Chapter No.5
"Transforming Images with Morphological Operations"
In this package, you will find:

A Biography of the author of the book

A preview chapter from the book, Chapter NO.5 "Transforming Images with Morphological Operations"

A synopsis of the book’s content

Information on where to buy this book

About the Author

Robert Laganière is a professor at the University of Ottawa, Canada. He received his Ph.D. degree from INRS-Telecommunications in Montreal in 1996. Dr. Laganière is a researcher in computer vision with an interest in video analysis, intelligent visual surveillance, and image-based modeling. He is a co-founding member of the VIVA research lab. He is also a Chief Scientist at iWatchLife.com, a company offering a cloud-based solution for remote monitoring. Dr. Laganière is the co-author of Object-oriented Software Engineering published by McGraw Hill in 2001.

Visit the author’s website at http://www.laganiere.name.

I wish to thank all my students at the VIVA lab. I learn so much from them. I am also grateful to my beloved Marie-Claude, Camille, and Emma for their continuous support.

For More Information:
OpenCV 2 Computer Vision Application Programming Cookbook

In today's digital world, images and videos are everywhere, and with the advent of powerful and affordable computing devices, it has never been easier to create sophisticated imaging applications. Plentiful software tools and libraries manipulating images and videos are offered, but for anyone who wishes to develop his/her own applications, the OpenCV library is the tool to use.

OpenCV (Open Source Computer Vision) is an open source library containing more than 500 optimized algorithms for image and video analysis. Since its introduction in 1999, it has been largely adopted as the primary development tool by the community of researchers and developers in computer vision. OpenCV was originally developed at Intel by a team led by Gary Bradski as an initiative to advance research in vision and promote the development of rich, vision-based CPU-intensive applications. After a series of beta releases, version 1.0 was launched in 2006. A second major release occurred in 2009 with the launch of OpenCV 2 that proposed important changes, especially the new C++ interface which we use in this book. At the time of writing, the latest release is 2.2 (December 2010).

This book covers many of the library's features and shows how to use them to accomplish specific tasks. Our objective is not to provide a complete and detailed coverage of every option offered by the OpenCV functions and classes, but rather to give you the elements you need to build your applications from the ground up. In this book we also explore fundamental concepts in image analysis and describe some of the important algorithms in computer vision.

This book is an opportunity for you to get introduced to the world of image and video analysis. But this is just the beginning. The good news is that OpenCV continues to evolve and expand. Just consult the OpenCV online documentation to stay updated about what the library can do for you:

http://opencv.willowgarage.com/wiki/

What This Book Covers

Chapter 1, Playing with Images, introduces the OpenCV library and shows you how to run simple applications using the MS Visual C++ and Qt development environments.

Chapter 2, Manipulating the Pixels, explains how an image can be read. It describes different methods for scanning an image in order to perform an operation on each of its pixels. You will also learn how to define region of interest inside an image.

For More Information:
Chapter 3, Processing Images with Classes, consists of recipes which present various object oriented design patterns that can help you to build better computer vision applications.

Chapter 4, Counting the Pixels with Histograms, shows you how to compute image histograms and how they can be used to modify an image. Different applications based on histograms are presented that achieve image segmentation, object detection, and image retrieval.

Chapter 5, Transforming Images with Morphological Operations, explores the concept of mathematical morphology. It presents different operators and how they can be used to detect edges, corners, and segments in images.

Chapter 6, Filtering the Images, teaches you the principle of frequency analysis and image filtering. It shows how low-pass and high-pass filters can be applied to images. It presents the two image derivative operators: the gradient and the Laplacian.

Chapter 7, Extracting Lines, Contours, and Components, focuses on the detection of geometric image features. It explains how to extract contours, lines, and connected components in an image.

Chapter 8, Detecting and Matching Interest Points, describes various feature point detectors in images. It also explains how descriptors of interest points can be computed and used to match points between images.

Chapter 9, Estimating Projective Relations in Images, analyzes the different relations involved in image formation. It also explores the projective relations that exist between two images of a same scene.

