
C6	Combined mpg		
C7	Max hp	▼	
IC8	Capacity		

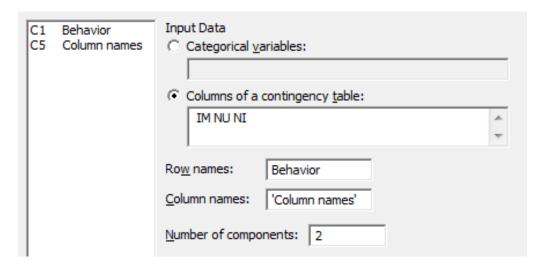
C1	Years	Code data from columns:				
C2 Month C3 Year	Month					
	Store coded data in columns:					
		qtr				
		Original values (eg, red "light blue"): Jan Apr Jul Oct	New:			
		Feb May Aug Nov	Mid			
		Mar Jun Sep Dec	End			

C1-T	C2-T	C3	C4	C5	C6	C7-T	C8	C9	C10
Battle	Combatant	Troops	Tanks	Aircraft	Losses	Outcome	Opposing Troops	Opposing Tanks	Opposing Aircraft
Stalingrad	Axis	1040000	500	732	850000	Loss	1143000	2400	1115
Stalingrad	Allies	1143000	2400	1115	1120000	Win	1040000	500	732
Kursk	Axis	912460	2928	2110	54182	Loss	1910361	5128	3000
Kursk	Allies	1910361	5128	3000	177847	Win	912460	2928	2110
Monte Cassino	Axis	140000	*	*	20000	Loss	240000	1900	4000
Monte Cassino	Allies	240000	1900	4000	55000	Win	140000	*	*
Battle of the Bulge	Axis	300000	440	2400	100000	Loss	665000	1616	6000
Battle of the Bulge	Allies	665000	1616	6000	90900	Win	300000	440	2400
El Alamein, Egypt I	Axis	96000	70	500	10000	Loss	150000	179	1500
El Alamein, Egypt I	Allies	150000	179	1500	13250	Win	96000	70	500
El Alamein, Egypt II	Axis	116000	547	480	30542	Loss	195000	1029	530
El Alamein, Egypt II	Allies	195000	1029	530	13560	Win	116000	547	480
Normandy	Axis	380000	0	*	209875	Loss	1452000	0	*
Normandy	Allies	1452000	0	*	226386	Win	380000	0	*
Battle of France	Axis	3350000	2445	5638	163650	Win	3300000	3383	2935
Battle of France	Allies	3300000	3383	2935	2260000	Loss	3350000	2445	5638
Battle of the Netherlands	Axis	750000	759	830	11000	Win	280000	1	145
Battle of the Netherlands	Allies	280000	1	145	11600	Loss	750000	759	830

Summary of classification

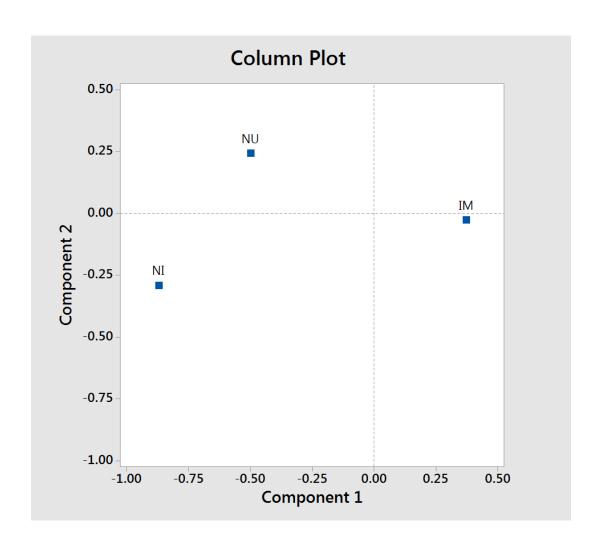
	True	Group	
Put into Group	Loss	Win	
Loss	7	2	
Win	0	5	
Total N	7	7	
N correct	7	5	
Proportion	1.000	0.714	

