Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Embedded Linux Development

You're reading from   Mastering Embedded Linux Development Craft fast and reliable embedded solutions with Linux 6.6 and The Yocto Project 5.0 (Scarthgap)

Arrow left icon
Product type Paperback
Published in May 2025
Publisher Packt
ISBN-13 9781803232591
Length 710 pages
Edition 4th Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Frank Vasquez Frank Vasquez
Author Profile Icon Frank Vasquez
Frank Vasquez
Chris Simmonds Chris Simmonds
Author Profile Icon Chris Simmonds
Chris Simmonds
Arrow right icon
View More author details
Toc

Table of Contents (28) Chapters Close

Preface 1. Part 1: Elements of Embedded Linux
2. Starting Out FREE CHAPTER 3. Learning about Toolchains 4. All about Bootloaders 5. Configuring and Building the Kernel 6. Building a Root Filesystem 7. Part 2: Building Embedded Linux Images
8. Selecting a Build System 9. Developing with Yocto 10. Yocto under the Hood 11. Part 3: System Architecture and Design Decisions
12. Creating a Storage Strategy 13. Updating Software in the Field 14. Interfacing with Device Drivers 15. Prototyping with Add-On Boards 16. Starting Up – The init Program 17. Managing Power 18. Part 4: Developing Applications
19. Packaging Python 20. Deploying Container Images 21. Learning about Processes and Threads 22. Managing Memory 23. Part 5: Debugging and Optimizing Performance
24. Debugging with GDB 25. Profiling and Tracing 26. Real-Time Programming 27. Index

Understanding scheduling latency

Real-time threads need to be scheduled as soon as they have something to do. However, even if there are no other threads of the same or higher priority, there is always a delay from the point at which the wakeup event occurs—an interrupt or system timer—to the time that the thread starts to run. This is called scheduling latency. It can be broken down into several components, as shown in the following diagram:

Figure 21.1 – Scheduling latency

Figure 21.1 – Scheduling latency

Firstly, there is the hardware interrupt latency from the point at which an interrupt is asserted until the interrupt service routine (ISR) begins to run. A small part of this is the delay in the interrupt hardware itself, but the biggest problem is due to interrupts being disabled in software. Minimizing this IRQ off time is important.

The next is interrupt latency, which is the length of time until the ISR has serviced the interrupt and woken up any threads waiting on this...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Embedded Linux Development
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon