

Express Web
Application Development

Hage Yaapa

Chapter No. 4
"Response From the Server"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.4 "Response From the Server"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Hage Yaapa is a contributing developer of Express and the head of Web and
Node.js development at Sourcebits.

He joined one of the best medical schools in India, JIPMER, to become a doctor, but
dropped out to pursue his burning passion for computers and the Internet. He has been
creating websites and apps since 1999 using a very wide array of web technologies.
He is a self-taught programmer and everything he knows about technology, he learned
on his own from the Internet and books.

Yaapa blogs about Node.js, Express, and other web technologies on his website
www.hacksparrow.com, as Captain Hack Sparrow.

For More Information:
www.packtpub.com/express-web-application-development/book

This will sound crazy, but I would like to first thank Khaled Mardam-Bey,
the creator of mIRC—the IRC software, which started everything for me. I
learned many of the important things I know about computers and the
Internet on IRC channels during the transitioning of the century. The first
programming language I learned was mIRC Script, which helped me pick up
JavaScript and other programming languages rather easily.

Next, I would like to thank T. J. Holowaychuk for creating Express and
the unbelievable number of impressive Node.js packages he has created.

Then, I would like to thank Ryan Dahl for creating Node.js, and Isaac
Schlueter for carrying it forward.

I would also like to thank Brendan Eich for creating JavaScript, for there
would have been no Node.js or Express, if there were no JavaScript.

Last but not the least, I would like to thank my loving wife Kenyum for
putting up with me while I wrote this book.

For More Information:
www.packtpub.com/express-web-application-development/book

Express Web
Application Development
This book is about Express, the popular web framework used by thousands of Node.
js developers around the world. It specifically covers the third major version of the
framework, commonly referred to as Express 3.

Express has matured considerably since it was first released exactly four years ago.
Today it is recognized as one of the best web frameworks for Node.js. Every day new
developers from varied backgrounds and experience come to Express for developing their
web apps. With its ever-growing popularity, it is about time we had a book on Express.

I wrote a tutorial on Express some time ago that became quite popular online, particularly
with those new to Node.js and Express. Ever since, I had a dream of writing a book on
Express, which would make no assumptions about the reader's prior experience and
knowledge, and still be full of technical details wherever required. The book you are
holding in your hands is that dream realized—a book on Express that is both
beginner-friendly and technically deep at the same time.

This book covers everything a developer requires to get into serious web
development using Express.

What This Book Covers
Chapter 1, What is Express?, is a beginner-friendly but technically solid introduction
to Express and relevant topics for a strong base right at the start.

Chapter 2, Your First Express App, is a practical introduction to building an Express
app covering the basics that form the basis of every Express app.

Chapter 3, Understanding Express Routes, explains routes in Express in great detail.

Chapter 4, Response From the Server, covers the various ways an Express app can
respond to a request.

Chapter 5, The Jade Templating Language, covers the Jade syntax and its
programming capabilities.

Chapter 6, The Stylus CSS Preprocessor, covers the Stylus syntax and its
programming capabilities.

Chapter 7, Forms, Cookies, and Sessions, covers how to handle forms, and create
cookies and sessions.

Chapter 8, Express in Production, covers important areas to make Express apps
production-ready.

For More Information:
www.packtpub.com/express-web-application-development/book

Response From the Server
This chapter is about understanding how web servers respond to HTTP requests and
how it works in Express. We will cover the details of the response process and learn
how to serve different kinds of content in Express.

You will learn the following in this chapter:

• The basics of HTTP response format
• How to set HTTP status code in Express
• How to set HTTP headers in Express
• How to serve different kinds of content in Express

A primer on HTTP response
To understand the types of response Express is capable of generating and have a
better control over them, it is important that you have some technical understanding
about the underlying HTTP protocol's response format. So, let's go over it real quick
and cover the basics.

HTTP response is a small part of the much bigger HTTP protocol.
As a web developer it is an added advantage if you have a good
understanding of the protocol you are working with. You can
read about the HTTP protocol in detail at http://www.w3.org/
Protocols/.

For More Information:
www.packtpub.com/express-web-application-development/book

Response From the Server

[78]

The data sent by an HTTP server in response to a request is called an HTTP response
message. It is composed of a status code, headers, and optional associated data,
which is technically referred to as the body of the message.

The body is presented to the user as plain text, rendered HTML, image, fi le
download, and so on. The status code and the headers are hidden from a
regular user, but the browser requires them to process the body appropriately.

