Chapter No.10
"Visualizing Data with Power View"
In this package, you will find:

A Biography of the author of the book
A preview chapter from the book, Chapter NO.10 “Visualizing Data with Power View”
A synopsis of the book’s content
Information on where to buy this book

About the Author

Paulte Braak (ptebraak@abaXdata.com.au) is a leading Business Intelligence Consultant based in Australia. He has been involved in Information Management for over 15 years, with the past 9 years focusing on the Microsoft Business Intelligence stack. His areas of interest include data modeling, data mining, and visualization. He is an active participant in the SQL Server community, speaks at various local and international events, and organizes a regional SQL Server Saturday. His blog can be found at www.paultebraak.wordpress.com

For More Information:
I would like to thank everyone who has contributed to this book. Like most projects, there are many behind-the-scenes people who have assisted me, and I am truly grateful to those people. The book would never have been complete without your help!

Firstly, I'd like to thank my wife for her understanding and acceptance during the project when I spent nights and weekends working. I am sure that my responsibilities at home have decreased (well, they've been removed), and this has afforded me the time to focus on writing.

I would also like to thank Cathy Dumas for recommending me to Packt Publishing at the start of the project, and all the reviewers who have provided their input along the way and looked over my work with an objective view. I would like to thank the members of the community who are always willing to participate in events and forums that help us improve our knowledge.

Finally, I'd like to thank Packt Publishing and all the associated staff (believe me, there have been quite a few) for the opportunity to write for them.

For More Information:
Microsoft Tabular Modeling Cookbook

In 2010, Microsoft announced a change to its Business Intelligence environment, and said it will focus its development efforts on semantic modeling. At that time, the current technology used for analysis was SQL Server Analysis Server (SSAS), a technology that relied on disk-based storage and the distinct steps of model development, deployment, and processing—a function usually under the control of IT. The new technology will house all its data in memory and allow the user (or model designer) to change the model in real time and view those changes instantaneously. In addition to this, the platform sought to remove many of the barriers that had existed in the traditional Business Intelligence landscape. It offered a uniform platform for data analysis across an entire organization. The same platform can now be used by an individual user in Excel deployed to SharePoint (for team Business Intelligence) or directly to a server (for corporate Business Intelligence). This will remove a large proportion of the rework that was traditionally involved in Business Intelligence projects and lead to the catchcry "BI to the masses" (meaning that anyone can model a Business Intelligence solution). A free add-in was released for Excel 2010, and the 2012 release of Analysis Server (in SQL Server) included a new storage mode called tabular.

This was an interesting challenge to the traditional methods for implementing Business Intelligence models. Under that structure, Business Intelligence was essentially controlled by an IT department, which used a waterfall methodology and there were distinct phases in an analytical project involving the separation of duties and more importantly, the separation of people. Those that had to use data models were often involved with a back-and-forth battle to make the model work as the business user required.

Tabular models were then introduced and overnight Excel users were able to consume massive amounts of data and create their own analytical models without the need to involve IT (other than access to the data of course!). The product extended the familiar pivot table by allowing users to create pivot tables using many different data sources (and removed the requirements for a pivot table to be sourced from a single data table). More importantly, the ability to create models for the analysis of data was delivered directly to those who needed it most—the analytical end user. The restrictions on analysis and data manipulation that they had previously encountered were removed.

This book is primarily written for those users—individuals who need to answer questions based on large amounts of data. For this reason, we focus on how these users can use that technology to build models in Excel using PowerPivot. We simply don't want to exclude those users who need it the most and do not have access to the more traditional tools developed for corporate BI. Furthermore, these techniques are also directly applicable to corporate tabular models.

Finally, the book looks at how these models can be managed and incorporated into production environments and corporate systems to provide robust and secure reporting systems.

What This Book Covers

Chapter 1, Getting Started with Excel, covers the basics of the tabular model, that is, how to get started with modeling and summarizing the data. This chapter includes a basic overview of how the tabular model works and how the model presents to an end user (we also look at some general data modeling principles, so that you can better understand the underlying structure of the datasets that you use). In doing so, we look at the basics of combining data within the model, calculations, and the control (and formatting) of what an end user can see.

Chapter 2, Importing Data, examines how different forms of data can be incorporated and managed within the model. In doing so, we examine some common sources of data which are used (for example, text files) and examine ways that these sources can be controlled and defined. We also examine some non-traditional sources (for example, data that is presented in a report).

Chapter 3, Advanced Browsing Features, examines how the model can be structured to provide an intuitive and desirable user experience. We examine a variety of techniques that include model properties and configurations, data structures and design styles, which can be used to control and present data within the model. We also examine how to create some common analytical features (for example, calculation styles, value bounds, ratios, and key performance indicators) and how these can be used.

Chapter 4, Time Calculations and Date Functions, explains how time and calendar calculations are added and used within the model. This chapter looks at defining the commonly used month-to-date and year-to-date calculations, as well as comparative calculations (for example, the same period last year). We also look at alternate calendars (for example, the 445 calendar) running averages and shell calculations.