Chapter 10, Processing Video Sequences, provides a framework to read and write a video sequence and to process its frames. It also shows you how it is possible to track feature points from frame to frame, and how to extract the foreground objects moving in front of a camera.

For More Information:
Transforming Images with Morphological Operations

In this chapter, we will cover:

- Eroding and dilating images using morphological filters
- Opening and closing images using morphological filters
- Detecting edges and corners using morphological filters
- Segmenting images using watersheds
- Extracting foreground objects with the GrabCut algorithm

Introduction

Morphological filtering is a theory developed in the 1960s for the analysis and processing of discrete images. It defines a series of operators which transform an image by probing it with a predefined shape element. The way this shape element intersects the neighborhood of a pixel determines the result of the operation. This chapter presents the most important morphological operators. It also explores the problem of image segmentation using algorithms working on the image morphology.

For More Information:
Eroding and dilating images using morphological filters

Erosion and dilation are the most fundamental morphological operators. Therefore, we will present them in this first recipe.

The fundamental instrument in mathematical morphology is the structuring element. A structuring element is simply defined as a configuration of pixels (a shape) on which an origin is defined (also called anchor point). Applying a morphological filter consists of probing each pixel of the image using this structuring element. When the origin of the structuring element is aligned with a given pixel, its intersection with the image defines a set of pixels on which a particular morphological operation is applied. In principle, the structuring element can be of any shape, but most often, a simple shape such as a square, circle, or diamond with the origin at the center is used (mainly for efficiency reasons).

Getting ready

As morphological filters usually work on binary images, we will use the binary image which was produced through thresholding in the first recipe of the previous chapter. However, since in morphology, the convention is to have foreground objects represented by high (white) pixel values and background by low (black) pixel values, we have negated the image. In morphological terms, the following image is said to be the complement of the image that was produced in the previous chapter:

For More Information:
Erosion and dilation are implemented in OpenCV as simple functions which are `cv::erode` and `cv::dilate`. Their use is straightforward:

```cpp
// Read input image
cv::Mat image = cv::imread("binary.bmp");

// Erode the image
cv::Mat eroded;  // the destination image
cv::erode(image, eroded, cv::Mat());

// Display the eroded image
cv::namedWindow("Eroded Image");
cv::imshow("Eroded Image", eroded);

// Dilate the image
cv::Mat dilated;  // the destination image
cv::dilate(image, dilated, cv::Mat());

// Display the dilated image
cv::namedWindow("Dilated Image");
cv::imshow("Dilated Image", dilated);
```

The two images produced by these function calls are seen in the following screenshot. Erosion is shown first:
Transforming Images with Morphological Operations

Followed by the dilation result:

![Dilated Image](image)

How it works...

As with all other morphological filters, the two filters of this recipe operate on the set of pixels (or neighborhood) around each pixel, as defined by the structuring element. Recall that when applied to a given pixel, the anchor point of the structuring element is aligned with this pixel location, and all pixels intersecting the structuring element are included in the current set.

Erosion replaces the current pixel with the minimum pixel value found in the defined pixel set. **Dilation** is the complementary operator, and it replaces the current pixel with the maximum pixel value found in the defined pixel set. Since the input binary image contains only black (0) and white (255) pixels, each pixel is replaced by either a white or black pixel.

A good way to picture the effect of these two operators is to think in terms of background (black) and foreground (white) objects. With erosion, if the structuring element when placed at a given pixel location touches the background (that is, one of the pixels in the intersecting set is black), then this pixel will be sent to background. While in the case of dilation, if the structuring element on a background pixel touches a foreground object, then this pixel will be assigned a white value. This explains why in the eroded image, the size of the objects has been reduced. Observe how some of the very small objects (that can be considered as "noisy" background pixels) have also been completely eliminated. Similarly, the dilated objects are now larger and some of the "holes" inside of them have been filled.

