
12
Standing Out – Integrating Game

Center and In-App Purchases

Welcome to the final chapter of this book. In this chapter, we're going to
review a few topics that are not directly related to gameplay, but can definitely
improve your game. We are going to create a new simple game using
everything we've learned in the previous chapters, and we're going to add
Game Center and In-App purchases to this game.

In this chapter, we will discuss the following topics:

�� Creating an application in iTunes Connect

�� Enabling Game Center

�� Creating leaderboards and achievements

�� Submitting scores and achievements

�� Making In-App purchases

�� Reviewing a list of useful resources

Standing Out – Integrating Game Center and In-App Purchases

[2]

Creating a sample game
In order to test Game Center and In-App purchases in the game, we need to create an
application in iTunes Connect.

This means that you need to be a participant of the Apple iOS
Developer program. So if you have not yet registered for the Apple
iOS Developer program, unfortunately, you won't be able to test the
code listed in this chapter.

We could go on and register an app for the Cocohunt game that we created in the previous
chapters, and add Game Center and In-App purchases to it. However, this would have caused
a lot of time spent on housekeeping and supporting the old code.

Instead, we're going to create a simple new game so that we can concentrate on new topics.

Time for action – creating an application in iTunes Connect
In this recipe, we are going to create an App ID and an app in iTunes Connect using its bundle
ID. If you're familiar with this, please skip to the next section, Time for action – creating a
game skeleton.

1.	 First, we need to create an App ID. To do this, click on https://developer.
apple.com/account/ios/identifiers/bundle/bundleList.action
and log in to iOS Dev Center, as shown in the following screenshot:

https://developer.apple.com/account/ios/identifiers/bundle/bundleList.action
https://developer.apple.com/account/ios/identifiers/bundle/bundleList.action

Chapter 12

[3]

If the link is not working because Apple changed the URL, you can
go to https://developer.apple.com, find iOS Dev Center,
and search for a page where you can add an App ID.

2.	 Click on the + button to add a new App ID. You can enter any description in the App
ID Description field; in my case, I've entered CoconutFall.

3.	 Then, you need to make sure the Explicit App ID option is selected, and enter a
unique Bundle ID identifier. The easiest way to do this is to use a reverse domain
name notation. In my case, this was com.packtpub.coconutfall, but you need
to make up your own.

The bundle ID should be unique across the App Store. The easiest
way to do this is to use a reverse domain name notation; however,
the domain name doesn't have to exist or even work. You can
use a combination of other data that has a high chance of being
unique. For example, you might use your full name, name of the
game, and a few random words. In any case, Apple won't allow you
to enter an already taken bundle ID.

4.	 Click on the Continue button at the bottom. Make sure everything is correct and
then click on the Submit button. Refer to the following screenshot:

https://developer.apple.com

Standing Out – Integrating Game Center and In-App Purchases

[4]

5.	 Now, when we have a bundle ID for the new app, we can go to iTunes Connect.
Just click on https://itunesconnect.apple.com.

6.	 In iTunes Connect, click on Manage Your Apps, and then click on Add New App in
the top-left corner.

7.	 On the App Information page, think of an App Name and SKU Number.

The Stock Keeping Unit (SKU) number is just a value that will
allow you to track your app. It will appear in reports and in
several other places. You can just enter the name of the game
and a suffix (for example, CoconutFall_1).

8.	 Now, select the Bundle ID that you've previously created and click on Continue.
Refer to the following screenshot:

If your bundle ID doesn't appear in the Bundle ID dropdown,
you just need to wait for some time until the changes you've
made in iOS Dev Center are propagated to iTunes Connect.
You rarely have to wait for more than 15 minutes, and in most
cases, it is already there, but in some cases, you might need to
wait an hour or two.

9.	 On the next page, select any Price Tier and click on Continue. I've chosen this to be
a Free app because this is only a test app, but you can set any price.

https://itunesconnect.apple.com

Chapter 12

[5]

10.	We need to provide a lot of information on the next page. It's a good thing that right
now we can enter anything just to pass this page. All of this can be changed later.
Just click on Save and see what is missing in the error message, then enter some test
information until iTunes Connect is happy.

You can find a stub Large App Icon and Screenshots files
that you'll need to add at this stage in the Chapter_12/
Assets/AppStore folder in the book's supporting files
(which can be downloaded from www.packtpub.com/
support).

11.	After successfully submitting your app information, you should see it in the Prepare
for Upload status:

What just happened?
That's it for now. We've created an app. With a few settings changed, we will be able to use
Game Center and In-App purchase services.

However, to use services in the game, we need a game, don't we? It is time to create a very
simple game that we'll use to demonstrate the features of Game Center and In-App purchases.

If you don't want to create this game from scratch, you can take the completed
game project from the Chapter_12/CoconutFall_Starter folder and
skip to the Integrating Game Center section. Starting from there, you will add
Game Center and In-App purchases to this game. However, I would suggest that
you spend a few minutes to at least copy and paste the code of the following
sections and have a better understanding of the game structure.

www.packtpub.com/support
www.packtpub.com/support

Standing Out – Integrating Game Center and In-App Purchases

[6]

Time for action – creating a game skeleton
Let's start by creating a game skeleton. The game will consist of three scenes: MenuScene,
GameScene, and ShopScene. In this part of the chapter, we're going to create a new
Cocos2D project and add all the required scenes and navigation between them. In the next
part, we're going to implement the gameplay process in the game scene.

1.	 Open Xcode and create a new project by navigating to File | New | Project,
select the cocos2d v3.x section on the left-hand side, and select the project type
as cocos2d iOS. Then, click on the Next button.

2.	 In the next window, you need to enter Product Name and Company Identifier so
that the resulting Bundle Identifier matches with the bundle ID of the app that we
created in iTunes Connect. This is required as the game will be recognized using
this bundle ID. In my case, the bundle ID was com.packtpub.coconutfall; this
way, I've used coconutfall as Product Name and com.packtpub as Company
Identifier, as shown in the following screenshot:

3.	 Click on the Next button and choose a folder to save the new project.

4.	 Now, let's add all the images that we will use in this game. Open the Chapter_12/
Assets/CoconutFallResources folder and drag all the three folders from there
to the Resources group in Xcode, as shown in the following screenshot:

Chapter 12

[7]

5.	 Create three new scenes: MenuScene, GameScene, and ShopScene. Make sure
you make them subclasses of the CCScene class. Also, it is a good idea to place
them in the Classes group just to keep things organized.

6.	 Remove the HelloWorldScene and IntroScene files from the Classes group
since we don't need them. Here is what you should get in the end:

7.	 Open the AppDelegate.m file and remove the following #import directives,
since they will be causing errors:
#import "IntroScene.h"
#import "HelloWorldScene.h"

Standing Out – Integrating Game Center and In-App Purchases

[8]

8.	 Instead, import the MenuScene.h header:
#import "MenuScene.h"

9.	 Find the startScene: method and change it to return a MenuScene class instead
of the IntroScene class:
-(CCScene *)startScene
{
 return [[MenuScene alloc] init];
}

10.	Open the MenuScene.m file and import the following headers:
#import "cocos2d.h"
#import "cocos2d-ui.h"
#import "GameScene.h"
#import "ShopScene.h"

11.	Then, add the following #define statements that are the buttons that the menu
scene will have:
#define kButtonStart @"Start"
#define kButtonAchievements @"Achievements"
#define kButtonLeaderboards @"Leaderboards"
#define kButtonShop @"Shop"

12.	After that, add the following methods to create a background scene and buttons,
and handle buttons touch:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addButtons];
 }

 return self;
}

-(void)addBackground
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"menu_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg];
}

-(void)addButtons
{

Chapter 12

[9]

 CCLayoutBox *buttonsLayout = [CCLayoutBox node];
 buttonsLayout.spacing = 20.0f;
 buttonsLayout.direction = CCLayoutBoxDirectionVertical;

 NSArray *buttons = @[kButtonStart,
 kButtonAchievements,
 kButtonLeaderboards,
 kButtonShop];

 CCSpriteFrame *btnNormal =
 [CCSpriteFrame frameWithImageNamed:@"btn_9slice.png"];
 CCSpriteFrame *btnPressed =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_9slice_pressed.png"];

 for (NSString *btnName in
 [buttons reverseObjectEnumerator])
 {
 CCButton *button = [CCButton buttonWithTitle:btnName
 spriteFrame:btnNormal
 highlightedSpriteFrame:btnPressed
 disabledSpriteFrame:nil];
 button.name = btnName;
 button.horizontalPadding = 12.0f;
 button.verticalPadding = 4.0f;

 [button setTarget:self selector:@selector(onBtnTap:)];

 [buttonsLayout addChild:button];
 }

 [buttonsLayout layout];

 buttonsLayout.anchorPoint = ccp(0.5f, 0.5f);
 buttonsLayout.positionType = CCPositionTypeNormalized;
 buttonsLayout.position = ccp(0.5f, 0.5f);
 [self addChild:buttonsLayout];
}

-(void)onBtnTap:(CCButton *)btn
{
 if ([btn.name isEqualToString:kButtonStart])
 {
 [[CCDirector sharedDirector]
 replaceScene:[GameScene node]];
 }
 else if ([btn.name isEqualToString:kButtonAchievements])
 {
 //Nothing to do yet
 }

Standing Out – Integrating Game Center and In-App Purchases

[10]

 else if ([btn.name isEqualToString:kButtonLeaderboards])
 {
 //Nothing to do yet
 }
 else if ([btn.name isEqualToString:kButtonShop])
 {
 [[CCDirector sharedDirector]
 replaceScene:[ShopScene node]];
 }
 else
 {
 CCLOG(@"Unknown button: %@", btn.name);
 }
}

13.	Build and run the game. You should see a scene with the following menu. You can
even tap the Start and the Shop buttons, but currently they lead to empty scenes
and you won't be able to return back.

What just happened?
Everything that we've done in this part should already be familiar to you from previous
chapters. So let's just briefly review the code in the MenuScene class.

In the init method, we simply called the addBackground and addButtons methods that
add a background image and create a menu using the CCLayoutBox class.

Note that we assigned the name of the button to the name property. In the
onBtnTap:, we used the name property value to understand which button
was pressed.

Chapter 12

[11]

If the Start or Shop button is pressed, we simply show the corresponding scene.

The only important and new part here is creating the app with the bundle ID corresponding
to the app we created in iTunes Connect. This will allow us to test Game Center and
In-App purchases.

You don't need to create a new application from scratch to set the bundle ID.
You can change it later in the project settings. However, since we decided to
create a simpler game to demonstrate new features anyway, we just set it to
the required bundle ID right from the start.