Chapter 5, Applied Modeling, discusses some advanced modeling functionality and how the model can be used to manipulate its own data thus presenting new information. For example, we look at the dynamic generation of bins (that is, the grouping of data), currency calculations, many-to-many relationships, and stock calculations over time. We also look at how the model can be used to allocate its own data so that datasets that have been imported into the model at various levels of aggregation can be presented under a consistent view.

For More Information:

Chapter 6, Programmatic Access via Excel, explains how the tabular model can open a new world of possibilities for analysis in Excel by allowing the creation of interactive reports and visualizations that combine massive amounts of data. This chapter looks at how Excel and the tabular model can be used to provide an intuitive reporting environment through the use of VBA—Visual Basic for Applications is the internal programming language of Excel.

Chapter 7, Enterprise Design and Features, examines the corporate considerations of the tabular model design and the additional requirements of the model in that environment. We look at the various methods of upgrading PowerPivot model, perspectives, and the application of security.

Chapter 8, Enterprise Management, examines how the model is managed in a corporate environment (that is on SQL Server Analysis Server). This chapter looks at various techniques for deploying the tabular model to a SSAS server and the manipulation of objects once they have been deployed (for example, the addition and reconfiguration of data sources). We look at the addition of new data to the model through petitions and the processing of the model data through SQL Server Agent Jobs.

Chapter 9, Querying the Tabular Model with DAX, shows how to query the model using the language of the tabular model—DAX (Data Analysis Expressions). We look at how to retrieve data from the model and then go on to combine data from different parts of the model, create aggregate summaries and calculations, and finally filter data.

Chapter 10, Visualizing Data with Power View, explains how Power View can be used to analyze data in tabular models. This chapter looks at how to use Power View and how to configure and design a tabular model for use with Power View.

Appendix, Installing PowerPivot and Sample Databases, shows how to install PowerPivot in Excel 2010 and install the sample data used in this book.

For More Information:
In this chapter, we will cover:

- Creating a Power View report
- Creating and manipulating charts
- Using tiles (parameters)
- Using and showing images
- Automating the table fields with default field sets
- Working with table behavior and card control
- Using maps
- Using multiples (Trellis Charts)

Introduction

Throughout this book, we have discussed tabular modeling with respect to the models and the client tools that interpret the models and display them to the end user. Tabular models support MDX-based clients, and therefore, current clients can still be used against tabular models with the same look and feel as they had for multidimensional cubes. Examples of this have been demonstrated in the use of pivot tables, which are shown to the user in a multidimensional format.
However, the tabular model contains some settings that are designed for tabular clients. Exposing these features is the focus of this chapter. Here, we continue with the self-service theme of this book and introduce **Power View** (based in Excel 2013) as a reporting tool to present information to the enduser. We show how the model can be managed to present information to the user. To this end, the chapter is also an introduction to Power View. Power View has a different approach to traditional reporting. In traditional reporting (tools), the user designs a report (based on a metadata and structure) and then executes (or renders) the report to see the results. In contrast, Power View is designed to be a real-time analysis solution where users interact directly with a canvas. When any change is made to that canvas, the results are immediately reflected in the report.

Power View is available as a **SharePoint** (reporting) service or a feature in certain editions of Excel 2013 (Office 365 and Professional Plus).

The model in this chapter is similar to the `Sales Model` that has been presented in prior chapters. However, in this chapter, the model sources its data from a data mart, which is based on a star design. This can be seen in the `Products` and `Customers` table where the `ID` field is no longer the unique identifier for the table. These tables are modeled as Type II dimensions (or slowly changing dimensions). Here, the dimension row is uniquely identified by the surrogate key (in each table, the field is suffixed by `class_dk`). It is the surrogate keys that join the `Sales` data. Also, note that the `Sales` data has been flattened (and has no header—detail relationship). This schema is shown in the following screenshot:

![Schema Diagram](image)

For More Information:

Although there are some subtle changes in the operation of PowerPivot in the Excel 2013 model when compared to the 2010 model (for example, the calculated values are shown with function icons, rather than calculations), the creation of the model and its design is identical to Excel 2010.

Creating a Power View report

The first recipe examines how to create a Power View report and navigate the reporting surface. Our goal is simple, we have been asked to investigate trends in sales by Product Category, Month, and Country. This is done by creating a grid on the design surface and then manipulating it.

Getting ready

This recipe is based on the PowerPivot model shown above—the model in the workbook (Sales Model 2013.xlsx) is available from the online resources. Once a tabular model has been converted to an Excel 2013 format, the model is no longer compatible with the Excel 2010 add-in (and cannot be opened or used in Excel 2010).

All the tabular modeling features that relate to Power View can be set in Excel 2010 (the same menu paths are used); however, the results are only visible in Excel 2013 (since this is the only version of Excel that has Power View available). An Excel 2010 version of this file is also available from the online resources.