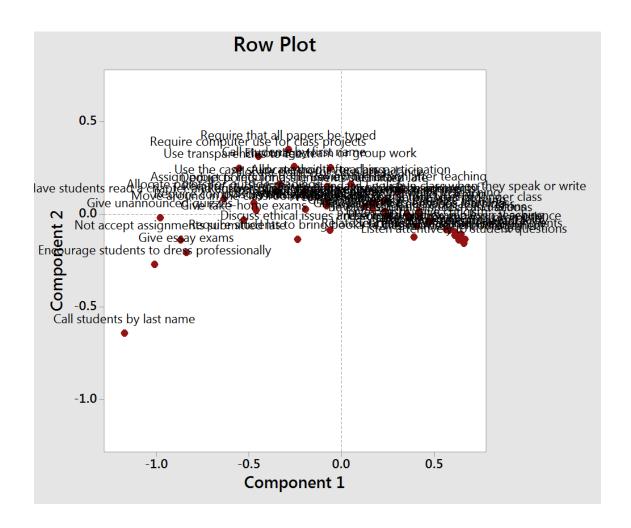
N = 14 N Correct = 12


Proportion Correct = 0.857

Linear Discriminant Function for Groups

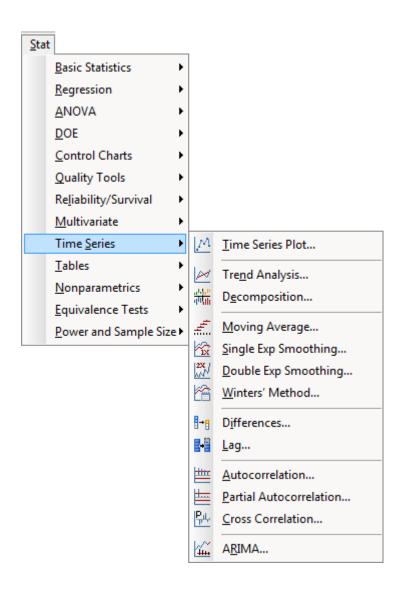
	Loss	Win
Constant	-1.549	-10.158
Troop Ratio	4.899	12.451
Tank Ratio	-0.007	-0.015


Loss = -1.549 + 4.899 * Troop Ratio - 0.007 * Tank Ratio


Win = -10.158 + 12.451 * Troop Ratio - 0.015 * Tank Ratio

Analysis of Contingency Table

Axis	Inertia	Proportion	Cumulative	Histogram
1	0.2495	0.9065	0.9065	********
2	0.0257	0.0935	1.0000	***
Total	0.2752			


Column name	Dress Casually
IM	56
NU	450
NI	229

Gender	Count	Urban/Rural	Count	Goals	Count
boy	227	Rural	149	Grades	247
girl	251	Suburban	151	Popular	141
N=	478	Urban	178	Sports	90
		N=	478	N=	478

Gender Urban/Rural Goals Categories Rural boy Sports Boy Girl Popular boy Rural Popular Rural girl Rural Rural Popular girl Suburban girl Rural Popular Urban girl Rural Popular Grades Rural Popular girl Popular girl Rural Grades Sport girl Rural Sports Sports girl Rural Sports girl Rural

boy/Rural boy/suburban boy/urban girl/rural girl/suburban girl/urban

Chapter 10, Time Series Analysis

$$Y_{t} = L_{t-1} + T_{t-1}$$

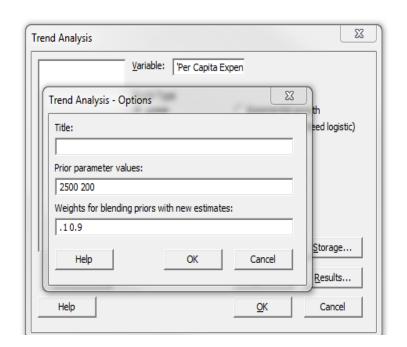
$$L_{t} = \propto Y_{t} + (1 - \infty)(L_{t-1} + T_{t-1})$$

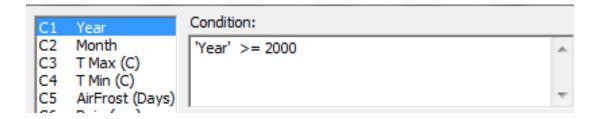
$$T_{t} = \gamma (L_{t} - L_{t-1}) + (1 - \gamma)T_{t-1}$$