By default, OpenCV uses a 3x3 square structuring element. This default structuring element is obtained when an empty matrix (that is `cv::Mat()`) is specified as the third argument in the function call, as it was done in the preceding example. You can also specify a structuring element of the size (and shape) you want by providing a matrix in which the non-zero element defines the structuring element. In the following example, a 7x7 structuring element is applied:

For More Information:

cv::Mat element(7, 7, CV_8U, cv::Scalar(1));
cv::erode(image, eroded, element);

The effect is obviously much more destructive in this case as seen here:

Another way to obtain the same result is to repetitively apply the same structuring element on an image. The two functions have an optional parameter to specify the number of repetitions:

```cpp
// Erode the image 3 times.
cv::erode(image, eroded, cv::Mat(), cv::Point(-1, -1), 3);
```

The origin argument `cv::Point(-1, -1)` means that the origin is at the center of the matrix (default), and it can be defined anywhere on the structuring element. The image obtained will be identical to the one we obtained with the 7x7 structuring element. Indeed, eroding an image twice is like eroding an image with a structuring element dilated with itself. This also applies to dilation.

Finally, since the notion of background/foreground is arbitrary, we can make the following observation (which is a fundamental property of the erosion/dilation operators). Eroding foreground objects with a structuring element can be seen as a dilation of the background part of the image. Or more formally:

- The erosion of an image is equivalent to the complement of the dilation of the complement image.
- The dilation of an image is equivalent to the complement of the erosion of the complement image.

There's more...

It is important to note that even if we applied our morphological filters on binary images here, these can also be applied on gray-level images with the same definitions.

For More Information:
Transforming Images with Morphological Operations

Also note that the OpenCV morphological functions support in-place processing. This means you can use the input image as the destination image. So you can write:

```cpp
cv::erode(image, image, cv::Mat());
```

OpenCV creates the required temporary image for you for this to work properly.

See also

The next recipe which applies erosion and dilation filters in cascade to produce new operators.

The Detecting edges and corners using morphological filters for the application of morphological filters on gray-level images.

Opening and closing images using morphological filters

The previous recipe introduced the two fundamental morphological operators: dilation and erosion. From these, other operators can be defined. The next two recipes will present some of them. The opening and closing operators are presented in this recipe.

How to do it...

In order to apply higher-level morphological filters, you need to use the `cv::morphologyEx` function with the appropriate function code. For example, the following call will apply the closing operator:

```cpp
cv::Mat element5(5, 5, CV_8U, cv::Scalar(1));
cv::Mat closed;
cv::morphologyEx(image, closed, cv::MORPH_CLOSE, element5);
```

Note that here we use a 5x5 structuring element to make the effect of the filter more apparent. If we input the binary image of the preceding recipe, we obtain:

For More Information:

Similarly, applying the morphological opening operator will result in the following image:

![Opened Image](image)

This one being obtained from the following code:

```cpp
cv::Mat opened;
cv::morphologyEx(image, opened, cv::MORPH_OPEN, element5);
```

How it works...

The opening and closing filters are simply defined in terms of the basic erosion and dilation operations:

- **Closing** is defined as the erosion of the dilation of an image.
- **Opening** is defined as the dilation of the erosion of an image.
Consequently, one could compute the closing of an image using the following calls:

```
// dilate original image
cv::dilate(image,result,cv::Mat());
// in-place erosion of the dilated image
cv::erode(result,result,cv::Mat());
```

The opening would be obtained by inverting these two function calls.

While examining the result of the closing filter, it can be seen that the small holes of the white foreground objects have been filled. The filter also connects together several of the adjacent objects. Basically, any holes or gaps too small to completely contain the structuring element will be eliminated by the filter.

Reciprocally, the opening filter eliminated several of the small objects in the scene. All of the ones that were too small to contain the structuring element have been removed.

These filters are often used in object detection. The closing filter connects together objects erroneously fragmented into smaller pieces, while the opening filter removes the small blobs introduced by image noise. Therefore, it is advantageous to use them in sequence. If our test binary image is successively closed and opened, we obtain an image showing only the main objects in the scene, as shown below. You can also apply the opening filter before closing if you wish to prioritize noise filtering, but this can be at the price of eliminating some fragmented objects.