The Power View and PowerPivot add-ins may also require activation in Excel 2013 (this needs to be done only once). To check if these add-ins are active (or confirm if they are available in your version of Excel), perform the following:

1. Open Excel (so that there is no workbook open). Depending on how you have opened Excel, the following are two views available to you:

 - If you opened Excel from an icon (on the Windows workspace), you will see the following screen. Click on the Open Other Workbooks option as shown in the following screenshot:
If you closed all the workbooks that you had opened in Excel (and the screen looks like the following), simply click on the **FILE** option as shown in the following screenshot:

![Excel File Menu](image)

2. Click on **Options** from the list.

3. Click on **Add-Ins** from the navigation panel and confirm that the **Power Pivot for Excel** add-in and the **Power View** add-in appears under the **Active Application Add-ins** (as shown in the following screenshot):

![Add-Ins Panel](image)

4. If the add-ins do not appear (as active), they have not been activated—they will need to be activated now. Select **COM Add-ins** from the **Manage** drop-down list (at the bottom of the window), then click on the **Go** button.

For More Information:
5. A new window will open displaying **COM Add-Ins**. Ensure that the PowerPivot and **Power View** add-ins are checked (as shown in the following screenshot) and then click on the **OK** button:

![COM Add-Ins](image)

How to do it...

Open the **Sales Model 2013.xlsx** workbook and create a new Power View report. Reports appear in the same manner as worksheets, with a tab at the bottom of the Excel window.

1. Insert a new Power View report by clicking on the **Power View** button from the **Insert** Tab as shown in the following screenshot:

![Insert Tab](image)

If this is the first time that Power View has run, Excel may ask permission to install **Silver Light**. If this occurs, permit the installation (this is required only once).

2. A new Power View report is inserted. The design canvas consists of four sections, shown in the following screenshot. These are described as follows:

 - The **Report Canvas** (the report) displays the data to the user.
 - The **Filters Pane** applies a global (report-wide) filter (also titled a view filter) to the data, without the need to filter a control on the report.
 - The **Power View Field List** shows the tables and fields in the model.

For More Information:

The Control Content shows what model fields are used in the active control (that is, the one that is selected on the Report Canvas). The Control Content also allows the user to add and remove fields from the active control and therefore, change the format and appearance of that control (or visualization). The active control is (of course) the control that is selected in the Report Canvas.

It may be helpful to think that anything displaying the data on the Report Canvas is done so through with a control. For example, a grid is a control that groups the data into a single object. Also, note that the sheet name for the Power View report can be changed just as any Excel sheet—either double-click the name or right-click and select Rename from the pop-up window.
3. Add a table to the canvas by dragging the Month field from the Order Date table onto the canvas. The months will expand (showing each month of the year). Add the measure Sales Gross (found in the Sales table) to the Reports table (the control) by dragging the field onto the table (when the field hovers over the table, it gets a darker dotted border, as shown in the following screenshot):

![Table and Measure Drag](image)

4. The table in the canvas has its edges surrounded by a light border. This indicates that the control is active. The control can be deactivated by clicking on any part of the canvas that is not in the control's border area. Activate the table and drag the GOGS measure into the FIELDS section of the Control Content section to add GOGS to the Reports table, as shown in the following screenshot:

![Table with Measures](image)

5. The active control can be moved and resized by dragging its borders on the canvas. When the mouse hovers over the border boundaries (the gray lines of the border), the mouse pointer changes to an arrow to indicate that the border can be resized. The entire control can be moved when the mouse changes to a hand pointer. Ensure that the control is large enough to cover all the months of the year.

For More Information:
6. Add a new table to the canvas that shows Country Sales by Product Category. Drag the Country field to a new section of the canvas (that is, not on the Month table) so that a new table is added to the canvas.

7. Convert this new table to a matrix control (a matrix groups data into rows and columns) by activating the control and selecting Matrix from the Table drop-down, as shown in the following screenshot:

![Matrix Control](image)

8. After the control has changed to a matrix, the available fields in the Control Content changes. We can now drag the Category field (from the Products table) into the COLUMNS section and the Sales Gross into the Σ VALUES section. The controls content section should look like the following screenshot:

![Control Content](image)

The number of boxes available (and their names) in the Control Content section is determined by the type of visualization that is used. That is, whether the control is a table, matrix, card, chart, or map.

For More Information:
9. Resize the control, so that all data fits onto the canvas.

10. Name the report by clicking on the grayed heading section (which displays the text **Click here to add a title**) and name the report **Sales Summary by Year**.

11. The controls currently show data for all the years in the model. We want to restrict the report to show only specific years and want to apply this filter to all the controls that are on the canvas. In the **Filters** pane, click on the **VIEW** label to apply the filter to the entire report (alternatively, you can select any area of the canvas that does not activate a control.). Then, drag the **Year** field into the **Filters** section. The section will immediately change and will look like the following screenshot:

 ![Filters section](image)

12. The filter can now be applied to the report by dragging the ends of the slider bar. When this is done, a text description is added to the view (as shown in the following screenshot):

 ![Filter description](image)

 How it works...

 The addition of controls to the canvas and the application of a (global) filter are straightforward and do not require further explanation.