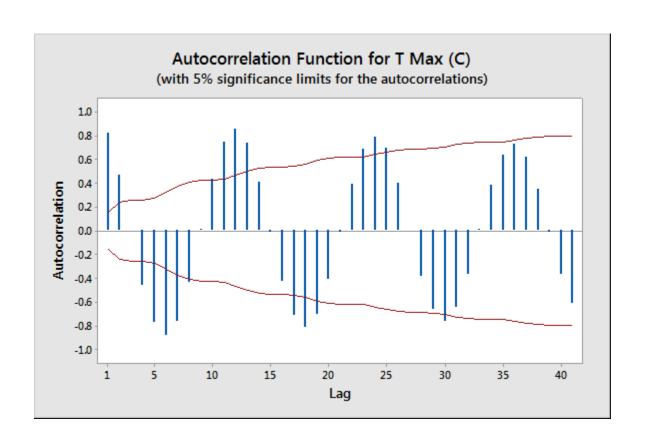
Trend Analysis - Comparison for Value (%)

Trend Analysis for Per Capita Expenditure

Data Per Capita Expenditure


Length 16 NMissing 0


Fitted Trend Equation


Yt = 3025 + 329*t

Comparisons between trend lines

	New Line	Prior Line	Smoothed Line
B0	3024.9	2500	2552
B1	329.1	200	316
MAPE	2.9	27	10
MAD	138.9	1623	582
MSD	32079.3	3019630	374591

Time Scale C Index	
• Calendar:	Quarter Year 🔻
C Clock:	Hour
Start value	1 2009
Increment:	1

Chapter 11, Macro Writing

G:\Users\Isaac\Documents Macro location:	
Macro location:	
G:\Users\Isaac\Desktop\Macros	

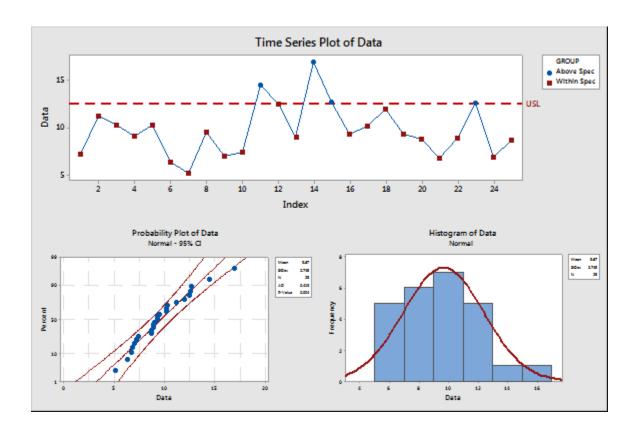

```
PPlot 'Data';
 Normal:
 Symbol;
 FitD;
Grid 2;
 Grid 1;
MGrid 1.
TSPlot 'Data';
 Symbol;
 Connect.
Histogram 'Data';
 Bar;
 Distribution;
  Normal.
OneT 'Data';
Test 10;
Confidence 95.0;
Alternative 0.
OneVariance 'Data';
 STest 2;
 Confidence 95.0;
 Alternative 0.
```

```
GMACRO
GLAYOUT
PPlot 'Data';
  Normal;
  symbol;
  FitD;
Grid 2;
Grid 1;
  MGrid 1.
TSPlot 'Data';
   Symbol;
  Connect.
Histogram 'Data';
  Bar;
  Distribution;
    Normal.
Onet 'Data';
  Test 10.
OneVariance 'Data';
  STest 2;
  Confidence 95.0;
  Alternative 0.
ENDMACRO
Tsplot Data;
   Index;
  Connect;
   Symbol;
   Reference 2 12.5;
     Type 2;
Color 28;
Size 2;
     MODEL 1;
Label "USL";
  Title;
  Footnote;
FPanel;
  NoDTitle.
```

```
GMACRO
GLAYOUT
LAYOUT
PPlot 'Data';
FIGURE 0 0.5 0 0.5;
Normal;
Symbol;
FitD;
Grid 2;
Grid 1;
MGrid 1.
Tsplot Data;
   Index;
  Connect;
   FIGURE 0 1 0.5 1;
   Symbol;
   Reference 2 12.5;
     Type 2;
Color 2;
     Size 2;
     MODEL 1;
Label "USL";
   Title;
   Footnote;
     FPanel;
   NoDTitle.
Histogram 'Data';
  Bar;
   FIGURE 0.5 1 0 0.5;
  Distribution;
     Normal.
ENDLAYOUT
OneT 'Data';
Test 10;
  Confidence 95.0;
  Alternative 0.
OneVariance 'Data';
  STest 2;
Confidence 95.0;
  Alternative 0.
ENDMACRO
```

```
Tsplot Data;
  Index;
  Connect:
 FIGURE 0 1 0.5 1;
Symbol;
  Reference 2 12.5;
    Type 2;
Color 28;
    Size 2;
    MODEL 1;
Label "USL";
  Title;
  Footnote;
    FPanel;
  NoDTitle.
GMACRO
GSESSION
Note -----
Note Enter a Specification Limit
#Read a single value into column 100
SET C100;
 FILE "TERMINAL";
  NOBS 1.
#Copy the value in C100 into constant K1
Let K1 = c100
#Delete column 100
ERASE C100
#Create a new column called group to identify results outside of specification
NAME C2 "Group"
LET C2 = IF(DATA > K1, "Above Spec", "Within Spec")
LAYOUT
```

```
Tsplot Data;
 Index;
 Connect;
 FIGURE 0 1 0.5 1;
 Legend;
 Section 1;
 Symbol Group;
 Reference 2 k1;
  Type 2;
 Color 28;
  Size 2;
  MODEL 1;
  Label "USL";
 Title;
 Footnote;
  FPanel;
 NoDTitle.
```


```
MACRO
LLayout COL Spec

MCOLUMN GROUP
MCONSTANT SPEC

LET C2 = IF(DATA > K1, "Above Spec", "Within Spec")

LAYOUT
```