It should be noted that applying the same opening (and similarly the closing) operator on an image several times has no effect. Indeed, with the holes having been filled by the first opening, an additional application of this same filter will not produce any other changes to the image. In mathematical terms, these operators are said to be idempotent.

For More Information:
Detecting edges and corners using morphological filters

Morphological filters can also be used to detect specific features in an image. In this recipe, we will learn how to detect lines and corners in a gray-level image.

Getting started

In this recipe, the following image will be used:

![Image](image.png)

How to do it...

Let's define a class named `MorphoFeatures` which will allow us to detect image features:

```cpp
class MorphoFeatures {
    private:
        // threshold to produce binary image
        int threshold;
        // structuring elements used in corner detection
        cv::Mat cross;
        cv::Mat diamond;
        cv::Mat square;
        cv::Mat x;
```

For More Information:

Detecting lines is quite easy using the appropriate filter of the `cv::morphologyEx` function:

```cpp
opencv::Mat getEdges(const opencv::Mat &image) {
    // Get the gradient image
    opencv::Mat result;
    cv::morphologyEx(image, result,
                     cv::MORPH_GRADIENT, cv::Mat());
    // Apply threshold to obtain a binary image
    applyThreshold(result);
    return result;
}
```

The binary edge image is obtained through a simple private method of the class:

```cpp
void applyThreshold(opencv::Mat& result) {
    // Apply threshold on result
    if (threshold>0)
        cv::threshold(result, result,
                      threshold, 255, cv::THRESH_BINARY);
}
```

Using this class in a main function, you then obtain the edge image as follows:

```cpp
// Create the morphological features instance
MorphoFeatures morpho;
morpho.setThreshold(40);
// Get the edges
opencv::Mat edges;
edges= morpho.getEdges(image);
```
The detection of corners using morphological corners is a bit more complex since it is not directly implemented in OpenCV. This is a good example of the use of non-square structuring elements. Indeed, it requires the definition of four different structuring elements shaped as a square, diamond, cross, and an X-shape. This is done in the constructor (all of these structuring elements having a fixed 5x5 dimension for simplicity):

```cpp
MorphoFeatures() : threshold(-1),
    cross(5,5,CV_8U,cv::Scalar(0)),
    diamond(5,5,CV_8U,cv::Scalar(1)),
    square(5,5,CV_8U,cv::Scalar(1)),
    x(5,5,CV_8U,cv::Scalar(0)){

    // Creating the cross-shaped structuring element
    for (int i=0; i<5; i++) {
        cross.at<uchar>(2,i)= 1;
        cross.at<uchar>(i,2)= 1;
    }

    // Creating the diamond-shaped structuring element
    diamond.at<unsigned char>(0,0)= 0;
    diamond.at<unsigned char>(0,1)= 0;
    diamond.at<unsigned char>(1,0)= 0;
    diamond.at<unsigned char>(4,4)= 0;
    diamond.at<unsigned char>(3,4)= 0;
    diamond.at<unsigned char>(4,3)= 0;
    diamond.at<unsigned char>(4,0)= 0;
```

For More Information:
Transforming Images with Morphological Operations

diamond.at<uchar>(4,1)= 0;
diamond.at<uchar>(3,0)= 0;
diamond.at<uchar>(0,4)= 0;
diamond.at<uchar>(0,3)= 0;
diamond.at<uchar>(1,4)= 0;

// Creating the x-shaped structuring element
for (int i=0; i<5; i++) {
 x.at<uchar>(i,i)= 1;
 x.at<uchar>(4-i,i)= 1;
}