Time for action – implementing GameScene
In the game that we're going to create, coconuts will fall from the sky and the player will
need to tap them before they fall. This will be just enough to demonstrate the features of
Game Center while still having a very simple game. Perform the following steps:

1.	 Create a new class called Coconut and make it a subclass of the CCSprite class.

2.	 Open the Coconut.h file and replace its contents with the following code:
#import "CCSprite.h"

@protocol CoconutDelegate <NSObject>

-(void)coconutRemovedAt:(CGPoint)position;

-(void)fallenOffScreenAt:(CGPoint)position;

@end

@interface Coconut : CCSprite

@property (nonatomic, weak) id<CoconutDelegate> delegate;

@end

3.	 Then, open the Coconut.m file and replace its contents with the following code:
#import "Coconut.h"
#import "cocos2d.h"

@implementation Coconut

-(instancetype)init
{
 if (self = [super initWithImageNamed:@"coconut.png"])
 {

Standing Out – Integrating Game Center and In-App Purchases

[12]

 self.userInteractionEnabled = YES;

 float coconutX = clampf(CCRANDOM_0_1(), 0.05f, 0.95f);
 self.positionType = CCPositionTypeNormalized;
 self.position = ccp(coconutX, 1.1f);
 }

 return self;
}

-(void)onEnter
{
 [super onEnter];

 float coconutSpeed = 3.0f + CCRANDOM_0_1() * 2.0f;
 CCActionMoveTo *moveDown =
 [CCActionMoveTo
 actionWithDuration:coconutSpeed
 position:ccp(self.position.x, -0.1f)];
 CCActionEaseIn *moveDownEased =
 [CCActionEaseIn actionWithAction:moveDown rate:2.0f];
 CCActionCallFunc *notify =
 [CCActionCallFunc actionWithTarget:self
 selector:@selector(fallenOffScreen)];
 CCActionSequence *fallDownAndNotify =
 [CCActionSequence actions:moveDownEased, notify, nil];
 [self runAction:fallDownAndNotify];
}

-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 [self.delegate coconutRemovedAt:self.position];
 [self removeFromParentAndCleanup:YES];
}

-(void)fallenOffScreen;
{
 [self.delegate fallenOffScreenAt:self.position];
 [self removeFromParentAndCleanup:YES];
}
@end

4.	 Now, open the GameScene.h file and import the Coconut.h header:
#import "Coconut.h"

5.	 After that, make the GameScene class conform to the CoconutDelegate protocol:
@interface GameScene : CCScene<CoconutDelegate>

Chapter 12

[13]

6.	 Switch to the GameScene.m file and import the following headers:
#import "MenuScene.h"
#import "cocos2d.h"

7.	 Then, add enum that contains the states of the game:
typedef NS_ENUM(NSUInteger, GameState)
{
 GameStateInit,
 GameStatePlaying,
 GameStateLost
};

8.	 Add the following instance variables that will be used in the game:
@implementation GameScene
{
 int _lives;
 int _points;
 int _pointsPerCoconut;

 GameState _gameState;
 float _timeUntilNextCoconut;

 CCLabelTTF *_lblPoints;
 CCLabelTTF *_lblLives;
}

9.	 Add the init method and the methods to initialize the game defaults along with all
the scene elements:
-(instancetype)init
{
 if (self = [super init])
 {
 [self setupGameDefaults];
 [self addBackground];
 [self addLabels];

 self.userInteractionEnabled = YES;
 }

 return self;
}

-(void)onEnterTransitionDidFinish
{
 [super onEnterTransitionDidFinish];

 _gameState = GameStatePlaying;

Standing Out – Integrating Game Center and In-App Purchases

[14]

}

-(void)setupGameDefaults
{
 _gameState = GameStateInit;
 _timeUntilNextCoconut = 0;

 _lives = 3;
 _points = 0;
 _pointsPerCoconut = 5;
}

-(void)addBackground
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"game_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg];
}

-(void)addLabels
{
 _lblPoints = [CCLabelTTF labelWithString:@"Points: 0"
 fontName:@"Helvetica"
 fontSize:14];
 _lblPoints.anchorPoint = ccp(0, 0.5f);
 _lblPoints.color = [CCColor redColor];
 _lblPoints.positionType = CCPositionTypeNormalized;
 _lblPoints.position = ccp(0.05f, 0.95f);
 [self addChild:_lblPoints];

 NSString *lives =
 [NSString stringWithFormat:@"Lives: %d", _lives];

 _lblLives = [CCLabelTTF labelWithString:lives
 fontName:@"Helvetica"
 fontSize:14];

 _lblLives.anchorPoint = ccp(1, 0.5f);
 _lblLives.color = [CCColor redColor];
 _lblLives.positionType = CCPositionTypeNormalized;
 _lblLives.position = ccp(0.95f, 0.95f);
 [self addChild:_lblLives];
}

Chapter 12

[15]

10.	Add the update: method to instantiate coconuts:
-(void)update:(CCTime)dt
{
 if (_gameState == GameStatePlaying)
 {
 _timeUntilNextCoconut -= dt;

 if (_timeUntilNextCoconut <= 0)
 {
 Coconut *coconut = [Coconut node];
 coconut.name = @"coconut";
 coconut.delegate = self;
 [self addChild:coconut];

 _timeUntilNextCoconut =
 0.5f + arc4random_uniform(2.0f);
 }
 }
}

11.	Add the following implementation of the methods from the
CoconutDelegate protocol:
-(void)coconutRemovedAt:(CGPoint)position
{
 if (_gameState == GameStatePlaying)
 {
 _points += _pointsPerCoconut;
 _lblPoints.string =
 [NSString stringWithFormat:@"Points: %d", _points];
 }
}

-(void)fallenOffScreenAt:(CGPoint)position
{
 [self displayMissedCoconutAt:position.x];

 _lives--;
 if (_lives < 0)
 _lives = 0;

 _lblLives.string =
 [NSString stringWithFormat:@"Lives: %d", _lives];

 if (_lives <= 0 && _gameState == GameStatePlaying)
 {
 _gameState = GameStateLost;

 CCLabelTTF *youLoseLabel =

Standing Out – Integrating Game Center and In-App Purchases

[16]

 [CCLabelTTF labelWithString:@"You lose!"
 fontName:@"Helvetica-Bold"
 fontSize:48];

 youLoseLabel.positionType = CCPositionTypeNormalized;
 youLoseLabel.position = ccp(0.5f, 0.5f);
 youLoseLabel.color = [CCColor whiteColor];
 [self addChild:youLoseLabel];
 }
}

12.	Add a method that will display a red cross in the place where a coconut has fallen off
the screen:
-(void)displayMissedCoconutAt:(float)coconutX
{
 CCSprite *cross =
 [CCSprite spriteWithImageNamed:@"cross.png"];
 cross.positionType = CCPositionTypeNormalized;
 cross.position = ccp(coconutX, 0.05f);
 [self addChild:cross];

 CCActionDelay *delay =
 [CCActionDelay actionWithDuration:1.0f];
 CCActionFadeOut *fadeOut =
 [CCActionFadeOut actionWithDuration:0.5f];
 CCActionRemove *remove = [CCActionRemove action];

 CCActionSequence *displayFadeThenRemove =
 [CCActionSequence actions:delay,fadeOut,remove, nil];
 [cross runAction:displayFadeThenRemove];
}

13.	Finally, when the player loses the game, add a method to leave the game by
touching the game screen:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 if (_gameState == GameStateLost)
 [[CCDirector sharedDirector]
 replaceScene:[MenuScene node]];
}

Note that we added the self.userInteractionEnabled = YES;
line in the init method. Otherwise, the touchBegan: method won't
be called.

Chapter 12

[17]

14.	Build and run the game. Tap on the Start button to start the game. Tap on the
coconuts falling from the sky to remove them and earn points. If you lose the game,
just tap anywhere on the screen to leave the game and navigate to the main menu.
Refer to the following screenshot:

What just happened?
Let's start reviewing the code from the existing code in the GameScene.m file. The game has
three states: GameStateInit, GameStatePlaying, and GameStateLost.

The GameStateInit state simply means that the game is not started yet. We
start the game by changing the game state to the GameStatePlaying state in the
onEnterTransitionDidFinish method, so that coconuts start to fall only after the enter
transition is finished.

We don't use transitions in this sample game, but still use
onEnterTransitionDidFinish just to follow best
practices or in case you want to add transitions later.

The game will remain in the GameStatePlaying state until the player loses all the lives. In
this state, new coconuts are spawned, and the player can earn points by hitting them.

Standing Out – Integrating Game Center and In-App Purchases

[18]

Then, when the player loses all the lives, the game will switch to the GameStateLost state.
This will stop the spawning of coconuts, and if the player touches the screen in this state,
we simply return to the main menu.

In a normal game, we would have created some kind of dialog that
offers to restart the game or return to the main menu. For this simple
game, we just need a way to return to the main menu when we lose,
to open Game Center, and check that we submitted the score and
achievements successfully.

Instance variables should be pretty clear. They are required to keep the count of lives
and points, the current game state, and a timer variable to spawn coconuts. In addition
to this, there are two labels to display points and lives, so we need to store a reference
for them somewhere.

The code of the init method simply sets the game defaults, and adds the background
and labels.

Note that we set userInteractionEnabled to YES and added the
touchBegan: method so that the player can tap anywhere on the screen
when he or she loses the game and goes back to the main menu. Touching
coconuts is handled in the Cocohunt class and not in the GameScene class.

The code to spawn coconuts is placed in the update: method. There, we simply create
an instance of the Coconut class that contains all the code to instantiate, move, and
remove coconuts.

If you open the Coconut.m class, you will see that it simply creates itself at random
positions and starts moving down.

We didn't use physics; we simply used CCActionEaseIn to speed
up the coconut's movement as it falls down just as if it were affected
by gravity.

Note that we used CCActionCallFunc to call the fallenOffScreen method at the end
of the action sequence. Calling this method will mean that the coconut reached the bottom
of the screen without the player tapping on it.

We set userInteractionEnabled to YES in the init method, since
we need to detect touches on the coconut. One of the main reasons why we
subclassed the CCSprite class is that we can override the touchBegan:
method and detect touches on each coconut node individually.

Chapter 12

[19]

However, if the touchBegan: method is called, this means the player hit the coconut, and it
should be removed. This will stop the sequence, and the fallenOffScreen method won't
be called.

If you call the removeFromParent or removeFromParentAndCleanup:
methods with the YES parameter, which is the same as just calling the
removeFromParent method, it will stop all the running actions. So you don't
have to call stopAllActions explicitly.

In both cases, if the coconut has fallen off the screen or was hit by the player, we notify the
GameScene class using one of the CoconutDelegate protocol methods.

If the player hits the coconut, the coconutRemovedAt: method is called. In this case, we
increase points and update the Points label. Otherwise, if the coconut falls off the screen,
the fallenOffScreenAt: method is called and we decrease the lives count by updating
the Lives label and checking whether the player has lost the game.

The displayMissedCoconutAt: method simply shows a red cross at the place where the
coconut has fallen so that the player can see where this occurred.

Integrating Game Center
Now that we have a simple game in our hands, it is time to integrate Game Center into it.

If you've skipped the previous part of the chapter and took the starter game
project from the book's supporting files, don't forget to update the Bundle
Identifier in the project settings to match the bundle ID of the app you
created in iTunes Connect.

Enabling Game Center and authenticating the player
Before we can use any Game Center services, we need to enable it in iTunes Connect and
add leaderboards and achievements that we want to use. After that, we need to add the
code to authenticate the player and display Game Center views.