 There’s more...

 There are a few additional points that should be included to the recipe concerning the introduction of the report. These are discussed in the following section.

 For More Information:

When a control on the canvas is selected, the Filters section changes to include the type of the control that is active (currently, there is no method available to name the control, so only the type of control is shown.). For example, if the Month table is selected (the one we initially created), the Filters pane will include a TABLE label as shown in the following screenshot. We can now click on the TABLE label to show the filters that are applicable to the active control.

![Filters screenshot](image1)

Now, any field that is added as a filter will only be applied to the active control and not the entire report. Clicking on the VIEW label will change the control back to the global filters.

A filter can be removed by clicking on the delete button for the filter (the button with a cross as highlighted in the following screenshot). Hovering over a button will show a tool tip for the item.

![Filter screenshot](image2)

For More Information:
The way that the filter is presented in Power View is dependent on the type of data that the filter is based on. Since year is a number, Power View expects you to filter based on a range. But this need not be the case—you may desire a check-box list or some text based query. Clicking on the filter mode will change how the filter is presented (and of course, how you interact with it). These choices are shown in the following screenshot:

The controls in Power View work in a similar manner as a pivot table. That is, they hide information when there is no data for the selected view. This can be seen by applying a filter to Year for 2010. When this is done, the table control provides a no data message as shown in the following screenshot:

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales Gross</th>
<th>GOGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table contains no rows.

This may be a novel feature for visualization; however, there may be situations where you want to see the range of dimension members available (just like the Show rows with no data feature in a pivot table). To do this (and show all month labels), perform the following steps:

1. Activate the table, so that the Control Content shows the fields in the table.

For More Information:
2. Select the drop-down arrow for the Month field and select the **Show items with no data** option.

Creating and manipulating charts

When an enduser is shown data in tables and matrix controls, their subconscious mind thinks about the relationships between the data that they are presented with. For example, consider the table created in the prior recipe, *Creating a Power View report*, as shown in the following screenshot:

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales Gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1,242,605</td>
</tr>
<tr>
<td>February</td>
<td>2,311,603</td>
</tr>
<tr>
<td>March</td>
<td>1,473,826</td>
</tr>
<tr>
<td>April</td>
<td>1,724,404</td>
</tr>
</tbody>
</table>

Here, we recognize the month as a sequence of consecutive periods and associate performance and the change in values from month to month (for example, February is almost twice as good as January).

This analysis requires a bit of thought from the user and is not the most efficient way to present the month-on-month trend—a visual representation is much more effective. This recipe examines the creation and manipulation of charts in Power View.

For More Information:

Getting ready

This recipe uses the same workbook that was used in the prior recipe (Sales Model 2013.xlsx is available from the online resources). Unlike worksheets, Power View reports cannot be copied with the workbook. They must be created from scratch. Create a new report (titled Charts) and add a table that shows Months and Sales Gross (as in the preceding screenshot).

How to do it...

Let's start by converting a table to a chart.

1. Activate the table by selecting any cell in it.
2. Convert the table control to a stacked bar chart by selecting the Stacked Bar option from the Bar Chart button as shown in the following screenshot:

3. When this is done, the control converts to a chart with the same structure as the table (Months on rows), however, the values are now bars of the chart, as can be seen in the following screenshot:

For More Information:

When the chart cannot fit into the physical bounds of the control, the chart's axes are not compressed to fit into the control. Note that all the months are not shown (in the preceding screenshot) and there is a slider between the months and data bars. This allows the months to be scrolled with the chart.

Alternatively (of course), the chart control can be resized so that all months fit into it.

4. Convert the control to a stacked column chart by selecting Stacked Column from the Column Chart button. A column chart (as the name suggests) displays the axis on the columns. Resize the chart so that it fits into the page.

5. Add the Category field from the Products table to the Legend box in the Control Content section. Each monthly bar is now broken down into sections that show category groupings. The chart and Control Content section should look like the following screenshot:

![Chart Screenshot]

6. Currently, all Category stacks in columns are equally transparent. We (that is, the user) can draw attention to an individual category by selecting it in the Legend box on the chart. When this is done, all other categories in the chart will become dull. To return the chart to the original state (with equal category transparency), simply re-click the category in the chart's Legend box.

For More Information:
7. Convert the chart to a clustered column (chart) by selecting **Clustered Column** from the **Column Chart** button. The chart changes so that a data bar is shown for each category by month, as shown in the following screenshot. Individual categories can be emphasized by selecting the category name from the **Legend** box.

![Clustered Column Chart](image)

A common use of a stacked chart is to show proportional values within a month. For example, the chart shows how a monthly sales value is broken down by category. However, one flaw of this type of visualization is that the proportions within a month are not comparable between months. A clustered chart is much more suitable for this type of analysis.