In the detection of corner features, all of these structuring elements are applied in cascade to obtain the resulting corner map:

cv::Mat get_corners(const cv::Mat &image) {
 cv::Mat result;
 // Dilate with a cross
 cv::dilate(image,result,cross);
 // Erode with a diamond
 cv::erode(result,result,diamond);
 cv::Mat result2;
 // Dilate with a X
 cv::dilate(image,result2,x);
 // Erode with a square
 cv::erode(result2,result2,square);
 // Corners are obtained by differencing
 // the two closed images
 cv::absdiff(result2,result,result);
 // Apply threshold to obtain a binary image
 applyThreshold(result);
 return result;
}

In order to better visualize the result of the detection, the following method draws a circle on the image at each detected point on the binary map:

void drawOnImage(const cv::Mat& binary,
 cv::Mat &image) {
 cv::Mat_<uchar>::const_iterator it=
 binary.begin<uchar>();
 cv::Mat_<uchar>::const_iterator itend=

For More Information:
www.PacktPub.com/opencv-2-computer-vision-application-
programming-cookbook/book
binary.end<uchar>()

// for each pixel
for (int i=0; it!= itend; ++it,++i) {
 if (!*it)
 cv::circle(image,
 cv::Point(i%image.step,i/image.step),
 5,cv::Scalar(255,0,0));
}

Corners are then detected on an image by using the following code:

 // Get the corners
 cv::Mat corners;
 corners= morpho.getCorners(image);
 // Display the corner on the image
 morpho.drawOnImage(corners,image);
 cv::namedWindow("Corners on Image");
 cv::imshow("Corners on Image",image);

The image of detected corners is then, as follows.
How it works...

A good way to help understand the effect of morphological operators on a gray-level image is to consider an image as a topological relief in which gray-levels correspond to elevation (or altitude). Under this perspective, bright regions correspond to mountains, while the darker areas form the valleys of the terrain. Also, since edges correspond to a rapid transition between darker and brighter pixels, these can be pictured as abrupt cliffs. If an erosion operator is applied on such a terrain, the net result will be to replace each pixel by the lowest value in a certain neighborhood, thus reducing its height. As a result, cliffs will be "eroded" as the valleys expand. Dilation has the exact opposite effect, that is, cliffs will gain terrain over the valleys. However, in both cases, the plateaux (that is, area of constant intensity) will remain relatively unchanged.

The above observations lead to a simple way of detecting the edges (or cliffs) of an image. This could be done by computing the difference between the dilated image and the eroded image. Since these two transformed images differ mostly at the edge locations, the image edges will be emphasized by the differentiation. This is exactly what the `cv::morphologyEx` function is doing when the `cv::MORPH_GRADIENT` argument is inputted. Obviously, the larger the structuring element is, the thicker the detected edges will be. This edge detection operator is also called the Beucher gradient (the next chapter will discuss the concept of image gradient in more detail). Note that similar results could also be obtained by simply subtracting the original image from the dilated one, or the eroded image from the original. The resulting edges would simply be thinner.

Corner detection is a bit more complex since it uses four different structuring elements. This operator is not implemented in OpenCV but we present it here to demonstrate how structuring elements of various shapes can be defined and combined. The idea is to close the image by dilating and eroding it with two different structuring elements. These elements are chosen such that they leave straight edges unchanged, but because of their respective effect, edges at corner points will be affected. Let's use the simple following image made of a single white square to better understand the effect of this asymmetrical closing operation:
The first square is the original image. When dilated with a cross-shaped structuring element, the square edges are expanded, except at the corner points where the cross shape does not hit the square. This is the result illustrated by the middle square. This dilated image is then eroded by a structuring element that, this time, has a diamond shape. This erosion brings back most edges at their original position, but pushes the corners even further since they were not dilated. The left square is then obtained, which, as it can be seen, has lost its sharp corners. The same procedure is repeated with an X-shaped and a square-shaped structuring element. These two elements are the rotated version of the previous ones and will consequently capture the corners at a 45-degree orientation. Finally, differencing the two results will extract the corner features.

See also

The article *A modified regulated morphological corner detector* by F.Y. Shih, C.-F. Chuang, V. Gaddipati, Pattern Recognition Letters, volume 26, issue 7, May 2005, for more information on morphological corner detection.