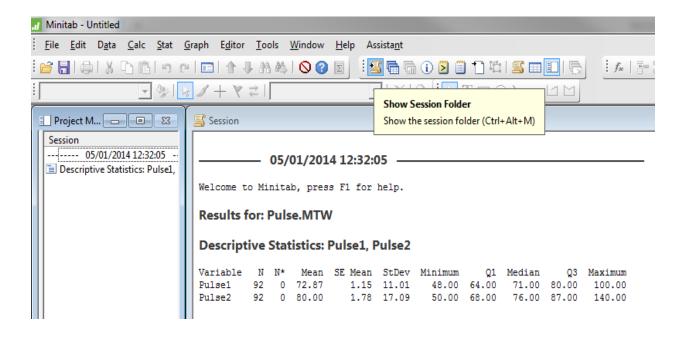
```
MACRO
LLayout Col Spec
MColumn Col Group
MConstant Spec
#Identify results outside of specification for column Group
Let Group = if(Col > Spec, "Above Spec", "Within Spec")
LAYOUT
PPlot Col;
FIGURE 0 0.5 0 0.5;
  Normal;
  Symbol;
  FitD;
Grid 2;
Grid 1;
MGrid 1.
Tsplot Col;
  Index:
  Connect;
  FIGURE 0 1 0.5 1;
  Legend;
  Section 1;
Symbol Group;
  Reference 2 Spec;
    Type 2;
Color_28;
    Size 2;
    MODEL 1;
Label "USL";
  Title;
  Footnote;
    FPanel;
  NoDTitle.
Histogram Col;
  Bar;
  FIGURE 0.5 1 0 0.5;
  Distribution;
    Normal.
ENDLAYOUT
ENDMACRO
```


MACRO
LSUB Col.1-Col.N;
Specs SPC.

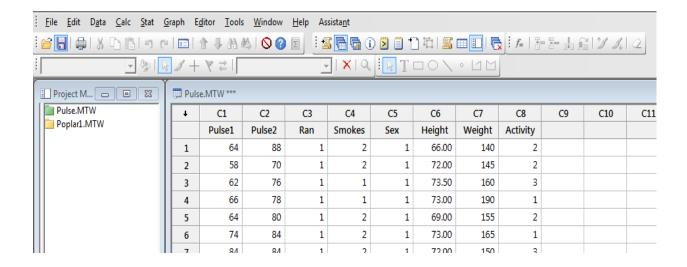
#Define Variables
MColumn Col.1-Col.N Group
MConstant N LP VTYPE SND CNT
MFree SPC

If statement checks to see if specifications have been used.