HTTP status codes
You might be familiar with 404 and 500 errors already. These error names are
derived from the HTTP status code used to convey the errors.

404 and 500 are examples from the number of HTTP status codes that can be sent
by the server to the client. Although there are a number of HTTP status codes, the
reason you don't get to see them all is, because these codes are targeted at the user
agent and the exchange takes place in the background.

An HTTP user agent is any software that a user makes use of to make
requests to a web server. In most cases, the user agent happens to be a
web browser, so we will be using the terms "user agent" and "browser"
interchangeably in this book.

All responses from an HTTP server come with an associated status code. The most
common among them is 200—the code for a successful request. Here is an example
of a 200 HTTP status code:

For More Information:
www.packtpub.com/express-web-application-development/book

Chapter 4

[91]

// HTML should be prettified
app.locals.pretty = true;

app.get('/', function(req, res) {
 res.render('index', {title:'Express'});
});

Restart the server, reload the home page, and look at the source code now:

The generated HTML will now be pretty-printed. However, in a production
environment it is best not to prettify HTML to save some processing power
and reduce the download size of the HTML page.

JSON
Express provides the res.json() method for serving JSON content. You just
have to pass an object to it, and it will take care of setting the up right headers
and formatting the JSON string according to the JSON specifi cations.

Create this route for the home page:

app.get('/', function(req, res) {
 res.json({message: 'welcome'});
});

Response From the Server

[92]

Start the app, load the home page, and examine the HTTP response headers:

res.json() has successfully transformed the JavaScript object to a valid JSON string
and set the appropriate HTTP headers for the message.

Like other response methods, res.json() sets a default of 200 when no status code
is explicitly set. You can customize the status code by passing a number as the fi rst
parameter of res.json(), followed by the object to be sent:

 res.json(404, {error: 'not found'});

Unlike res.send(), if you pass just a number to res.json(), it will be interpreted
as the intended JSON object, and the default status code of 200 will be sent instead
of using it as the status code.

JSONP
JSON with Padding (JSONP) is a JavaScript technique to allow cross-domain scripts
to execute callbacks from JSON requests made to an external domain. It is beyond
the scope of this book to cover JSONP in detail, but you can read it up at http://
en.wikipedia.org/wiki/JSONP.

A JSONP request comes with a GET request parameter, conventionally named
callback, which is the callback function available at the website making the request,
which will be executed by passing the JSON result from the external domain.

JSONP requests to Express are handled by the res.jsonp() method. This method
works like res.json(), except it wraps the JSON result with the callback function
specifi ed in the request.

For More Information:
www.packtpub.com/express-web-application-development/book

Chapter 4

[93]

Let's defi ne the route of the home page to respond with res.jsonp():

app.get('/', function(req, res) {
 res.jsonp({message: 'welcome'});
});

Start the server, load http://localhost:3000/?callback=json_callback in
your browser, and examine the result:

Not only did res.jsonp() wrap the JSON result with the callback function, it also
added a quick check for the existence of the callback on the client machine before
executing the callback. Also, it set the Content-Type header to the appropriate text/
javascript content type so that the browser interprets the result as JavaScript.

By default, res.jsonp() expects the name of the callback parameter to be named
callback, but it can be renamed to anything you like using the app.set() method,
as shown here:

app.set('jsonp callback name', 'cb');

Now the callback name will be expected to be found in the GET parameter named cb.
If the callback name is not found in the expected GET parameter, only the JSON object
will be sent, without the callback padding.

Serving static fi les
As we saw in Chapter 2, Your First Express App, serving static fi les is very easy in
Express—just set up a static directory using the static middleware and place the
fi les there.

For More Information:
www.packtpub.com/express-web-application-development/book

Response From the Server

[94]

Create a directory named files in the app directory, keep the fi les in the directory,
and add the following to the app fi le:

// Use the static middleware to set up a static files directory
app.use(express.static('./files'));

Now you can access all the fi les in the directory from the root of the website. This
is how static fi les for the app, such as CSS, JavaScript, and image fi les are served
in Express.

If you have a fi le named logo.png in the files directory, you can access it at
http://localhost:3000/logo.png. Any fi le or subdirectory you create in the
files directory will also be correspondingly accessible from the app, for example,
http://localhost:3000/new-logo.png, http://localhost:3000/icons/packt.
png, and so on.