Segmenting images using watersheds

The watershed transformation is a popular image processing algorithm that is used to quickly segment an image into homogenous regions. It relies on the idea that when the image is seen as a topological relief, homogeneous regions correspond to relatively flat basins delimited by steep edges. As a result of its simplicity, the original version of this algorithm tends to over-segment the image which produces multiple small regions. This is why OpenCV proposes a variant of this algorithm that uses a set of predefined markers which guide the definition of the image segments.

How to do it...

The watershed segmentation is obtained through the use of the cv::watershed function. The input to this function is a 32-bit signed integer marker image in which each non-zero pixel represents a label. The idea is to mark some pixels of the image that are known to certainly belong to a given region. From this initial labeling, the watershed algorithm will determine the regions to which the other pixels belong. In this recipe, we will first create the marker image as a gray-level image, and then convert it into an image of integers. We conveniently encapsulated this step into a WatershedSegmenter class:

```cpp
class WatershedSegmenter {
  private:
```

For More Information:

Transforming Images with Morphological Operations

```cpp
cv::Mat markers;
public:
void setMarkers(const cv::Mat& markerImage) {
    // Convert to image of ints
    markerImage.convertTo(markers, CV_32S);
}

cv::Mat process(const cv::Mat &image) {
    // Apply watershed
    cv::watershed(image, markers);
    return markers;
}
```

The way these markers are obtained depends on the application. For example, some preprocessing steps might have resulted in the identification of some pixels belonging to an object of interest. The watershed would then be used to delimitate the complete object from that initial detection. In this recipe, we will simply use the binary image used throughout this chapter in order to identify the animals of the corresponding original image (this is the image shown at the beginning of Chapter 4).

Therefore, from our binary image, we need to identify pixels that certainly belong to the foreground (the animals) and pixels that certainly belong to the background (mainly the grass). Here, we will mark foreground pixels with label 255 and background pixels with label 128 (this choice is totally arbitrary, any label number other than 255 would work). The other pixels, that is the ones for which the labeling is unknown, are assigned value 0. As it is now, the binary image includes too many white pixels belonging to various parts of the image. We will then severely erode this image in order to retain only pixels belonging to the important objects:

```cpp
// Eliminate noise and smaller objects
cv::Mat fg;
cv::erode(binary, fg, cv::Mat(), cv::Point(-1, -1), 6);
```

For More Information:
The result is the following image:

[Image of foreground image]

Note that a few pixels belonging to the background forest are still present. Let's simply keep them. Therefore, they will be considered to correspond to an object of interest. Similarly, we also select a few pixels of the background by a large dilation of the original binary image:

```cpp
// Identify image pixels without objects
cv::Mat bg;
cv::dilate(binary, bg, cv::Mat(), cv::Point(-1, -1), 6);
cv::threshold(bg, bg, 1, 128, cv::THRESH_BINARY_INV);
```

The resulting black pixels correspond to background pixels. This is why the thresholding operation immediately after the dilation assigns to these pixels the value 128. The following image is then obtained:

[Image of background image]

For More Information:
These images are combined to form the marker image:

```cpp
// Create markers image
cv::Mat markers(binary.size(), CV_8U, cv::Scalar(0));
markers = fg + bg;
```

Note how we used the overloaded `operator+` here in order to combine the images. This is the image that will be used as input to the watershed algorithm:

![Markers Image](image.png)

The segmentation is then obtained as follows:

```cpp
// Create watershed segmentation object
WatershedSegmenter segmenter;
// Set markers and process
segmenter.setMarkers(markers);
segmenter.process(image);
```

The marker image is then updated such that each zero pixel is assigned one of the input labels, while the pixels belonging to the found boundaries have value -1. The resulting image of labels is then:

For More Information:
Chapter 5

The boundary image is:

As we did in the preceding recipe, we will use the topological map analogy in the description of the watershed algorithm. In order to create a watershed segmentation, the idea is to progressively flood the image starting at level 0. As the level of "water" progressively increases (to levels 1, 2, 3, and so on), catchment basins are formed. The size of these basins also gradually increase and, consequently, the water of two different basins will eventually merge. When this happens, a watershed is created in order to keep the two basins separated. Once the level of water has reached its maximal level, the sets of these created basins and watersheds form the watershed segmentation.