Looks like a lot of work, so let's get started.

Standing Out – Integrating Game Center and In-App Purchases

[20]

Time for action – creating achievements and a leaderboard
Before writing any code, let's enable Game Center and create a few achievements and
a leaderboard.

1.	 Sign in to iTunes Connect using the link https://itunesconnect.apple.com.
Select Manage Your Apps and click on the sample game that you created.

2.	 Then, click on the Manage Game Center button to enable Game Center. When
you click on this button for the first time, it will ask whether you want to enable
Game Center for a single game or a group of games. Click on the Enable for
Single Game button.

Enabling Game Center for a group of games is useful if you
want to share leaderboards and achievements between two
or more separate games. For example, you might want to
register the iPhone and iPad versions of the game as separate
applications with different bundle IDs, but you want them to
have the same leaderboards and achievements.

3.	 Click on the Add Leaderboard button to create a leaderboard. Choose
Single Leaderboard.

4.	 Fill out the leaderboard's properties as follows:
�� Leaderboard Reference Name: Select Highest Score
�� Leaderboard ID: Enter your bundle ID plus .leaderboard.

highestscore (for example, com.packtpub.coconutfall.
leaderboard.highestscore)

�� Score Format Type: Select Integer
�� Score Submission Type: Select Best Score
�� Sort Order: Select High to Low

These properties can be seen in the following screenshot:

https://itunesconnect.apple.com

Chapter 12

[21]

In fact, you don't have to prefix the leaderboard ID or
achievement ID with the bundle ID. However, since the
leaderboard ID and achievement ID should be unique
among all of your games and applications, it is a good idea
to use the bundle ID as a prefix to guarantee a higher level
of uniqueness.

5.	 Click on the Add Language button, and add English as the localization of the
leaderboard. Fill out the fields as follows:

�� Language: Select English
�� Name: Enter Highest Score
�� Score Format: Choose any option from the drop-down menu
�� Score Format Suffix (Singular): Enter pts
�� Score Format Suffix Plural: Enter pts

Refer to the following screenshot:

6.	 Click on Save to save the localization and then click on Save again to save
the leaderboard.

You can add as many languages as you want, but I recommend
completing this chapter first.

Standing Out – Integrating Game Center and In-App Purchases

[22]

7.	 Now, let's add a few achievements. Click on the Add Achievement button and enter
the following achievement properties:

�� Achievement Reference Name: Enter Hundred
�� Achievement ID: Enter your bundle ID plus .achievement.hundred

(for example, com.packtpub.coconutfall.achievement.hundred)
�� Point Value: Enter 100
�� Hidden: Select No
�� Achievable More Than Once: Select No

8.	 Then, click on Add Language and add a localization:

�� Language: Select English
�� Title: Enter Hundred
�� Pre-earned Description: Enter Score 100 points
�� Earned Description: Enter You scored a hundred points!
�� Image: Use the Achievement_Icon.png image from the Chapter_12/

Assets/AppStore folder

9.	 Save the achievement and add two more achievements using the following
properties (use the same image for all achievements):

�� Wake-up achievement:

�� Achievement Reference Name: Enter Wake Up
�� Achievement ID: Enter your bundle ID plus .achievement.wakeup
�� Point Value: Enter 15
�� Hidden: Select Yes
�� Achievable More Than Once: Select No
�� Language: Select English
�� Title: Enter Wake Up
�� Pre-earned Description: Enter anything since it won't be visible

until achieved
�� Earned Description: Enter Lost a game without scoring a

single point!

�� First-blood achievement:

�� Achievement Reference Name: Enter First Blood!
�� Achievement ID: Enter your bundle ID plus .achievement.firstblood
�� Point Value: Enter 10
�� Hidden: Select No

Chapter 12

[23]

�� Achievable More Than Once: Select No
�� Language: Select English
�� Title: Enter First Blood!
�� Pre-earned Description: Enter Hit your first coconut!
�� Earned Description: Enter You've hit your first coconut!

The following screenshot shows how the configuration page of Game Center should look
after adding a leaderboard and three achievements:

Note that you need to replace the com.packtpub.coconutfall part
of the leaderboard ID and achievement IDs with your bundle ID.

Standing Out – Integrating Game Center and In-App Purchases

[24]

What just happened?
We've just created the Game Center elements that we'll use in the game.

Leaderboards allow players to view the highest scores, best time, longest distance, and other
measurable characteristics of your game and compete with other Game Center players of your
game. You can have many leaderboards in your game, for example, players can compete for
the highest score, see who lasts longer without dying, and so on, and all of it within one game.

You can have the highest score, but another player scored fewer points
while lasting longer than you on a level. You will be a leader in one
leaderboard, but the other player will be a leader in another one.

The Highest Score leaderboard will contain the highest points scored while hitting coconuts.

Achievements are a way to reward the player for performing some special actions, reaching a
milestone in the game, and so on. I'm sure you've gained some achievements if you played at
least one game with Game Center integrated.

We will have the following three achievements:

�� Hundred: This will be awarded to the player who scores 100 points or more.
The interesting thing about this achievement is that we'll update the percent
completed property of this achievement. This means that the player who scored
60 points will see that the achievement is 60 percent completed. It might not be
very useful in our case, but there are times when you need to perform many
actions, such as killing 1,000 monsters in any amount of tries, and you want to
know your progress.

�� Wake Up: This will be awarded to the player who scores zero points. The interesting
part about this achievement is that it is hidden. This means you don't know how
to achieve it. This boils up the player's interest and they play your game more and
more, trying to figure out what they should do to unlock this achievement.

�� First Blood: This is the easiest one to achieve. To achieve it, you simply need to
tap one coconut. It is a good idea to make a few easily attainable achievements and
award the player immediately after they start playing your game so that the player
knows there are achievements and may open Game Center to see them.

Chapter 12

[25]

Time for action – authenticating the player
Only authenticated players can compete with other players and earn achievements. So the
first step of integrating Game Center in the game is letting the player sign in.

For those players who don't want to use Game Center, you can
create a type of alternate highscores table and achievements, just
as we created a simple offline highscores table in Chapter 9, User
Interface and Navigation, which of course is too primitive to even
compare with Game Center.

1.	 Before we can use Game Center in the game, we need to add the GameKit
framework. Instead of adding it manually, we're going to enable modules and
use an @import statement. To enable modules, go to the Xcode project's settings,
select the coconutfall target, and open the Build Settings tab. Type modules in
the search box and change Enable Modules (C and Objective-C) to Yes.

2.	 To organize our code, we're going to create a GCManager class that will contain most
of the code related to Game Center. So go ahead and create a new Objective-C class
called GCManager and make it a subclass of the NSObject class.

3.	 Open the GCManager.h file and import GameKit using the @import statement:
@import GameKit;

4.	 Add the following method's declarations:
-(void)loginToGameCenter;

+(GCManager *)sharedInstance;

5.	 Switch to the GCManager.m file and add the _isUserLoggedIn instance variable:
@implementation GCManager
{
 BOOL _isUserLoggedIn;
}

Standing Out – Integrating Game Center and In-App Purchases

[26]

6.	 Then, add the following methods that we'll use to authenticate the player and track
the changes in the authentication status:
-(id)init
{
 if (self =[super init])
 {
 _isUserLoggedIn = NO;
 [self subscribeToAuthStatusChange];
 }

 return self;
}

-(void)loginToGameCenter
{
 if ([GKLocalPlayer localPlayer].authenticated == NO)
 [[GKLocalPlayer localPlayer]
 authenticateWithCompletionHandler:nil];
 else
 NSLog(@"loginToGameCenter: User Already Logged In");
}

-(void)subscribeToAuthStatusChange
{
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(authenticationChanged)
 name:GKPlayerAuthenticationDidChangeNotificationName
 object:nil];
}

-(void)authenticationChanged {
 if ([GKLocalPlayer localPlayer].isAuthenticated &&
 !_isUserLoggedIn)
 {
 _isUserLoggedIn = YES;
 NSLog(@"User logged in to Game Center");
 }
 else if (![GKLocalPlayer localPlayer].isAuthenticated &&
 _isUserLoggedIn)
 {
 _isUserLoggedIn = NO;
 NSLog(@"User logged out from Game Center");
 }
}

+(GCManager *)sharedInstance
{
 static dispatch_once_t pred;

Chapter 12

[27]

 static GCManager * _sharedInstance;
 dispatch_once(&pred, ^{
 _sharedInstance = [[self alloc] init];
 });
 return _sharedInstance;
}

7.	 Now, open the AppDelegate.m file and import the GCManager.h header:
#import "GCManager.h"

8.	 Then, add the following line to the beginning of the
application:didFinishLaunchingWithOptions: method:
-(BOOL)application:(UIApplication *)application didFinishLaunching
WithOptions:(NSDictionary *)launchOptions
{
 [[GCManager sharedInstance] loginToGameCenter];

 //..skipped..
}

9.	 Build and run the game. When the game is launched, wait for the Game Center login
dialog box to appear.

It might take some time for it to appear. The longest time I
had to wait was for around 30 seconds.

Create a new Apple ID in this dialog box even if you already have one, since this will be your
sandbox mode's Game Center Apple ID. Refer to the following screenshot:

Standing Out – Integrating Game Center and In-App Purchases

[28]

After logging in, you will see a Welcome Back banner on the top, as shown in the
following screenshot:

What just happened?
When the player starts the game, we need to prompt him or her to log in to Game Center
as early as possible. We need to do this because it takes some time to authenticate even
the previously authenticated player, and we have buttons that require an authenticated
player as early as on the menu scene (the Achievements and Leaderboards buttons).

To authenticate the player, we used the loginToGameCenter method of the
GCManager singleton. We called this method as early as we could from the
application:didFinishLaunchingWithOptions: method.

The loginToGameCenter method simply checks whether the player is not already
authenticated and calls the authenticateWithCompletionHandler: method of
the local player.

[[GKLocalPlayer localPlayer] authenticateWithCompletionHandler:nil];

The GKLocalPlayer class represents the player that currently plays the game on the
current device.

We can get information about other players in Game Center; this is why it is
required to understand the concept of the local player.

Chapter 12

[29]

The authenticateWithCompletionHandler: method simply authenticates the player in
Game Center. If the player is not previously authenticated in Game Center, it shows a Sign In
window. If the player is already authenticated in Game Center, maybe in some other game or
using Game Center app, it will show the Welcome Back banner.

You will see that once authenticated, you won't have to sign in each time;
now, you will only see the Welcome Back banner, unless you sign out in the
Game Center app.

You might wonder why we passed a nil value to the
authenticateWithCompletionHandler: method as if we didn't care about
when it completes.

The reason for this is that the player can sign in and sign out from Game Center outside of
our game. For example, the player might simply push the Home button, go to the Game
Center app, sign out there, and then return to our game, and our game needs to know that.