Serving fi les programmatically
There is another category of fi les that can be served by a web server—those that are
served dynamically—the requests to which you can apply programming logic.

Express provides two methods of handling such requests: res.sendfile() and
res.download(). Let's examine them one after another.

Note, it is res.sendfile(), not res.sendFile().

Using res.sendfile(), you can send fi les to the browser in the same manner
as how regular fi les are sent to it. The Content-Type header is automatically set
based on the fi le extension, and depending on the fi le type and browser settings,
the fi le may be shown in the browser, displayed by a plugin, prompted for
download, and so on.

The following is a very simple example of using res.sendfile():

app.get('/file', function(req, res) {
 res.sendfile('./secret-file.png', function(err) {
 if (err) { condole.log(err); }
 else { console.log('file sent'); }
 });
});

In this example, we send a private fi le from a private directory, to GET requests to the
path/fi le on the server.

For More Information:
www.packtpub.com/express-web-application-development/book

Chapter 4

[95]

In a web server context, public fi les and directories can be accessed via a
URL, whereas private fi les and directories are those that are not exposed
to the general public via a URL.

On loading http://localhost:3000/file, and examining the HTTP headers, we
will fi nd that no information about the actual name or location of the fi le was sent to
the browser:

Considering the fact that routes names are very fl exible and confi gurable in Express,
you can do all sorts of useful or crazy things, when combined with res.sendfile().

Here is an example that belongs to the crazy category:

app.get('/file.html', function(req, res) {
 console.log('HTML file is an image?');
 res.sendfile('./secret-file.png');
});

For More Information:
www.packtpub.com/express-web-application-development/book

Response From the Server

[96]

There are times when you want the user to actually download the fi le, and not let the
browser try to render it. This can be achieved using the res.download() method.

res.download() requires the target fi le path, and accepts the optional desired
fi lename and callback function for the download:

app.get('/download', function(req, res) {
 res.download('./secret-file.png', 'open-secret.png', function(err) {
 if (err) { condole.log(err); }
 else { console.log('file downloaded'); }
 });
});

If you examine the HTTP headers for this response, you will fi nd that the Content-
Disposition header has been set to attachment, because of which the fi le is being
prompted for download or being downloaded:

If a fi lename is not specifi ed for the download to res.download(), the original name
of the fi le will be used.

Serving error pages
Displaying an error page can be as simple as sending just an error status code with
no body, or rendering an elaborate 404 or 500 error page.

For More Information:
www.packtpub.com/express-web-application-development/book

Chapter 4

[97]

The simplest way to display an error page is to just send the HTTP error code.
In this case, the browser will "know" about the error, but the user will see just a
blank screen.

// 404 error
res.send(404);

You can elaborate this a little bit more by adding a body that will be displayed in
the browser. Now even the user will be aware about the error:

// 404 with additional message body
res.send(404, 'File not Found');

Using res.render(), you can have beautifully customized error pages for your
website, if you want to.

In theory, using res.send() and res.render() to serve error pages sounds very
straightforward and easy, however, in reality handling 404 and 500 errors is not that
obvious to most beginners. Let's fi nd out how we can catch these errors and send the
appropriate responses.

We will be using views in the upcoming examples, so make sure you
have set the views directory in the app.js fi le, or else the examples
will fail to work. Refer Chapter 2, Your First Express App, for setting up
views for your app.

The router middleware comes with a default 404 error handler, but its output may
not be what you would want for your app. Let's fi nd out how to create a custom 404
error handler.

A 404 error handler is technically a generic route handler that handles a request that
all other middleware before it has failed to handle. It is implemented by adding a
custom middleware at the end of the Express middleware stack.

Add the following middleware code after the router middleware:

app.use(function(req, res) {
 res.status(400);
 res.render('404.jade',
 {
 title: '404',
 message: 'File Not Found'
 }
);
});

For More Information:
www.packtpub.com/express-web-application-development/book

Response From the Server

[98]

When the in-built 404 error handler detects that there is a route handler even beyond
it, it will pass on the request to the next handler, which would be our custom 404
error handler.

In the views directory, create a fi le named 404.jade with the following content:

doctype 5
html
 head
 title #{title}
 body
 h1 #{title}
 p #{message}

Restart the server and load a non-existent URL to see the 404 error page:

There you have it, your custom 404 error page! Feel free to modify and
customize404.jade to your maximum satisfaction.