For More Information:
As one can expect, the flooding process initially creates many small individual basins. When all of these are merged, many watershed lines are created which results in an over-segmented image. To overcome this problem, a modification to this algorithm has been proposed in which the flooding process starts from a predefined set of marked pixels. The basins created from these markers are labeled in accordance with the values assigned to the initial marks. When two basins having the same label merge, no watersheds are created, thus preventing the over-segmentation.

This is what happens when the \texttt{cv::watershed} function is called. The input marker image is updated to produce the final watershed segmentation. Users can input a marker image with any number of labels with pixels of unknown labeling left to value 0. The marker image has been chosen to be an image of a 32-bit signed integer in order to be able to define more than 255 labels. It also allows the special value -1, to be assigned to pixels associated with a watershed. This is what is returned by the \texttt{cv::watershed} function. To facilitate the displaying of the result, we have introduced two special methods. The first one returns an image of the labels (with watersheds at value 0). This is easily done through thresholding:

\begin{verbatim}
// Return result in the form of an image
cv::Mat getSegmentation() {
cv::Mat tmp;
// all segment with label higher than 255
// will be assigned value 255
markers.convertTo(tmp,CV_8U);
return tmp; }
\end{verbatim}

Similarly, the second method returns an image in which the watershed lines are assigned value 0, and the rest of the image is at 255. This time, the \texttt{cv::convertTo} method is used to achieve this result:

\begin{verbatim}
// Return watershed in the form of an image
cv::Mat getWatersheds() {
cv::Mat tmp;
// Each pixel p is transformed into
// 255p+255 before conversion
markers.convertTo(tmp,CV_8U,255,255);
return tmp; }
\end{verbatim}

The linear transformation that is applied before the conversion allows -1 pixels to be converted into 0 (since $-1 \times 255 + 255 = 0$).

Pixels with a value greater than 255 are assigned the value 255. This is due to the saturation operation that is applied when signed integers are converted into unsigned chars.
See also

The next recipe which presents another image segmentation algorithm that can also segment an image into background and foreground objects.

Extracting foreground objects with the GrabCut algorithm

OpenCV proposes an implementation of another popular algorithm for image segmentation: the GrabCut algorithm. This algorithm is not based on mathematical morphology, but we present it here since it shows some similarities in its use with the watershed segmentation algorithm presented in the preceding recipe. GrabCut is computationally more expensive than watershed, but it generally produces a more accurate result. It is the best algorithm to use when one wants to extract a foreground object in a still image (for example, to cut and paste an object from one picture to another).

How to do it...

The `cv::grabCut` function is easy to use. You just need to input an image and label some of its pixels as belonging to the background or to the foreground. Based on this partial labeling, the algorithm will then determine a foreground/background segmentation for the complete image.

One way of specifying a partial foreground/background labeling for an input image is by defining a rectangle inside which the foreground object is included:

```cpp
// Open image
image = cv::imread("../group.jpg");
// define bounding rectangle
// the pixels outside this rectangle
// will be labeled as background
cv::Rect rectangle(10,100,380,180);
```

All pixels outside of this rectangle will then be marked as background. In addition to the input image and its segmentation image, calling the `cv::grabCut` function requires the definition of two matrices which will contain the models built by the algorithm:

```cpp
cv::Mat result; // segmentation (4 possible values)
cv::Mat bgModel, fgModel; // the models (internally used)
// GrabCut segmentation
cv::grabCut(image,  // input image
```

For More Information:
result, // segmentation result
rectangle, // rectangle containing foreground
bgModel, fgModel, // models
5, // number of iterations
cv::GC_INIT_WITH_RECT); // use rectangle