8. Hide the title of the chart (which describes the chart as **Sales Gross by Month and Category**) by selecting the **None** option from the **Title** button from the **LAYOUT** tab, as shown in the following screenshot:

![Title Options](image)

9. Add value labels to the chart by selecting **Outside End** from the **Data Labels** button (the **Layout** tab).

10. Move the **Legend** box to the bottom of the chart by selecting the **Show Legend at Bottom** option from the **Legend** button (the **Layout** tab).

For More Information:

Using tiles (parameters)

Regardless of the reporting tool, the use of parameters is a common feature for allowing user interaction with report data. The typical way that these are implemented is through the population of a control (usually a drop-down list) that allows the user to select a value, and this value dictates what data is seen on the report. When parameters are used, it is often necessary to explicitly define the parameter and its data before it can be used in the report (and subsequent datasets).

Power View does not have parameters in the traditional sense. Instead, the report is based on all of the data within the model. The user can filter controls through a special type of control called a tile. The tile lists available values for the field chosen, allowing the user to select a value which is applied to other report controls.

Getting ready

This recipe continues from the Power View report created in the previous recipe, Creating and manipulating charts.

How to do it...

Adding a tile can be achieved in a number of ways. In this recipe, we add it to an existing control and then manipulate it.

1. Activate the Reports table so that the Control Content (section) is visible.
2. Drag the Year field (from the table Order Date) into the box labeled TILE BY. The section should look like the following screenshot:

For More Information:
3. Immediately, the tile is added above the chart. Selecting different years (as shown in the following screenshot) from the tile will change the values:

![Tile with years](image)

4. The tile is bound by a blue border (above and below) that covers the area that is applicable to the tile. In the preceding screenshot, we can see the upper bound; the lower bound (which is not shown) is below the chart. Resize the tile control so that it fills the canvas. When this happens, the existing chart will also move some of its borders (within the tile's boundary of course).

5. Add a new pie chart to the tile control by dragging the Category field onto the canvas between the tile's boundary lines (that is, place the field under the existing chart).

6. When this is done, a new table will be added to the canvas.

7. Add the Sales Gross measure to the table and convert it to a pie chart by selecting it from the Other Chart button.

8. Resize the pie, so that it is positioned in the center of the page.

9. Select a Category field from the bar chart. Note that the transparency of the segments also changed to reflect the targeted Category.

10. Change the Year in the tile. Note that the existing (selected) category remains active.

How it works...

There is nothing extra to explain here. The tile may be thought of as an additional control that has its own bounds. Any other control placed within those bounds are controlled by the tile.

For More Information:

There's more...

There are two positions that the tile can occupy within the canvas. The first (as we have seen) is at the top of the control and is called a Tab Strip. The second is at the bottom with a slightly focused visualization (called a Tile Flow). Change the type by selecting Tile Flow from the Tile Type button as shown in the following screenshot:

Once the previously described steps have been performed, our canvas should now look like the following screenshot:

For More Information:
Using and showing images

There is an old adage that a picture is worth a thousand words. While we can naturally assess data more easily if it is presented in the correct visual format, pictures and images in reports add a style that add recognition to data. Consider the use of KPIs (KPIs were addressed in the Creating and using Key Performance Indicators recipe in Chapter 3, Advanced Browsing Features) that visually display performance. On seeing a set of KPIs, we can immediately assess the position.

Images are an attractive inclusion in reports because they are visually appealing and improve user understanding. This is because an image is immediately identifiable as a symbol—it holds a predetermined meaning for the user.

This recipe looks at what the tabular model requires for displaying data as images in Power View.

Getting ready

This recipe uses the Sales Model 2013.xlsx workbook available from the online content. There is no dependency on prior recipes.

How to do it...

The Country table of the model list's sales areas that include a Country field and a Country Flag field. The Country field aggregates regions into countries with the Country Flag, providing a URL image of that country's flag.

1. Unhide the Country Flag field from client tools on the Geography table.
2. Observe that the field is actually a fully qualified Uniform Resource Locator (URL) that requests an image (note the .gif extension) as shown in the following screenshot:
3. To verify the location of the URL, copy it from the formula bar and paste it into Internet Explorer. Instead of a web page, the following screenshot will be displayed:

4. Ensure that the Data Category for the field is set to Image URL. This may be automatically detected by PowerPivot. To confirm this, examine the Reporting Properties option in the Advanced Tab. The Data Category should be set to Image URL as shown in the following screenshot. If it is not, select it from the drop-down list.

5. Click on the Table Behavior button and set the Default Image (field) to Country Flag (optional).

 We can also use a URL as an image by specifying its Data Category as WEB URL. However, if this option is used, setting the default image property for the table will raise an error when Power View tries to read the model.

For More Information:
6. Return to Excel and insert a new Power View report (named Images). Drag the Country Flag field onto the canvas. Observe that the flags are shown in the place of text (as in the following screenshot). Generally, this field can be used just as any other field in Power View (for example, as a tile or as rows in a table).

Excel may display a warning that external content is required—if this is shown, allow Excel to access the external content.

There's more...

In addition to using the WEB URL feature, tabular models allow fields of binary data (type). This allows an image to be stored in the field, rather than a pointer to an external resource (that is, a URL). The Photo field in the Products table is an example of this type of data.