Express also comes with a default 500 error handler that will pass on the control
to the next error handler, if there is one beyond it.

The 500 error is handled by adding a middleware with an arity of four. Since we
want to override the default 500 error handler provided by the router middleware,
we would need to add our handler after the router middleware.

Add the following middleware after the router middleware:

app.use(function(error, req, res, next) {
 res.status(500);
 res.render('500.jade',

For More Information:
www.packtpub.com/express-web-application-development/book

Chapter 4

[99]

 {
 title: '500',
 error: error
 }
);
});

Now create the corresponding 500.jade view fi le in the views directory:

doctype 5
html
 head
 title #{title}
 body
 h1 #{title}
 p #{error}

To intentionally cause a 500 error, create a route with a callback that tries to execute
an undefi ned function:

app.get('/error', function(req, res) {
 // Call an undefined function
 error();
});

Restart the app, load http://localhost:3000/error in your browser to see the 500
error page:

There you go, your own custom 500 error page!

For More Information:
www.packtpub.com/express-web-application-development/book

Response From the Server

[100]

Content negotiation
Content negotiation is the mechanism of specifying the data types a user agent is
capable of consuming and prefers, and the server fulfi lling the request when it can,
and informing when it cannot.

User agents send their preferred content type for a resource using the Accept HTTP
request header.

Express supports content negotiation using the res.format() method. This is a
useful feature if you want to send different types of content based on the capability
of the user agent.

res.format() accepts an object whose keys are the canonical content type name
(text/plain, text/html, and so on), and whose values are functions that will be
used as the handler for the route, for the matching content type.

Let's implement content negotiation in the home page route handler to fi nd out how
it works:

app.get('/', function(req, res) {

 res.format({

 'text/plain': function() {
 res.send('welcome');
 },

 'text/html': function() {
 res.send('welcome');
 },

 'application/json': function() {
 res.json({ message: 'welcome' });
 },

 'default': function() {
 res.send(406, 'Not Acceptable');
 }
 });

});

The server will respond with the appropriate data type based on the Accept
header. This fact can be verifi ed by sending an Accept header of text/sgml,
application/json:

For More Information:
www.packtpub.com/express-web-application-development/book

Chapter 4

[101]

Similarly, you will get the corresponding content type if you set the Accept header
to text/plain or text/html.

If a user agent does not support any of the specifi ed formats in the handler, the
server will return a status of 406 Not Acceptable.

The previous code can be re-written in a less verbose manner by using just the
subtype of the content type as the key:

res.format({

 text: function() {
 res.send('welcome');
 },

 html: function() {
 res.send('welcome');
 },

 json: function() {
 res.json({ message: 'welcome' });
 },

 default: function() {
 res.send(406, 'Not Acceptable');
 }
});

For More Information:
www.packtpub.com/express-web-application-development/book

Response From the Server

[102]

The default handler is optional. When not defi ned, an unsuccessful content
negotiation will be handled by Express' built-in implementation of 406.

Redirecting a request
Sometimes you may want to redirect the request to a different URL, instead of
responding with data. This is made possible in Express using the res.redirect()
method. This method takes an optional redirection code that defaults to 302, and
the URL to redirect to. The URL parameter can be an absolute URL or relative to the
current URL.

The following are some examples of redirecting requests from an Express app:

Code Description
res.redirect('/notice'); 302 redirection to /

notice relative to the
requested URL

res.redirect(301, '/help-docs'); 301 redirection to /
help-docs relative to
the requested URL

res.redirect('http://nodejs.org/api/'); 301 redirection to an
absolute URL

res.redirect('../images'); 302 redirection to /
notice relative to the
requested URL

Summary
We now know that a lot more happens in the background when we load something
in the browser. We learned to customize the HTTP response object in Express to
control the outcome of the request and serve different content types from our app.

We were introduced to Jade in Chapter 2, Your First Express App, and it has been a
constant presence in all the chapters till now. So far we know that it is a templating
engine and works great for generating HTML from our app. There is much more to
Jade than what we saw in the examples, in the next chapter we will learn about it in
greater detail.

For More Information:
www.packtpub.com/express-web-application-development/book

Where to buy this book
You can buy Express Web Application Development from the Packt Publishing website:
http://www.packtpub.com/express-web-application-
development/book.
Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/express-web-application-development/book

http://www.packtpub.com/Shippingpolicy