Note how we specified that we are using the bounding rectangle mode using the cv::GC_INIT_WITH_RECT flag as the last argument of the function (the next section will discuss the other available mode). The input/output segmentation image can have one of the four values:

- cv::GC_BGD, for pixels certainly belonging to the background (for example, pixels outside the rectangle in our example)
- cv::GC_FGD, for pixels certainly belonging to the foreground (none in our example)
- cv::GC_PR_BGD, for pixels probably belonging to the background
- cv::GC_PR_FGD for pixels probably belonging to the foreground (that is the initial value for the pixels inside the rectangle in our example).

We get a binary image of the segmentation by extracting the pixels having a value equal to cv::GC_PR_FGD:

// Get the pixels marked as likely foreground
cv::compare(result, cv::GC_PR_FGD, result, cv::CMP_EQ);

// Generate output image
cv::Mat foreground(image.size(), CV_8UC3,
 cv::Scalar(255, 255, 255));
image.copyTo(foreground, // bg pixels are not copied
 result);

To extract all foreground pixels, that is, with values equal to cv::GC_PR_FGD or cv::GC_FGD, it is possible to simply check the value of the first bit:

// checking first bit with bitwise-and
result = result & 1; // will be 1 if FG

This is possible because these constants are defined as values 1 and 3, while the other two are defined as 0 and 2. In our example, the same result is obtained because the segmentation image does not contain cv::GC_FGD pixels (only cv::GC_BGD pixels have been inputted).

Finally, we obtain an image of the foreground objects (over a white background) by the following copy operation with mask:

// Generate output image
 cv::Mat foreground(image.size(), CV_8UC3,
 cv::Scalar(255, 255, 255)); // all white image
image.copyTo(foreground, result); // bg pixels not copied
The resulting image is then:

![Foreground objects](image)

How it works...

In the preceding example, the GrabCut algorithm was able to extract the foreground objects by simply specifying a rectangle inside which these objects (the four animals) were contained. Alternatively, one could also assign values `cv::GC_BGD` and `cv::GC_FGD` to some specific pixels of the segmentation image provided as the second argument of the `cv::grabCut` function. You would then specify `GC_INIT_WITH_MASK` as the input mode flag. These input labels could be obtained, for example, by asking a user to interactively mark a few elements of the image. It is also possible to combine these two input modes.

Using this input information, the GrabCut creates the background/foreground segmentation by proceeding as follows. Initially, a foreground label (`cv::GC_PR_FGD`) is tentatively assigned to all unmarked pixels. Based on the current classification, the algorithm groups the pixels into clusters of similar colors (that is, clusters for the background and clusters for the foreground). The next step is to determine a background/foreground segmentation by introducing boundaries between foreground and background pixels. This is done through an optimization process that tries to connect pixels with similar labels, and that imposes a penalty for placing a boundary in regions of relatively uniform intensity. This optimization problem is efficiently solved using the **Graph Cuts** algorithm, a method that can find the optimal solution of a problem by representing it as a connected graph on which cuts are applied in order to compose an optimal configuration. The obtained segmentation produces new labels for the pixels. The clustering process can then be repeated and a new optimal segmentation is found again, and so on. Therefore, the GrabCut is an iterative procedure which gradually improves the segmentation result. Depending on the complexity of the scene, a good solution can be found in more or less iterations (in easy cases, one iteration can be enough!).

For More Information:
This explains the previous last argument of the function where the user can specify the number of iterations to apply. The two internal models maintained by the algorithm are passed as argument of the function (and returned) such that it is possible to call the function with the models of the last run again if one wishes to improve the segmentation result by performing additional iterations.

See also

The article by C. Rother, V. Kolmogorov and A. Blake, *GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts in ACM Transactions on Graphics (SIGGRAPH)* volume 23, issue 3, August 2004, that describes in detail the GrabCut algorithm.
Where to buy this book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and most internet book retailers.