A recipe of how to load this data is outside the scope of the book (other than the loading of the table from the database); however, Power View can interpret the binary data and display it as an image. There are no additional settings or properties that need to be set to use an image, however, it is recommended that the Data Category be set to Image.

Automating the table fields with default field sets

There is often a set of standard views that users like to see when they use a model, for example, we might expect any user that uses the Products table would automatically like to see only the Category and Sub Category fields. Of course, they are not restricted from adding other fields to a control, however, when they use the table, we might like to give them the option of automatically adding those fields.

This recipe looks at how that can be achieved (and used).

For More Information:
Visualizing Data with Power View

Getting ready

This recipe uses the Sales Model 2013.xlsx workbook available from the online content. There is no dependency on prior recipes.

How to do it...

Let’s start by examining Power View’s behavior before the model is configured for this action.

2. Launch the PowerPivot window and activate the Products table.
3. Click the Default Field Set button to launch the Default Field Set dialogue.
4. Add the Category and Sub Category fields to the Default fields, in order: box by selecting them from the Fields in the table: box and clicking on the Add button as shown in the following screenshot:

You can specify the order in which the fields will be added to the table by specifying the order in the Default fields, in order: box. To change the order, simply highlight the field (in that box) and click on the Move Up or Move Down button.

For More Information:
5. Close the dialogue by clicking on the **OK** button.

6. Return to Power View and click on **OK** to refresh Power View's cache of the data model.

7. Double-click on the **Products** table. This time, the two fields are added to a new table.

 You can also use this (double-click) technique to add the default fields to an existing control (this does not apply to all controls). Simply ensure that the control is active before you double-click on the table in the Power View field list.

Working with table behavior and card control

PowerPivot is very flexible for summarizing and aggregating data—most of the time, we want to see that data at an aggregated level and at other times, it may be required at a detailed level. This recipe looks at how to specify table properties so that data is listed distinctively.

Finally, the recipe introduces a **Card control** that lists data into a distinctive group for display.

Getting ready

This recipe uses the **Sales Model 2013.xlsx** workbook available from the online content. There is no dependency on prior recipes.

How to do it...

This recipe commences on the assumption that there is no table behavior set on the **Products** table. First, we ensure that any formats from prior recipes are discarded.

1. Launch the PowerPivot window and activate the **Products** table.
2. Click on the **Table Behavior** button in the **Advanced** tab to launch the **Table Behavior** dialog. Ensure that the table has no behaviors set. It should look like the following screenshot. Click on **OK** to confirm the properties.

3. Create a new Power View report using a table control that includes the **Product ID**, **Category**, and **Sub Category** fields from the **Products** table.

4. Add a filter to the report so that only product **HL-U509** is shown. Drag **Product ID** to the **Filter** section, then use a string filter for product **HL-U509** (searching for product 509 will list similar products to 509). Check the product **HL-U509** in the **Filter** section to check if the details are displayed in one row (as in the following screenshot):

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Category</th>
<th>Sub Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL-U509</td>
<td>Accessories</td>
<td>Helmets</td>
</tr>
</tbody>
</table>

5. Return to the **Table Behavior** dialogue and set the **Row Identifier** field to the **product_dk** field.

For More Information:

Each table should have a **Row Identifier** assigned (assuming that there is a field in the table that can act in this capacity—sometimes this may not be the case). This materializes the (primary) key for the table and will stop the tabular model from creating an arbitrary unique identifier for each row.

6. Return to Power View and refresh the report (update the cache of Power View); there is no change to the report.

7. Return to the **Table Behavior** dialog for the **Products** table. Check the box next to **Product ID** in the **Keep Unique Rows** list.

8. Return to Power View (refresh the cache). Since the change has been made to **Product ID**, you will also need to re-apply a filter to **Product ID**.

9. Return to the **Table Behavior** dialog for the **Products** table. This time, set the **Default Label** to **Product ID** and the **Default Image** to **Photo** (this is the only choice available). The **Table Behavior** dialog should look like the following screenshot:

![Table Behavior Dialog](image)

For More Information:
10. Save the changes to the model (by clicking on **OK**) and return to Power View.

11. Extend the table (control) by adding the **Photo** field and **Gross Sales**.

12. Change the table view to a card by selecting **Card** from the **Table** drop-down in the **Switch Visualization** group as shown in the following screenshot:

![Switch Visualization Group](image)

13. The table control changes to the **Card** layout. Note the placement and format of the **Product ID** field in the **Card**. It has a larger (attention-grabbing) font and is located in the top-left corner of each card, as in the following screenshot:

![Card Layout](image)

How it works...

The setting of table properties in this recipe is relatively straightforward. Setting a row identifier explicitly defines the unique field for the table.

Once the unique field has been set, the fields that require uniqueness can be set—naturally, things must be done in this order. This assigns a one-to-one relationship with the row identifier, meaning that each **Product ID** is repeated for each instance of the table's row identifier.