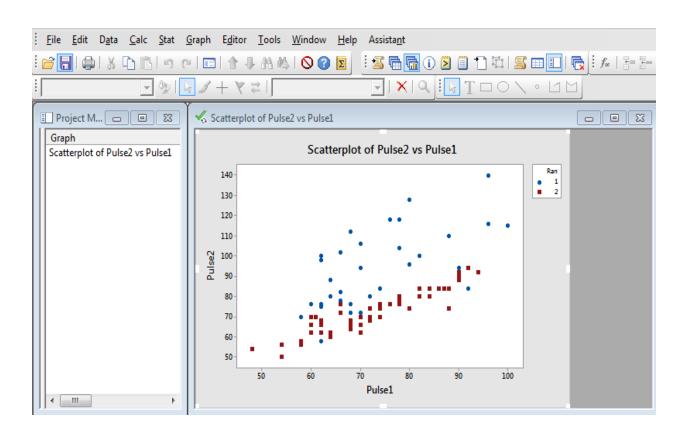
IF Specs = 1 #specifications are used
 MTYPE SPC VTyPE #Check variable type of the spec

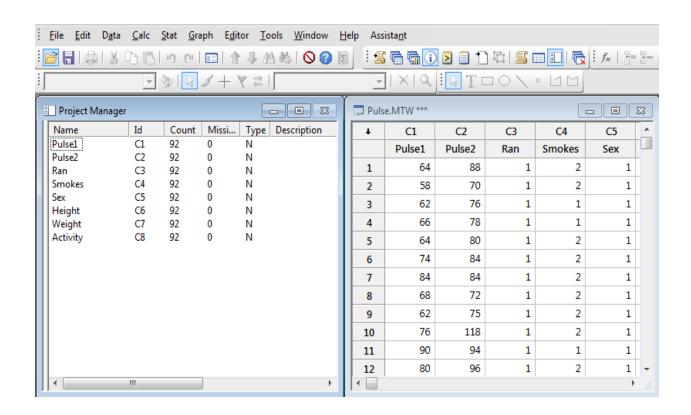

IF VTYPE = 1 #Spec Variable is type 1, a constant. Create charts with single spec

DO LP = 1:N Call Llayout Col.N SPC ENDDO


```
ELSEIF VTYPE = 2 #Spec Variable is type 2, column. Create charts with seperate spec
#Count number of specifications
   Let CNT = Count(SPC)
   IF CNT NE N #If the number of specifications does not equal Columns, exit macro.
     NOTE ----
     NOTE Number of specifications does not equal columns
     NOTE Macro Exiting
     NOTE -----
     EXIT
   ENDIF
#Call the Layout without limit if a missing value is entered as the spec
#Or call the layout with specifications
   DO LP = 1:N
     IF SPC[LP] = miss()
       call NOSPEC COL.N
     Else
       LET SND = SPC[LP]
       Call Llayout COL.LP SND
     ENDIF
   ENDDO
 ENDIF
#When the Specification subcommand isnt used, create charts without the spec line
ELSE
 DO LP = 1:N
Call NOSPEC COL.N
  ENDDO
ENDIF
ENDMACRO
MACRO
NOSPEC Col
MCOLUMN COL
Tsplot Col;
 Index;
 Connect;
 Symbol;
FIGURE 0 1 0.5 1;
 Title;
 Footnote;
   FPanel;
  NoDTitle.
```

Appendix, Navigating Minitab and Useful Shortcuts





General Data Window DDE Links Dialog Box Session Window Submitting Commands Output I/O Font Title Font	Capacity Number of lines: 15000 (1000 to 60000) On Session Window Overflow Save to file "session.txt"
···· Title Font ···· Comment Font ···· Window Layout Graphics	Prompt for file name Discard contents
	When Saving on Overflow Overwrite file contents Append to file contents
System Assistant and Other Reports	Line width: 93