To get notified about the player authentication changes, we created and used the
subscribeToAuthStatusChange method, which uses NSNotificationCenter to
get the GKPlayerAuthenticationDidChangeNotificationName notification in the
authenticationChanged method, shown as follows:

-(void)subscribeToAuthStatusChange
{
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(authenticationChanged)
 name:GKPlayerAuthenticationDidChangeNotificationName
 object:nil];
}

We called this subscribeToAuthStatusChange method from the init method, which is
executed when we access the singleton for the first time, so it gets executed even before we
call the loginToGameCenter method.

This way, the authenticationChanged method is called each time the user authentication
changes, including the change after we call the authenticateWithCompletionHandler:
method. This is why we don't need the completion handler, since we'll know when the player
will be authenticated anyway.

Standing Out – Integrating Game Center and In-App Purchases

[30]

Time for action – displaying the Game Center view
After the player is authenticated, we can display the Game Center dialogs with achievements
and leaderboards. Right now, the leaderboard will be empty, and no achievements will be
completed. However, let's display the dialogs before we can concentrate on submitting the
score and reporting achievements. Perform the following steps:

1.	 Open the MenuScene.h file and import the GCManager.h header:
#import "GCManager.h"

2.	 Then, make the MenuScene class conform to three protocols:
@interface MenuScene : CCScene
 <GKLeaderboardViewControllerDelegate,
 GKGameCenterControllerDelegate,
 GKAchievementViewControllerDelegate>

3.	 Switch to the MenuScene.m file and add the following two methods to display
achievements and leaderboards:
-(void)displayGCAchievements
{
 //1
 if (NSFoundationVersionNumber <
 NSFoundationVersionNumber_iOS_6_0)
 {
 //2
 GKAchievementViewController *achievements =
 [[GKAchievementViewController alloc] init];

 //3
 achievements.achievementDelegate = self;

 //4
 [[CCDirector sharedDirector]
 presentModalViewController:achievements
 animated:YES];
 }
 else
 {
 //5
 GKGameCenterViewController *achievements =
 [[GKGameCenterViewController alloc] init];

 //6
 achievements.gameCenterDelegate = self;

 //7

Chapter 12

[31]

 achievements.viewState =
 GKGameCenterViewControllerStateAchievements;
 //8
 [[CCDirector sharedDirector]
 presentModalViewController:achievements
 animated:YES];
 }
}

-(void)displayGCLeaderboard
{
 if (NSFoundationVersionNumber <
 NSFoundationVersionNumber_iOS_6_0)
 {
 GKLeaderboardViewController *leaderboard =
 [[GKLeaderboardViewController alloc] init];
 leaderboard.leaderboardDelegate = self;
 [[CCDirector sharedDirector]
 presentModalViewController:leaderboard
 animated:YES];
 }
 else
 {
 GKGameCenterViewController *leaderboard =
 [[GKGameCenterViewController alloc] init];
 leaderboard.gameCenterDelegate = self;
 leaderboard.viewState =
 GKGameCenterViewControllerStateLeaderboards;
 [[CCDirector sharedDirector]
 presentModalViewController:leaderboard
 animated:YES];
 }
}

4.	 Then, we need to add the implementation of each method from three protocols.
This means we need to add three methods as follows:
 -(void)achievementViewControllerDidFinish:
 (GKAchievementViewController *)viewController
{
 [viewController.presentingViewController
 dismissModalViewControllerAnimated:YES];
}

-(void)leaderboardViewControllerDidFinish:
 (GKLeaderboardViewController *)viewController
{
 [viewController.presentingViewController
 dismissModalViewControllerAnimated:YES];

Standing Out – Integrating Game Center and In-App Purchases

[32]

}

-(void)gameCenterViewControllerDidFinish:
 (GKGameCenterViewController *)gameCenterViewController
{
 [gameCenterViewController.presentingViewController
 dismissModalViewControllerAnimated:YES];
}

5.	 Finally, modify the onBtnTap: method to call the displayGCAchievements and
displayGCLeaderboard methods when the corresponding button is tapped:
-(void)onBtnTap:(CCButton *)btn
{
 //..skipped..

 else if ([btn.name isEqualToString:kButtonAchievements])
 {
 [self displayGCAchievements];
 }
 else if ([btn.name isEqualToString:kButtonLeaderboards])
 {
 [self displayGCLeaderboard];
 }

 //..skipped

}

6.	 Build and run the game. You should see a Welcome Back banner since you've already
authenticated previously. If you tap the Achievements or Leaderboard buttons, you
should see the Game Center dialog box. Refer to the following screenshot:

Chapter 12

[33]

Don't be surprised to see a No leaderboard label instead of the leaderboard.
The leaderboard will become visible when at least one player reports a score
to it.

What just happened?
Now, when you press the Achievements or Leaderboards button, you actually
execute the code. Depending on which button was pressed, you either call the
displayGCAchievements or displayGCLeaderboard method.

Both methods are very similar, especially for iOS 6.0 and later, so we'll review only the
displayGCAchievements method. Refer to the following numbered comments:

1.	 This code checks whether the device is running an iOS version earlier than iOS 6.

Since Cocos2D-Swift v3.x supports iOS 5 and later, this will
mean that the device is running one of the iOS v5.x.

2.	 In iOS 5, we need to use the GKAchievementViewController class
to display achievements, and the GKLeaderboardViewController
class to display leaderboards. While in iOS 6 or later, we can use the new
GKGameCenterViewController class in both cases.

3.	 Set achievementDelegate to self in order to get notified when the Game
Center view controller needs to be closed. This is also the reason we made the
MenuScene class conform to the GKAchievementViewControllerDelegate
protocol. Two other protocols are serving the same purpose.

4.	 Since the CCDirector class is the game's view controller (inherited from
UIViewController), we used it to display the Game Center view controller.

5.	 In the case of iOS 6 or higher, we used the GKGameCenterViewController
class to display both achievements and leaderboards.

6.	 Set the gameCenterDelegate to self so that we got notified when the Game
Center view controller needs to be closed.

7.	 This is the only line that differs if you want to display achievements
or leaderboards on iOS 6 or higher. In this case, we set it to
GKGameCenterViewControllerStateAchievements since we want
to display achievements.

8.	 Display the Game Center view controller.

Standing Out – Integrating Game Center and In-App Purchases

[34]

This is everything we need to authenticate the player and let the player take a look at the
current Game Center information.

However, right now, there is nothing to look at. The leaderboard is empty and you can't
complete any achievements. Let's fix this!

Reporting scores and achievements to Game Center
To see some information in the Game Center view, we first need to report this information to
Game Center. Let's begin with reporting the score.

Time for action – reporting the score
We will report the score to Game Center at the moment the player has already lost the game
because this means the player cannot increase the score anymore.

To report scores, we'll need to extend our GCManager class as follows:

1.	 Open the GCManager.h file and use the #define statements to store the
leaderboard ID and achievement IDs:

Don't forget to change the values with your leaderboard and
achievement IDs.

#define kLeaderboardID @"com.packtpub.coconutfall.leaderboard.
highestscore"

#define kAchievementHundred @"com.packtpub.coconutfall.
achievement.hundred"

#define kAchievementWakeUp @"com.packtpub.coconutfall.
achievement.wakeup"

#define kAchievementFirstBlood @"com.packtpub.coconutfall.
achievement.firstblood"

Note that there is no line break inside the string value.
Each #define statement is placed on a single line.

Chapter 12

[35]

2.	 Add the reportScore: method declaration:
-(void)reportScore:(int)score;

3.	 Switch to the GCManager.m file and add the implementation of the
reportScore: method:
-(void)reportScore:(int)score
{
 //1
 if (!_isUserLoggedIn)
 return;

 //2
 GKScore *gkScore = [[GKScore alloc]
 initWithCategory:kLeaderboardID];
 //3
 gkScore.value = score;

 //4
 id completionHandler = ^(NSError * error) {
 if (error)
 NSLog(@"Error reporting score: %@", error);
 };

 //5
 if (NSFoundationVersionNumber <
 NSFoundationVersionNumber_iOS_6_0)
 {
 [gkScore
 reportScoreWithCompletionHandler:completionHandler];
 }
 else
 {
 [GKScore reportScores:@[gkScore]
 withCompletionHandler:completionHandler];
 }
}

4.	 Now, you need to actually report the score. Open the GameScene.m file and import
the GCManager.h header:
#import "GCManager.h"

Standing Out – Integrating Game Center and In-App Purchases

[36]

5.	 Then, search for the fallenOffScreenAt: method. Inside the if statement, add
the following line to report the score:
-(void)fallenOffScreenAt:(CGPoint)position
{
 //..skipped..

 if (_lives <= 0 && _gameState == GameStatePlaying)
 {
 [[GCManager sharedInstance]
 reportScore:_points];

 //..skipped..
 }
}

6.	 Build and run the game. Play one game to score some points. After you lose,
click anywhere within the game scene to return to the main menu and tap the
Leaderboards button to open the leaderboards. Refer to the following screenshot:

What just happened?
It is nice to see some scores. We only had to write a few lines of code for that.

Let's review the code of the reportScore: method:

1.	 If the user is not authenticated in Game Center, then we cannot report the score.

2.	 The GKScore class is used to report the score. Note that we passed the
kLeaderboardID leaderboard ID as a category. Since there can be several
leaderboards, you should specify which one you want to submit the score to.

Chapter 12

[37]

The category is just another way of saying leaderboard ID.

3.	 Set the score value to report.

4.	 There are two different ways to report scores depending on the iOS version, but we
can use the same completionHandler method, so we just store it in a variable
here. This time, we specified the completion handler to log the error to a console,
if there is one.

5.	 We used the reportScoreWithCompletionHandler: (instance) method in the
case of iOS 5 and the reportScores:withCompletionHandler: (class) method
for iOS 6 and later to report the score.

In the case of iOS 6 and later, you can report an array of
scores at once. This might be useful if you have many
different leaderboards.

That's it. Now, you can report and beat your own scores, and when the game goes live,
you will be able to compete with other players.

You can delete test data in the leaderboard in the iTunes Connect Game
Center management page.

Time for action – awarding achievements
Reporting achievements is pretty similar to reporting scores. However, there are several
differences that we will see in a moment. Perform the following steps:

1.	 Open the GCManager.h file and add the reportAchievement:
method declaration:
-(void)reportAchievement:(NSString *)achievementId
 progress:(double)progress;

2.	 Then, switch to the GCManager.m file and add the implementation of that method:
-(void)reportAchievement:(NSString *)achievementId
 progress:(double)progress
{
 //1
 GKAchievement *achievement =

Standing Out – Integrating Game Center and In-App Purchases

[38]

 [[GKAchievement alloc] initWithIdentifier:achievementId];

 //2
 achievement.percentComplete = progress;

 //3
 achievement.showsCompletionBanner = YES;

 //4
 id completionHandler = ^(NSError * error) {
 if (error)
 NSLog(@"Error reporting achievements: %@", error);
 };

 //5
 if (NSFoundationVersionNumber <
 NSFoundationVersionNumber_iOS_6_0)
 {
 [achievement reportAchievementWithCompletionHandler:
 completionHandler];
 }
 else
 {
 [GKAchievement reportAchievements:@[achievement]
 withCompletionHandler:completionHandler];
 }
}

3.	 Now, you need to add the code that will detect when the player unlocks an
achievement. Open the GameScene.m file and search for the fallenOffScreenAt:
method. In this method, place the following code at the beginning of the if block,
right before we report the score. This code will check whether the player unlocked the
Wake Up and Hundred achievements:
-(void)fallenOffScreenAt:(CGPoint)position
{
 //..skipped..

 if (_lives <= 0 && _gameState == GameStatePlaying)
 {
 //1
 if (_points == 0)
 [[GCManager sharedInstance]
 reportAchievement:kAchievementWakeUp

Chapter 12

[39]

 progress:100];

 //2
 if (_points > 100)
 [[GCManager sharedInstance]
 reportAchievement:kAchievementHundred
 progress:100];
 else
 [[GCManager sharedInstance]
 reportAchievement:kAchievementHundred
 progress:_points];

 //..skipped..