For More Information:

Finally, the table's default label is a property which is only applicable to the Card. This specifies the field that will be used as a label in the Card control. This can be thought of as a unique identifier for the Card (note duplicates are shown, even though we might not expect that behavior) and the more pronounced formatting.

Setting a default label will force the field to be treated in the same manner as a **Keep Unique Rows** flag and force **Product ID** to be repeated in a Card (even if the **Keep Unique Rows** flag was not checked).

If you wish to use the Card visualization in Power View, the model needs to be physically structured, so that the **Product ID** is unique.

Using maps

Humans absorb data more easily if it is presented in a visual format—consider how quickly trends can be assessed when a line chart is used rather than a data table. The same argument applies to maps, where information related to geographic regions is used. The use of maps (or map reports) is an efficient way to display geography-related information because it adds context to data that would otherwise require thought. For example, imagine a table summarizing the sales by city. When you look at this table, you think about where the city is, and try to make comparisons between the values for each city. This is a lot for the user to do in their subconscious! To analyze the relationships between cities, a more suitable approach would be to show the data values on a map, so that the user need not think about the location element of their data.

This recipe examines how to configure the tabular model for use with maps in Power View.

Getting ready

This recipe uses the **Sales Model 2013.xlsx** workbook available from the online content. There is no dependency on prior recipes.

How to do it...

Let us start by examining fields that can be used to refer to geographies.

1. Activate the **Customer** table in the PowerPivot window.

For More Information:

2. Ensure that the data categories for the geography-related fields are set to appropriate values. That is, the geography-related fields are tagged as geography. These are set in the Advanced tab under the Reporting Properties grouping when the field is selected (as in the following screenshot):

The Data Categories that should be set are as follows:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>City (suggested)</td>
</tr>
<tr>
<td>State</td>
<td>State/Province</td>
</tr>
<tr>
<td>Country</td>
<td>Country/Region (suggested)</td>
</tr>
</tbody>
</table>

3. Return to Excel and create a new Power View report. Expand the Customers table and examine the fields City, State, and Country. Note that the fields have a globe icon (indicating that they play a geographic role), as is visible in the following screenshot:
4. Create a new table by dragging the City attribute onto the report canvas. Extend the table to include the Sales Gross measure.

5. Convert the table to a map by clicking on the Map button (from the Switch Visualization group).

6. Immediately, the visualization changes. Resize the control so that it fits in the entire page.

 The map is interactive, and its view (that is, the actual map with data points) can be zoomed into by using the mouse roller or moved (left-click and dragging). Alternatively, the maps navigation controls can be used (as in the following screenshot):

7. Because the map is showing data at a city level, it appears cluttered. We can reduce this clutter in the following combination of ways:

 - We could use a higher-level attribute in the Location field of the Control Content. This is done by dragging the State attribute to the Location box in the Control Content and removing City. As expected, the number of display points on the chart decreases (we could also use the Country attribute for a higher-level view).

 - We could apply a Filter to show only data points that met a specific criteria (sales value). This is done by expanding the Filters section, ensuring that the MAP control is selected, and using the slider filter (or an alternate filter control, as discussed in the Creating a Power View report recipe).

8. Set the Location field to State, to examine the change in granularity.

How it works...

There is no requirement for additional explanations other than the reiteration, that the map is dependent on the data category setting for fields. The control section of the map also includes the longitude and latitude placeholders. These should be used in preference to field names.

There's more...

The size of the bubble on the map indicates sales value, however, we often want to add more meaning to those data points by adding a category to indicate how those sales are broken down. Do this by dragging the Category field into the COLOR box (in the map's Control Content). When this is done, the bubbles change to pie charts (to indicate the composition of sales), and a legend is added to the map.

For More Information:

The legend is interactive. Selecting an individual entry from the legend will focus on each pie chart's segment in that category. Selecting it again will return the selection to the original state.

Using multiples (Trellis Charts)

The use of charts is a common way to understand relationships between data—of course, this is not unique to Power View, but applicable to analytics in general. However, as more data fields are added to the chart and the number of fields exceeds the axis number of the chart, the chart becomes more complex and difficult to read. One solution that has been used to combat this situation, is to reproduce a template chart based on a dimension—for example, we might show various charts with each chart showing data for a specific country. When this functionality is included in the charting engine, the output is commonly referred to as [trellis charting](#).

This recipe shows how to implement trellis charting in Power View. This functionality is possible for most Power View charts (including maps).

Getting ready

This recipe uses the Sales Model 2013.xlsx workbook available from the online content. There is no dependency on prior recipes.

How to do it...

1. The creation of a Trellis Chart (which is called multiples in Power View) is a configuration of the chart control (whether a chart or map). However, this behavior is consistent among all chart types. Create a Clustered Column chart that shows Sales Gross by Category (see the [Creating and Manipulating Charts](#) recipe in this chapter for information on how to do this).

It is often preferred to show columns (or bars) in an ordered sequence based on data value (rather than the chart's axis category name). This can be achieved by setting the sort by field of the chart. This option is shown when the mouse hovers over the chart (as in the following screenshot). Set the sort by field to Sales Gross.