}
}

4.	 Then, add the code to award the First Blood! achievement in the
coconutRemovedAt: method:
-(void)coconutRemovedAt:(CGPoint)position
{
 if (_gameState == GameStatePlaying)
 {
 [[GCManager sharedInstance]
 reportAchievement:kAchievementFirstBlood
 progress:100];

 //..skipped..
 }
}

5.	 Build and run the game. Here is one of the suggested ways to test achievements:

1.	 Try to click on several coconuts almost at once; this way, you will see that
the First Blood! achievement banner appears two or more times, as shown
in the following screenshot:

Standing Out – Integrating Game Center and In-App Purchases

[40]

2.	 Don't score more than 100 points in your first run to see the progress in the
Hundred achievement, as shown in the following screenshot:

3.	 Lose a game without scoring a single point to unlock the Wake
Up achievement.

4.	 Score more than 100 points to fully unlock the Hundred achievement.

There is no button to remove the achievements in iTunes Connect, but you can do this with
the following code. Just add the debugResetAchievements method to the GCManager
class and call it from somewhere:

-(void)debugResetAchievments
{
 [GKAchievement
 resetAchievementsWithCompletionHandler:
 ^(NSError *error) {
 if (error != nil)
 NSLog(@"Resetting error: %@", error);
 }];
}

For example, you can call it at the start of the game to clear out achievements each time.
Just don't forget to remove it.

What just happened?
First, we're going to discuss how to report achievements and review the code of the
reportAchievement: method:

1.	 The GKAchievement class is used to work with achievements. To create an
achievement, we passed the achievement identifier, which we created earlier in
iTunes Connect.

Chapter 12

[41]

2.	 As you can see with our Hundred achievement, the achievement can be partially
completed. Setting the percentComplete property to 100 means that the
achievement is fully completed, while setting the percentComplete property
between 0 and 100 will mark it as partially completed.

3.	 The showsCompletionBanner property controls whether the banner should
be shown when the achievement is completed. The banner only shows if
percentComplete is 100.

You can disable the banner and show your own completion
banner. This is done in many games where the default
Game Center banner doesn't fit into the overall design and
atmosphere of the game.

4.	 Once again, we used one completion handler for both cases, just as with the
reporting score.

5.	 The reportAchievementWithCompletionHandler: (instance) method was
used in case of iOS 5, and the reportAchievements:withCompletionHand
ler: (class) method was used in case of iOS 6 and higher to submit the score to
Game Center.

Now, let's review the code we added to the fallenOffScreenAt: method.

1.	 At this stage, the player already lost the game and won't score any more points. If
the player scored 0 points, then we award the Wake Up achievement.

2.	 This if block checks whether the player fully completed the Hundred achievement
or we should just report the progress.

Finally, in the coconutRemovedAt: method, we simply report the First Blood! achievement
every time the player hits a coconut.

There is nothing bad with reporting an already completed achievement.
The only issue might be the banner being shown first several times,
but we'll talk about this in a moment.

That's it! Now you know how to add Game Center to your games.

If you want some more information about Game Center, please visit
https://developer.apple.com/game-center/. In addition
to that, there are some wonderful videos from WWDC that show
examples of using Game Center.

Standing Out – Integrating Game Center and In-App Purchases

[42]

Have a go hero
As you can see, reporting scores and achievements is quite easy. However, there are lots of
things you can improve:

�� The first thing that comes to mind is adding more achievements and leaderboards.

�� Right now, the First Blood! achievement banner appears on top of the screen and
hides the points and the lives labels, which is an example of bad design. You can
think of how to solve it. Maybe you just need to remove this achievement and show
it at a different time or change the user interface design.

�� Another possible issue is the achievement banner that appear multiple times for the
same achievement. This happens because you manage to report the achievement
multiple times before it is marked as completed. This can be fixed by keeping a local
cache of achievements.

You can see one way of doing this in the GKTapper sample project
by Apple at https://developer.apple.com/library/
ios/samplecode/GKTapper/Introduction/Intro.html
(short link: http://bit.ly/1o6UaLS).

Making In-App purchases
You can pursue a different goal by integrating In-App purchases in your game, irrespective
of whether you want to ride on a wave of freemium model popularity or simply add a few
different hats for your character in a paid game. However, in both cases, you will need to
know how to integrate In-App purchases.

Listing products and making a purchase
In this section of the chapter, we're going to add a shop to the sample game we created
earlier in this chapter.

Unfortunately, to test In-App purchases, you will need an actual device.
However, you cannot test In-App purchase-related code on a simulator.

The players will be able to see all the products they can buy and make a purchase.

Chapter 12

[43]

Time for action – adding In-App purchases in iTunes Connect
Before we can make purchases in our game, we need to add them in iTunes Connect.
Perform the following steps:

1.	 Sign in to iTunes Connect using the link https://itunesconnect.apple.com.

2.	 Click on Manage Your Apps and then click on the app we created at the start of this
chapter. Click on the Manage In-App Purchases button.

3.	 Click on the Create New button and select the Non-Consumable In-App
purchase type.

We are only going to review the Non-Consumable In-App
purchases, since all other types are pretty similar but require you
to write more code to store and manage the purchases.
For example, you might need to keep track of consumable
purchases in iCloud or on your server, so that the player doesn't
lose all of the purchases when reinstalling the game and can also
use them on other devices. And using subscriptions in games is
not very common.

4.	 Enter the following information (note that I included the Localization fields):

�� Reference Name: Enter Double Lives
�� Product ID: Enter your bundle ID plus .iap.doublelives (for example,

com.packtpub.coconutfall.iap.doublelives)
�� Cleared for Sale: Select Yes
�� Price Tier: Choose any option from the drop-down menu
�� Language: Select English
�� Display Name: Enter Double Lives
�� Description: Enter Double your lives!
�� Hosting Content with Apple: Select No
�� Review Notes: Leave this field empty
�� Screenshot for Review: Don't provide a screenshot for now

You might wonder what screenshot you should provide. Well, if
your In-App purchase unlocks several new levels in the game, you
might provide a screenshot where levels are shown unlocked.
If your In-App purchase doesn't make any visual changes (for
example, doubles points earned per coconut), you can simply
attach a screenshot of the game scene and write how the In-App
works in the Review Notes field.

Standing Out – Integrating Game Center and In-App Purchases

[44]

5.	 Click on the Save button.

6.	 Add one more Non-Consumable In-App purchase using the following data:

�� Reference Name: Enter Double Points

�� Product ID: Enter your bundle ID plus .iap.doublepoints (for example,
com.packtpub.coconutfall.iap.doublepoints)

�� Cleared for Sale: Select Yes

�� Price Tier: Choose any option from the drop-down menu, except the
previous one

�� Language: Select English

�� Display Name: Enter 2x Points

�� Description: Enter Get 2x points for every coconut!

�� Hosting Content with Apple: Select No

�� Review Notes: Leave this field empty

�� Screenshot for Review: Don't provide a screenshot for now

7.	 Click on the Save button. The following screenshot shows what you should see in
iTunes Connect:

8.	 Before leaving iTunes Connect, return to the main menu of iTunes Connect. The
simplest way to do this is by simply going to https://itunesconnect.apple.com.

9.	 Click on the Manage Users button and select Test User. Click on Add New User and
create a new user. Remember this user's e-mail address and password; this will be
the user you will use to make purchases in the sandbox environment.

10.	 Now you need to log out from your real Apple ID from the App Store if you're logged
in. To do this, take the device that you will use to test and go to the Settings app. Find
the iTunes & App Store item and tap on it. In the iTunes & App Store view, click on
your current Apple ID and choose Sign Out. Refer to the following screenshot:

Chapter 12

[45]

What just happened?
We've just added two In-App purchases that the player can buy to get higher scores in the
game. Purchasing the Double Lives In-App will double the player's lives, and purchasing
the 2x Points In-App will obviously make each coconut give double points.

Time for action – displaying a list of purchases
Before the player can purchase anything, we need to display a list of purchases. Finally, we
are going to fill our ShopScene class with some content. Just as with Game Center, we're
going to create a singleton to manage In-App purchases.

1.	 Create a new Objective-C class called IAPManager and make it a subclass
of NSObject.

2.	 Open the IAPManager.h file and replace its contents with the following code:
@import StoreKit;

#define kInAppPoints @"com.packtpub.coconutfall.iap.doublepoints"

Standing Out – Integrating Game Center and In-App Purchases

[46]

#define kInAppLives @"com.packtpub.coconutfall.iap.doublelives"

@protocol IAPManagerDelegate

-(void)productsLoaded:(NSArray *)products;

@end

@interface IAPManager : NSObject<SKProductsRequestDelegate>

@property (nonatomic, weak) id<IAPManagerDelegate> delegate;

-(void)retrieveProducts;

+(IAPManager *)sharedInstance;

@end

Don't forget to replace the com.packtpub.coconutfall
part with your bundle ID, and also note that there is no line-break
between the name and the value in the #define statement. In
other words, each #define statement takes a single line.

3.	 Then, open the IAPManager.m file and replace its contents with the following code:
#import "IAPManager.h"

@implementation IAPManager

-(void)retrieveProducts
{
 //1
 NSSet *products =
 [NSSet setWithArray:@[kInAppLives, kInAppPoints]];

 //2
 SKProductsRequest *productsRequest =
 [[SKProductsRequest alloc]
 initWithProductIdentifiers:products];

 //3
 productsRequest.delegate = self;

 //4
 [productsRequest start];
}

- (void)productsRequest:(SKProductsRequest *)request
 didReceiveResponse:(SKProductsResponse *)response

Chapter 12

[47]

{
 [self.delegate productsLoaded:response.products];
}

- (void)request:(SKRequest *)request
 didFailWithError:(NSError *)error
{
 NSLog(@"Request error %@", error.localizedDescription);
}

+(IAPManager *)sharedInstance
{
 static dispatch_once_t pred;
 static IAPManager * _sharedInstance;
 dispatch_once(&pred, ^{ _sharedInstance = [[self alloc] init];
 });
 return _sharedInstance;
}

@end

4.	 Open the ShopScene.h file and import the IAPManager.h header:
#import "IAPManager.h"

5.	 Then, make the ShopScene class conform to the IAPManagerDelegate protocol:
@interface ShopScene : CCScene<IAPManagerDelegate>

6.	 Switch to the ShopScene.m file and add the following headers:
#import "MenuScene.h"
#import "IAPManager.h"
#import "cocos2d.h"
#import "cocos2d-ui.h"

7.	 Then, add instance variables for a label and a list of items to buy as follows:
@implementation ShopScene
{
 CCLabelTTF *_lblLoading;
 CCLayoutBox *_items;
}

8.	 Add the init method and methods used to create a background, back button,
and a label:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addLoadingLabel];

Standing Out – Integrating Game Center and In-App Purchases

[48]

 [self addBackButton];

 [IAPManager sharedInstance].delegate = self;
 [[IAPManager sharedInstance] retrieveProducts];
 }

 return self;
}

-(void)addBackground
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"shop_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg];
}

-(void)addLoadingLabel
{
 _lblLoading =
 [CCLabelTTF labelWithString:@"Loading..."
 fontName:@"Helvetica"
 fontSize:48];
 _lblLoading.positionType = CCPositionTypeNormalized;
 _lblLoading.position = ccp(0.5f, 0.5f);
 [self addChild:_lblLoading];
}

-(void)addBackButton
{
 CCSpriteFrame *normal =
 [CCSpriteFrame frameWithImageNamed:@"btn_9slice.png"];
 CCSpriteFrame *pressed =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_9slice_pressed.png"];

 CCButton *btnBack =
 [CCButton buttonWithTitle:@"Back"
 spriteFrame:normal
 highlightedSpriteFrame:pressed
 disabledSpriteFrame:nil];
 btnBack.block = ^(id sender)
 {
 [IAPManager sharedInstance].delegate = nil;
 [[CCDirector sharedDirector]
 replaceScene:[MenuScene node]];
 };

 btnBack.horizontalPadding = 12.0f;

Chapter 12

[49]

 btnBack.verticalPadding = 4.0f;

 btnBack.anchorPoint = ccp(0,1);
 btnBack.positionType = CCPositionTypeNormalized;
 btnBack.position = ccp(0.05f, 0.95f);

 [self addChild:btnBack];
}

9.	 Add the productsLoaded: method implementation of the IAPManager protocol,
which is called when the products are loaded:
-(void)productsLoaded:(NSArray *)products
{
 //1
 _lblLoading.visible = NO;

 //2
 _items = [CCLayoutBox node];
 _items.direction = CCLayoutBoxDirectionVertical;
 _items.spacing = 10.0f;

 //3
 for (SKProduct *product in products)
 {
 CCNode *item =
 [self createPurchaseItemWithProduct:product];
 [_items addChild:item];
 }

 //4
 [_items layout];
 _items.anchorPoint = ccp(0.5f, 1.0f);
 _items.positionType = CCPositionTypeNormalized;
 _items.position = ccp(0.5f, 0.8);
 [self addChild:_items];
}

10.	Now, add the createPurchaseItemWithProduct: helper method, which simply
creates a node with the information (title, description, and so on) of each item that
the player can buy:
-(CCNode *)createPurchaseItemWithProduct:(SKProduct *)product
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 CCNodeColor *item =
 [CCNodeColor nodeWithColor:[CCColor whiteColor]
 width:viewSize.width
 height:60.0f];

 CCLabelTTF *productName =

Standing Out – Integrating Game Center and In-App Purchases

[50]

 [CCLabelTTF labelWithString:product.localizedTitle
 fontName:@"Helvetica"
 fontSize:22];
 productName.color = [CCColor blackColor];
 productName.anchorPoint = ccp(0,1);
 productName.positionType = CCPositionTypeNormalized;
 productName.position = ccp(0.05, 0.95);
 [item addChild:productName];

 CCLabelTTF *productDescription =
 [CCLabelTTF labelWithString:product.localizedDescription
 fontName:@"Helvetica"
 fontSize:14];
 productDescription.color = [CCColor darkGrayColor];
 productDescription.anchorPoint = ccp(0,1);
 productDescription.positionType = CCPositionTypeNormalized;
 productDescription.position = ccp(0.05, 0.4f);
 [item addChild:productDescription];

 return item;
}

11.	Build and run the game on your device. Tap on the Shop button, and you will see
a list of possible In-App purchases that we created in iTunes Connect. Refer to the
following screenshot:

What just happened?
We just saw a lot of code, but most of it just required us to glue everything together and
display the products' list.

Chapter 12

[51]

Let's start reviewing the code in a chronological order. When the ShopScene class is
created, it adds a background, a back button, and a Loading label in the init method.
In this way, we show the player that the product list is loading.

Then, it asks the IAPManager singleton to load products by calling the retrieveProducts
method, and sets the delegate property to self to get notified by the IAPManager
singleton when the products are loaded. This is why we created the IAPManagerDelegate
protocol and made the scene conform to it.

Let's review the retrieveProducts method, which initiates the product retrieval,
to understand why we need to use the delegate property and how things work:

1.	 Here, we created a set of product IDs that we want to retrieve. Most of the time,
you will create a set that contains all your product IDs to get information about
all the products. However, in some cases, you might want to remove one or two
product IDs from the set.

You might have a server with a web service that returns a set of
active product IDs. This way, you can immediately remove some
products from the shop on your server by simply not returning
them via the web service, without the need to modify anything in
iTunes Connect. You can even automate this on your server and
create a schedule, such as making one product active only during
Christmas day, each year.

2.	 To retrieve the list of products, you need to use the SKProductsRequest class.
It takes a set of products IDs and returns information about each product from this
set. Note that it will return only products from this set.

3.	 Products are retrieved asynchronously, so we specified the delegate property of
the SKProductsRequest class. Also, this is why we made the IAPManager class
conform to the SKProductsRequestDelegate protocol.

4.	 Use the start method to start the request.

This request can end up in two methods: in the request:didFailWithError: method
in the case of an error or in the productsRequest:didReceiveResponse: method in
the case of success.

Currently, we simply log the error in the console, but in a real game, you should
notify the user that the loading of the products failed.

Standing Out – Integrating Game Center and In-App Purchases

[52]

In the productsRequest:didReceiveResponse: method, we simply pass the products
to the current delegate property, which is our ShopScene class in this case.

So we need to go back to the ShopScene class in the productsLoaded: method, which just
received the list of available products.

In the productsLoaded: method, we placed the code to display the products' list. Let's
review it in more detail:

1.	 The Loading label is no longer needed.

2.	 To display the products, we used the CCLayoutBox class.

3.	 The product item is created in the createPurchaseItemWithProduct: method.
This method simply creates a CCNodeColor node, which is a simple node with a
colored background, and adds two labels to that node: the product title and the
product description.

4.	 All product items are laid out vertically and added to the scene.

The result can be seen in the preceding screenshot.

Time for action – making a purchase
Now, when we have a list of products, we can make a purchase. We are going to add
the code in the IAPManager class to make a purchase and check whether a product
has been purchased.

Then, we're going to add a button next to each product in the shop and will be able to
actually purchase something. Refer to the following steps:

1.	 Open the IAPManager.h file and add the purchaseCompleted method to the
IAPManagerDelegate protocol:
@protocol IAPManagerDelegate

-(void)productsLoaded:(NSArray *)products;

-(void)purchaseCompleted:(BOOL)success;

@end

2.	 Then, make the IAPManager class conform to the
SKPaymentTransactionObserver protocol:
@interface IAPManager : NSObject<SKProductsRequestDelegate,
 SKPaymentTransactionObserver>

Chapter 12

[53]

3.	 Add the following two methods' declaration to the IAPManager class:
-(BOOL)isProductPurchased:(NSString *)productIdentifier;

-(void)buyProduct:(SKProduct *)product;

4.	 Switch to the IAPManager.m file and add the _purchasedProducts instance
variable to hold the already purchased products:
@implementation IAPManager
{
 NSMutableSet *_purchasedProducts;
}

5.	 Then, add the init method to initialize this variable:
-(instancetype)init
{
 if (self = [super init])
 {
 _purchasedProducts = [NSMutableSet set];
 }

 return self;
}

6.	 Add the isProductPurchased: method, which will return YES if a product has
already been purchased:
-(BOOL)isProductPurchased:(NSString *)productIdentifier
{
 return [_purchasedProducts
 containsObject:productIdentifier];
}

7.	 After that, add the methods shown in the following code:
-(void)buyProduct:(SKProduct *)product
{
 if ([self isProductPurchased:product.productIdentifier])
 {
 NSLog(@"You've already purchased this item!");
 return;
 }

 SKPayment *payment =
 [SKPayment paymentWithProduct:product];
 [[SKPaymentQueue defaultQueue] addPayment:payment];
}

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions
{

Standing Out – Integrating Game Center and In-App Purchases

[54]

 for (SKPaymentTransaction *transaction in transactions)
 {
 switch (transaction.transactionState)
 {
 case SKPaymentTransactionStatePurchased:
 [self completeTransaction:transaction];
 break;
 case SKPaymentTransactionStateRestored:
 [self restoreTransaction:transaction];
 break;
 case SKPaymentTransactionStateFailed:
 [self failedTransaction:transaction];
 break;
 default:
 break;
 }
 }
}

- (void)completeTransaction:(SKPaymentTransaction *)transaction {
 NSLog(@"Complete transaction: %@",
 transaction.payment.productIdentifier);

 [self
 purchaseSuccess:transaction.payment.productIdentifier];
 [[SKPaymentQueue defaultQueue]
 finishTransaction: transaction];
}

- (void)restoreTransaction:(SKPaymentTransaction *)transaction {
 NSLog(@"Restore transaction: %@",
 transaction.payment.productIdentifier);

 [self
 purchaseSuccess:transaction.payment.productIdentifier];
 [[SKPaymentQueue defaultQueue]
 finishTransaction: transaction];
}

-(void)purchaseSuccess:(NSString *)productIdentifier
{
 [_purchasedProducts addObject:productIdentifier];
 [self.delegate purchaseCompleted:YES];
}

- (void)failedTransaction:(SKPaymentTransaction *)transaction
{
 NSLog(@"Failed transaction: %@",

Chapter 12

[55]

 transaction.payment.productIdentifier);

 if (transaction.error.code != SKErrorPaymentCancelled)
 {
 NSLog(@"Transaction error: %@",
 transaction.error.localizedDescription);
 UIAlertView *alert =
 [[UIAlertView alloc]
 initWithTitle:@"Purchase failed!"
 message:transaction.error.localizedDescription
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];

 [alert show];
 }

 [[SKPaymentQueue defaultQueue]
 finishTransaction: transaction];

 [self.delegate purchaseCompleted:NO];
}

8.	 Open the ShopScene.m file and add the following code to the end of the
createPurchaseItemWithProduct: method to add a button next to each
product item:
-(CCNode *)createPurchaseItemWithProduct:(SKProduct *)product
{
 //..skipped..