For More Information:

2. Drag the **Country** field to the chart's **Vertical Multiples** box in the chart's control section.

3. Resize the chart, so that it covers the full canvas (to see the full effect of the visualization).

How it works...

As mentioned in the recipe, the use of multiples (or Trellis's) technique is available in all charts (including maps). A vertical multiple will expand individual charts, so that they can appear over rows (column cells are first populated, and then individual charts overflow to rows—this is shown in the following screenshot). Horizontal multiples will only have one layer of charts and will not overflow to additional rows.

For More Information:

There's more...

Once multiples have been created on a chart, the format of the multiples (that is, the number of charts appearing in each row and column) can be adjusted, so that the Trellis Chart is more visually appealing. This is specified by the Grid Height and Grid Width settings in the LAYOUT tab of Power View (as shown in the following screenshot). Simply set the number of charts to appear in rows (Grid Height) and columns (Grid Width).

For More Information:

Installing PowerPivot and Sample Databases

In this appendix, we will discuss:

- Installing PowerPivot
- Creating the database

Installing PowerPivot

In Excel 2010, PowerPivot is an add-in that must be downloaded and installed. In Office 365 Pro and Excel 2013 Pro Plus, the add-in is a part of the default Excel installation setup (which means there is no requirement to install PowerPivot). However, the add-in must be activated before it can be used (see Chapter 10, Visualizing Data with Power View, for details on enabling the add-in in Excel 2013).

The 2010 add-in can be downloaded from the Microsoft download center (free of charge) using the following URL:

For More Information:

Installing PowerPivot and Sample Databases

Although the installation is relatively straightforward once the installation file is obtained, the downloaded file must match the installed version of Excel (that is, whether Excel is operating in 32-bit or 64-bit mode). This can be checked by selecting the Help option from the File tab (in Excel), as shown in the following screenshot:

In the About Microsoft Excel section, we can see that this version of Excel is a 64-bit version (and hence, we must install the 64-bit version of PowerPivot).

The download page (from the provided URL) will look like the following screenshot:

When the Download button is clicked, you are prompted to choose the file to download, as shown in the following screenshot.

For More Information:
The file with the name ending with `_amd64.msi`—the middle one in the following screenshot should be installed for the 64-bit version of Excel and the other file (`_x86.msi`) should be downloaded and installed on systems having the 32-bit version of Excel:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>1033\ReadMe_PowerPivot.htm</code></td>
<td>12 KB</td>
</tr>
<tr>
<td><code>1033\x64\PowerPivot_for_Excel_amd64.msi</code></td>
<td>130.0 MB</td>
</tr>
<tr>
<td><code>1033\x86\PowerPivot_for_Excel_x86.msi</code></td>
<td>98.5 MB</td>
</tr>
</tbody>
</table>

Once the file has been downloaded, we can execute it by double-clicking on it, however, Excel must be closed during the installation of PowerPivot. Note that, depending on your user account permissions, you may be prompted to run the installation process as an administrator, or the file will change the computer’s settings. Run the file by simply clicking on the Run button.

For More Information:
Installing PowerPivot and Sample Databases

The installation process does not require any advanced user interaction. All you have to do is accept the terms and license agreement and click on the Install button. Once the installation is successfully completed, the installer will provide a confirmation window, as shown in the following screenshot. Simply click on Finish to complete the process.

![Confirmation window for PowerPivot installation](image)

When Excel is opened, the PowerPivot tab will appear in Excel’s menu bar.

Creating the database

The SQL Server database used in the prior recipes is available as a backup from the online content for this book on the Packt Publishing website. This backup can be restored to the SQL server instance (running SQL Server 2012).

We do not specify details for the installation of SQL Server (since they are outside the scope of this book). However, a brief overview of the database restore is discussed in this section.

An evaluation version of SQL Server is available for download at the following URL. This license will expire after 180 days. Alternatively, a free edition of SQL Server (SQL Server Express) is also available (with reduced features and no license expiry limit).

The online resources contain two files. Firstly, a file named tabular_modelling.bak, which is the database backup. The second is the file that contains the restore script. It is also reproduced as follows:

```
USE [master]

RESTORE DATABASE tabular_modelling
FROM  DISK = N'C:\BOOK\SQLDATA\tabular_modelling.bak'
WITH  FILE = 1
,  MOVE N'tabular_modelling' TO
   N'C:\BOOK\SQLDATA\tabular_modelling.mdf'
```

For More Information:

This code assumes that the backup file has been stored in the C:\BOOK\SQLDATA directory. Additionally, the database files that are created will also be created in this directory. Running the code from SQL Server Management Studio will create the database and restore all its data.

The output of executing the script should look like the following screenshot:

If the folders used on your computer are different, the directories in the script should be changed accordingly. It should also be noted that SQL Server does not require its data (or log files) to be stored in specific folders, so the choice of C:\BOOK\SQLDATA as a data folder may be suitable.
Where to buy this book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and most internet book retailers.