 //1
 BOOL purchased =
 [[IAPManager sharedInstance]
 isProductPurchased:product.productIdentifier];

 if (purchased)
 {
 //2
 CCLabelTTF *purchased =
 [CCLabelTTF labelWithString:@"Purchased!"
 fontName:@"Helvetica"
 fontSize:18];
 purchased.color = [CCColor grayColor];
 purchased.anchorPoint = ccp(1, 0.5f);
 purchased.positionType =
 CCPositionTypeNormalized;
 purchased.position = ccp(0.95f, 0.5f);

Standing Out – Integrating Game Center and In-App Purchases

[56]

 [item addChild:purchased];
 }
 else
 {
 //3
 NSNumberFormatter *formatter =
 [[NSNumberFormatter alloc] init];
 [formatter setNumberStyle:
 NSNumberFormatterCurrencyStyle];
 [formatter setLocale:product.priceLocale];
 NSString *price = [formatter
 stringFromNumber:product.price];

 //4
 CCSpriteFrame *normal =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_9slice.png"];
 CCSpriteFrame *pressed =
 [CCSpriteFrame frameWithImageNamed:
 @"btn_9slice_pressed.png"];
 CCButton *btnPurchase =
 [CCButton buttonWithTitle:price
 spriteFrame:normal
 highlightedSpriteFrame:pressed
 disabledSpriteFrame:nil];
 btnPurchase.horizontalPadding = 12.0f;
 btnPurchase.verticalPadding = 12.0f;
 btnPurchase.anchorPoint = ccp(1, 0.5f);
 btnPurchase.positionType =
 CCPositionTypeNormalized;
 btnPurchase.position = ccp(0.95f, 0.5f);
 [item addChild:btnPurchase];

 //5
 btnPurchase.userObject = product;

 //6
 [btnPurchase
 setTarget:self
 selector:@selector(onPurchaseTap:)];
 }

 return item;
}

Chapter 12

[57]

9.	 Then, add the following two methods to initiate and handle the purchase:
-(void)onPurchaseTap:(CCButton *)btn
{
 //1
 SKProduct *product = btn.userObject;

 //2
 [_items removeFromParent];

 //3
 _lblLoading.string = @"Purchasing...";
 _lblLoading.visible = YES;

 //4
 [[IAPManager sharedInstance] buyProduct:product];
}

-(void)purchaseCompleted:(BOOL)success
{
 if (success)
 {
 _lblLoading.string = @"Refreshing products...";
 [[IAPManager sharedInstance] retrieveProducts];
 }
 else
 {
 _lblLoading.string = @"Purchase failed!";
 }
}

10.	 Open the AppDelegate.m file and import the IAPManager.h header as follows:
#import "IAPManager.h"

11.	Then, add the following line at the start of the
application:didFinishLaunchingWithOptions: method:
-(BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 [[SKPaymentQueue defaultQueue]
 addTransactionObserver:
 [IAPManager sharedInstance]];

 //..skipped..
}

Standing Out – Integrating Game Center and In-App Purchases

[58]

12.	Build and run the game. Open the shop scene and purchase one of the
items by clicking on the orange button on the right-hand side. Refer to the
following screenshot:

Don't forget to use the Apple ID of the test user that we created
earlier in this chapter.

What just happened?
Once again, let's review how the code works in a chronological order.

Initiating the purchase
To allow the player to purchase a product, we added a button next to each
product in the ShopScene class. Let's review the code we added to the
createPurchaseItemWithProduct: method to create this button:

1.	 First of all, we needed to know whether the item had already been purchased. To do
this, we used the isProductPurchased method of the IAPManager class, which
we'll review later. For now, all we need to know is that it returns YES for already
purchased items and NO if the item is not yet purchased.

2.	 If the item is already purchased, the Purchased! label is displayed instead of the
button because the player already purchased this item.

Chapter 12

[59]

3.	 If this item had not yet been purchased, we used NSNumberFormatter to format
the price of SKProduct, which is contained in the price property, using the
priceLocale property. This will display the price on the button in the player's locale.

4.	 This code simply creates and positions the orange button on the right-hand side.

5.	 Here, we used the userObject property to store the reference to the initial
SKProduct product so that we could take it later in the button-tap handler method.

6.	 Set the onPurchaseTap: method to be called when the button is pressed.

When the player taps the button, the onPurchaseTap: method is called. In this method,
we get the SKProduct product saved in the userObject property of the button.

Then, we remove the items from the screen and return the _lblLoading label by making it
visible, but this time, we change its text to Purchasing.

We pass the product to the buyProduct: method of the IAPManager: class. This means it
is time to review the code of the buyProduct: method.

The buyProduct: method checks whether the product has not already been purchased and
places SKPayment in the default payment queue to initiate the payment:

SKPayment *payment = [SKPayment paymentWithProduct:product];
[[SKPaymentQueue defaultQueue] addPayment:payment];

It will ask the player to enter the Apple ID and will ask whether the player really wants to buy
this product.

Handling the purchase result
However, we didn't set any delegates or something like this to get notified about the
purchase result. How do we know when the payment is completed or canceled?

To be notified, we added this line to the AppDelegate class of the
application:didFinishLaunchingWithOptions: method as follows:

 [[SKPaymentQueue defaultQueue]
 addTransactionObserver:[IAPManager sharedInstance]];

This way, we let the payment queue know that we want it to notify the IAPManager
singleton about all transactions. This is also why we made the IAPManager class to
conform to the SKPaymentTransactionObserver protocol.

Standing Out – Integrating Game Center and In-App Purchases

[60]

After we subscribed to receive all the news about transactions, the
paymentQueue:updatedTransactions: method is called when the transaction is updated.

The following is the code for this method:

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions
{
 for (SKPaymentTransaction *transaction in transactions)
 {
 switch (transaction.transactionState)
 {
 case SKPaymentTransactionStatePurchased:
 [self completeTransaction:transaction];
 break;
 case SKPaymentTransactionStateFailed:
 [self failedTransaction:transaction];
 break;
 case SKPaymentTransactionStateRestored:
 [self restoreTransaction:transaction];
 default:
 break;
 }
 }
}

As you can see, we simply enumerate all the updated transactions and call the corresponding
method for each transaction state. We have a total of three methods that can be called:
failedTransaction:, completeTransaction:, and restoreTransaction:.

The completeTransaction: method is called when the player successfully purchases the
product. The restoreTransaction: method is called when the player restores their old
purchase, for example, after reinstalling the game or on another device.

We've added the restoreTransaction: method here just to handle all
transaction states. However, we will actually use it a bit later in this chapter.

Both these methods mean that the player owns this item. So in both cases, we call
the purchaseSuccess: method, which simply adds the purchased product to the
_purchasedProducts set and notifies the delegate property.

The failedTransaction: method is called if an error occurred during the purchase
process. In this case, we display an alert view with the error.

We don't display the alert view if the player cancelled their purchase,
since this is not an error from the player's point of view.

Chapter 12

[61]

After displaying the error, we notify the delegate property, but this time, we pass NO as
an argument to indicate that the purchase completed with an error.

Before going back to the ShopScene class, there is one more important moment.
Note that all the three methods (failedTransaction:, completeTransaction:,
and restoreTransaction:) call the finishTransaction: method to remove the
transaction from the queue. Refer to the following code:

[[SKPaymentQueue defaultQueue] finishTransaction: transaction];

By removing the transaction from the queue, we tell Store Kit that we processed the
transaction independently and whether it was completed successfully or failed. If we
don't remove the transaction from the queue, we will get notified about this transaction
again and again every time the game launches.

Updating the product status in the ShopScene class
Back to the code. We stopped at the moment when the purchaseCompleted: method
of the delegate property was called. Let's return to the ShopScene.m file and review the
purchaseCompleted: method:

-(void)purchaseCompleted:(BOOL)success
{
 if (success)
 {
 _lblLoading.string = @"Refreshing products...";
 [[IAPManager sharedInstance] retrieveProducts];
 }
 else
 {
 _lblLoading.string = @"Purchase failed!";
 }
}

As you can see, it is quite simple. In the case of success, we display the Refreshing products
label and re-retrieve the products. However, this time, the isProductPurchased: method
in the createPurchaseItemWithProduct: method will return YES as follows:

BOOL purchased = [[IAPManager sharedInstance]
 isProductPurchased:product.productIdentifier];

This means that instead of the button to purchase the product, we will add a Purchased! label.

In the case of a purchase failure, we simply change the label to Purchase failed! and do not
re-retrieve the products.

Of course, this is not what you need to do in the real game, but for
simplicity's sake, we're just leaving the player with this level.

Standing Out – Integrating Game Center and In-App Purchases

[62]

Saving and restoring In-App purchases
If the player restarted the game right now and re-entered the shop, the player would be
shocked! All the purchased items are not marked as Purchased! anymore. I can almost hear
the player think – "Do I need to pay again?".

The good thing is that the answer is no. If the player tries to buy an already purchased item,
there will be a message saying that the player already owns this and this one will be free.

However, not all players know this, so it is better for us to just store all the purchased items
in a persistent storage to keep the purchase status between the game restarts.

Another good idea would be to add a Restore Purchases button that the player can tap and
restore all purchases after reinstalling the game or launching the game on another device.

Time for action – storing purchases
Let's start with saving the purchased items between the game launches. We will simply store
all the purchased products in the user defaults using the NSUserDefaults class, just as we
did with our audio settings in Chapter 8, Adding Sound Effects and Music.

In iOS 7, you can persist purchases using App Receipts, but we'll write some
code to work on iOS 5 or higher, since iOS 6 will be here for some time.
If you wish to know more about App Receipts, please go to this
link https://developer.apple.com/library/ios/
releasenotes/General/ValidateAppStoreReceipt/
Introduction.html#//apple_ref/doc/uid/TP40010573
(shortened link: http://bit.ly/1l9urhe).

Perform the following steps:

1.	 Open the IAPManager.m file and add a #define statement for a key that we'll use
to store products in user defaults:
#define kUserDefaultsIAPKey @"IAP_USER_DEFAUTLS_KEY"

2.	 Add the following code to the end of the purchaseSuccess: method:
-(void)purchaseSuccess:(NSString *)productIdentifier
{
 [_purchasedProducts addObject:productIdentifier];
 [self.delegate purchaseCompleted:YES];

 [[NSUserDefaults standardUserDefaults]
 setObject:[_purchasedProducts allObjects]

Chapter 12

[63]

 forKey:kUserDefaultsIAPKey];

 [[NSUserDefaults standardUserDefaults]
 synchronize];

}

It is important to put this code after you add the product to the
_purchasedProducts set.

3.	 Make the following changes to the init method:
-(instancetype)init
{
 if (self = [super init])
 {
 NSArray *tempArray =
 [[NSUserDefaults standardUserDefaults]
 objectForKey:kUserDefaultsIAPKey];

 if (tempArray)
 _purchasedProducts =
 [NSMutableSet setWithArray:tempArray];
 else
 _purchasedProducts = [NSMutableSet set];
 }

 return self;
}

4.	 Run the game on your device. Make a few purchases and then restart the game. You
will see them marked as purchased right after the game starts.

What just happened?
When the player purchases something, we put this product identifier in the
_purchasedProducts set and save this set into NSUserDefaults. Then, when the
singleton is created when the game starts, we load this set and know which products are
already purchased.

We need to save and load the set as NSArray because you cannot store
NSSet in NSUserDefaults. We could archive it manually, but I find it
easier to just convert it to NSArray while storing, and create a set using
an array while loading.

Standing Out – Integrating Game Center and In-App Purchases

[64]

Time for action – restoring purchases
We solved the issue with missing purchases after the game restarts. However, if the player
removes and reinstalls the game, it will remove the user defaults, so we need another way to
restore purchases. Fortunately, it is quite easy to do. Perform the following steps:

1.	 Open the IAPManager.h file and add the purchasesRestored: method to the
IAPManagerDelegate protocol:
-(void)purchasesRestored:(BOOL)success;

2.	 Then, add the restorePurchases method to the IAPManager class itself:
-(void)restorePurchases;

3.	 Switch to the IAPManager.m file and add the following methods:
-(void)restorePurchases
{
 [[SKPaymentQueue defaultQueue]
 restoreCompletedTransactions];
}

-(void)paymentQueue:(SKPaymentQueue *)queue
 restoreCompletedTransactionsFailedWithError:(NSError *)error
{
 NSLog(@"Restoring purchases failed: %@", error);
 [self.delegate purchasesRestored:NO];
}

-(void)paymentQueueRestoreCompletedTransactionsFinished:
 (SKPaymentQueue *)queue
{
 [self.delegate purchasesRestored:YES];
}

4.	 Now we need to add a button to restore purchases. Open the ShopScene.m file
and add the addRestoreButton method:
-(void)addRestoreButton
{
 CCSpriteFrame *normal =
 [CCSpriteFrame frameWithImageNamed:@"btn_9slice.png"];
 CCSpriteFrame *pressed =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_9slice_pressed.png"];

 CCButton *btnRestore =
 [CCButton buttonWithTitle:@"Restore Purchases"
 spriteFrame:normal
 highlightedSpriteFrame:pressed

Chapter 12

[65]

 disabledSpriteFrame:nil];

 btnRestore.block = ^(id sender)
 {
 _lblLoading.visible = YES;
 _lblLoading.string = @"Restoring...";
 [_items removeFromParent];

 [[IAPManager sharedInstance] restorePurchases];
 };

 btnRestore.horizontalPadding = 12.0f;
 btnRestore.verticalPadding = 4.0f;

 btnRestore.anchorPoint = ccp(1,1);
 btnRestore.positionType = CCPositionTypeNormalized;
 btnRestore.position = ccp(0.95f, 0.95f);

 [self addChild:btnRestore];
}

5.	 Add a call to the addRestoreButton method in the init method in order
to add the button to the scene:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addLoadingLabel];
 [self addBackButton];
 [self addRestoreButton];

 //..skipped..
 }

 return self;
}

6.	 Then, we need to implement the purchasesRestored: method of
the IAPManagerDelegate protocol. Add the following method to the
ShopScene class:
-(void)purchasesRestored:(BOOL)success
{
 if (success)
 {
 _lblLoading.string = @"Refreshing products...";
 [[IAPManager sharedInstance] retrieveProducts];
 }

Standing Out – Integrating Game Center and In-App Purchases

[66]

 else
 {
 _lblLoading.string = @"Restore failed!";
 }
}

7.	 Remove the game from your device before running it. Then, build and run the game
and open the shop scene. Tap on the Restore Purchases button and wait until all
purchases are restored. Refer to the following screenshot:

What just happened?
To restore purchases, we added the restorePurchases method to the IAPManager class
and the purchasesRestored method to the IAPManagerDelegate protocol to notify the
ShopScene class when we finish restoring the purchases.

The process of a purchase restoration is quite easy. All we need to do is call the
restoreCompletedTransactions method of the SKPaymentQueue class:

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions];

It will restore all transactions and call paymentQueue:updatedTransactions: for each
restored transaction with SKPaymentTransactionStateRestored, which will further lead
to calling purchaseSuccess: and storing the purchase in the _purchasedProducts set.

Chapter 12

[67]

It is important to understand that purchaseSuccess: is called for every
restored transaction, just as though the player just bought it, so we reuse the
code to save purchases in NSUserDefaults.

However, we want one place where we can understand when all purchases were
restored or failed. This is why we added two more optional methods from the
SKPaymentTransactionObserver delegate.

The paymentQueue:restoreCompletedTransactionsFailedWithError: method is
called if there is an error during purchases restoration. In this case, we simply log the error in
the console and notify the delegate that there was an error:

-(void)paymentQueue:(SKPaymentQueue *)queue
restoreCompletedTransactionsFailedWithError:(NSError *)error
{
 NSLog(@"Restoring purchases failed: %@", error);
 [self.delegate purchasesRestored:NO];
}

In case of success, we simply notify the delegate that purchases are successfully restored.
Refer to the following code:

-(void)paymentQueueRestoreCompletedTransactionsFinished:
 (SKPaymentQueue *)queue
{
 [self.delegate purchasesRestored:YES];
}

To let the player restore purchases, we added a button to the shop scene, which simply calls
the restorePurchases method of IAPManager, removes the products' list, and displays
the Restoring label.

Then, when the purchases are either restored or failed, the purchasesRestored: method
of the ShopScene class is called. If purchases are successfully restored, we reload the
products' list, but this time, the already purchased products will be marked as Purchased!.

Just as with Game Center integration, we only reviewed the basics of working
with Store Kit. In your real game, you might want to check whether there is an
Internet connection, provide timeout for the purchase, and of course create a
better user interface.
Also, there are many different libraries that solve a lot of problems that you
might face when working with Game Center and Store Kit. So maybe you can
search for some that will suit your needs and use them. However, I believe
that understanding how things work internally is still very important.

Standing Out – Integrating Game Center and In-App Purchases

[68]

Affecting the game
When the player purchases something in the game, the player expects to get something in
return. Of course, having a Purchased! label displayed next to each purchase is great, but it is
definitely not enough.

In this short section, we're going to add the code to affect the gameplay when the player
purchases something.

Time for action – doubling the lives and points
What we need to do is to add a small piece of code to the game scene and double the initial
number of lives and points per coconut if the player purchased the corresponding item in
the shop.

1.	 Open the GameScene.m file and import the IAPManager.h header:
#import "IAPManager.h"

2.	 Then, add the following code to the end of the setupGameDefaults method:
-(void)setupGameDefaults
{
 _gameState = GameStateInit;
 _timeUntilNextCoconut = 0;

 _lives = 3;
 _points = 0;
 _pointsPerCoconut = 5;

 if ([[IAPManager sharedInstance]
 isProductPurchased:kInAppPoints])
 _pointsPerCoconut *= 2;

 if ([[IAPManager sharedInstance]
 isProductPurchased:kInAppLives])
 _lives *= 2;
}

3.	 Run the game. Make sure you've purchased both items in the shop and start the
game. Now, you should have 6 lives and receive 10 points per coconut.

What just happened?
This short piece of code simply checks whether the player purchased a corresponding item in
the shop and doubles the points or lives.

Some might say that it is unfair, but this is only a demonstration. I'm sure you can come up
with better ideas for your In-App purchases.

Chapter 12

[69]

Useful resources
There are some truly-gifted people who can write code, create graphics, and even write
music for their games. However, if you're like me, and my drawings can be used to frighten
kids, then you will need some resources for your games.

Here is a small list of resources that can provide you with graphic assets, sound effects,
and music.

Graphics
For free sprites, backgrounds, and animations, check out the following websites:

�� opengameart.org: This will provide you with lots of graphics, sound,
and music resources

�� widgetworx.com/spritelib/: This will provide you with a collection of static
and animated sprites

�� hasgraphics.com/free-sprites/: This will provide you with sprites that are
free to use for commercial and non-commercial projects

�� teh_pro.webs.com/sprites.htm: This will provide you with free sprites; no
permissions are required

�� spritedatabase.net: This will provide you with sprites, background images,
and other resources

�� lostgarden.com/search/label/free%20game%20graphics: This will provide
you with lots of free game graphics

�� reinerstilesets.de: This will provide you with tilesets and sprites mostly for
isometric games

�� pixelprospector.com/indie-resources/: This will provide you with a huge
list of other websites, resources, and tutorials

Sound effects
To get sound effects for your games, see the following websites:

�� freesfx.co.uk: This will provide you with a great categorized list of sound effects

�� freesound.org: This will provide you with a huge collection of sound effects

�� partnersinrhyme.com: This will provide you with royalty-free music and
sound effects

�� bfxr.net: This will provide you with a sound effects generator

Standing Out – Integrating Game Center and In-App Purchases

[70]

Music
The list of websites that provide music that you can use in your games is as follows:

�� incompetech.com: This will provide you with great royalty-free music

�� jamendo.com: This will provide you with music tracks uploaded by artists

�� freemusicarchive.org: This will provide you with an interactive library of legal
audio downloads directed by the WFMU radio station

�� nosoapradio.us: This will provide you with lots of old-school music tracks

Fonts
The list of websites that provide True Type and bitmap fonts, which you can use in your
games, is as follows:

�� dafont.com: This will provide you with freeware, shareware, demo versions,
or public domain fonts, including bitmap fonts

�� fontsquirrel.com: This will provide you with free and almost-free fonts

�� openfontlibrary.org: This will provide you with an open fonts library with
high-quality fonts

�� theleagueofmoveabletype.com: This will provide you with only the most
well-made, free, and open source fonts

Summary
This is the final chapter of this book. In this final chapter, we reviewed features that are not
directly related to Cocos2D. However, your game can definitely benefit from using Game
Center and In-App purchases.

From the previous chapters, you learned all the basics of the process of making games with
Cocos2D. Now, you know how to render and manipulate sprites, handle touches, use actions,
animate your sprites, use particle systems for cooling effects, add sound and music, use
physics, and even to create a user interface.

However, this is only the beginning of your way as a game developer. It is simply impossible
to fit everything you need to know in one book. And not the least role in it plays the fact that
you need to build on your own experience in addition to following the steps from the books
or reading theoretical materials.

Chapter 12

[71]

I recommend that you put your knowledge into action and practice creating games. Creating
a simple game and publishing it will give you an experience that cannot be overrated.

You don't need to try to create a megahit with your first attempt, since there is a very small
chance that you will do this with your first game. Just practice and success will come.

While practicing, you might benefit from reading some books in cookbook format, which
contain short recipes that assume you know all the basics and can put the remaining code
around them. Also, there are several resources that can help you if you get stuck:

�� cocos2d-iphone.org: This is the official Cocos2D-iPhone website, and there is a
great forum with a very responsive community

�� kirillmuzykov.com/forums: This is where I've set up a forum where you can ask
questions related to this book and I'll try to answer them as soon as I can

�� raywenderlich.com: This website is full of great step-by-step tutorials for
beginners and intermediate developers

�� stackoverflow.com: This is the best questions-and-answers website, although it
is not solely related to Cocos2D

�� spritebuilder.com: This has a forum that will be useful when you start
using SpriteBuilder

Good luck!

