Home Data The AI Product Manager's Handbook

The AI Product Manager's Handbook

By Irene Bratsis
books-svg-icon Book
Subscription FREE
eBook + Subscription €11.99
eBook €26.99
Print + eBook €33.99
READ FOR FREE Free Trial for 7 days. €11.99 p/m after trial. Cancel Anytime! BUY NOW BUY NOW BUY NOW
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook + Subscription?
Download this book in EPUB and PDF formats
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook?
Download this book in EPUB and PDF formats
Access this title in our online reader
DRM FREE - Read whenever, wherever and however you want
Online reader with customised display settings for better reading experience
What do you get with video?
Download this video in MP4 format
Access this title in our online reader
DRM FREE - Watch whenever, wherever and however you want
Online reader with customised display settings for better learning experience
What do you get with Audiobook?
Download a zip folder consisting of audio files (in MP3 Format) along with supplementary PDF
READ FOR FREE Free Trial for 7 days. €11.99 p/m after trial. Cancel Anytime! BUY NOW BUY NOW BUY NOW
Subscription FREE
eBook + Subscription €11.99
eBook €26.99
Print + eBook €33.99
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook + Subscription?
Download this book in EPUB and PDF formats
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with a Packt Subscription?
This book & 6500+ ebooks & video courses on 1000+ technologies
60+ curated reading lists for various learning paths
50+ new titles added every month on new and emerging tech
Early Access to eBooks as they are being written
Personalised content suggestions
Customised display settings for better reading experience
50+ new titles added every month on new and emerging tech
Playlists, Notes and Bookmarks to easily manage your learning
Mobile App with offline access
What do you get with eBook?
Download this book in EPUB and PDF formats
Access this title in our online reader
DRM FREE - Read whenever, wherever and however you want
Online reader with customised display settings for better reading experience
What do you get with video?
Download this video in MP4 format
Access this title in our online reader
DRM FREE - Watch whenever, wherever and however you want
Online reader with customised display settings for better learning experience
What do you get with Audiobook?
Download a zip folder consisting of audio files (in MP3 Format) along with supplementary PDF
  1. Free Chapter
    Chapter 1: Understanding the Infrastructure and Tools for Building AI Products
About this book
Product managers working with artificial intelligence will be able to put their knowledge to work with this practical guide to applied AI. This book covers everything you need to know to drive product development and growth in the AI industry. From understanding AI and machine learning to developing and launching AI products, it provides the strategies, techniques, and tools you need to succeed. The first part of the book focuses on establishing a foundation of the concepts most relevant to maintaining AI pipelines. The next part focuses on building an AI-native product, and the final part guides you in integrating AI into existing products. You’ll learn about the types of AI, how to integrate AI into a product or business, and the infrastructure to support the exhaustive and ambitious endeavor of creating AI products or integrating AI into existing products. You’ll gain practical knowledge of managing AI product development processes, evaluating and optimizing AI models, and navigating complex ethical and legal considerations associated with AI products. With the help of real-world examples and case studies, you’ll stay ahead of the curve in the rapidly evolving field of AI and ML. By the end of this book, you’ll have understood how to navigate the world of AI from a product perspective.
Publication date:
February 2023
Publisher
Packt
Pages
250
ISBN
9781804612934

 

Understanding the Infrastructure and Tools for Building AI Products

Laying a solid foundation is an essential part of understanding anything, and the frontier of artificial intelligence (AI) products seems a lot like our universe: ever-expanding. That rate of expansion is increasing with every passing year as we go deeper into a new way to conceptualize products, organizations, and the industries we’re all a part of. Virtually every aspect of our lives will be impacted in some way by AI and we hope those reading will come out of this experience more confident about what AI adoption will look like for the products they support or hope to build someday.

Part 1 of this book will serve as an overview of the lay of the land. We will cover terms, infrastructure, types of AI algorithms, and products done well, and by the end of this section, you will understand the various considerations when attempting to build an AI strategy, whether you’re looking to create a native-AI product or add AI features to an existing product.

Managing AI products is a highly iterative process, and the work of a product manager is to help your organization discover what the best combination of infrastructure, training, and deployment workflow is to maximize success in your target market. The performance and success of AI products lie in understanding the infrastructure needed for managing AI pipelines, the outputs of which will then be integrated into a product. In this chapter, we will cover everything from databases to workbenches to deployment strategies to tools you can use to manage your AI projects, as well as how to gauge your product’s efficacy.

This chapter will serve as a high-level overview of the subsequent chapters in Part 1 but it will foremost allow for a definition of terms, which are quite hard to come by in today’s marketing-heavy AI competitive landscape. These days, it feels like every product is an AI product, and marketing departments are trigger-happy with sprinkling that term around, rendering it almost useless as a descriptor. We suspect this won’t be changing anytime soon, but the more fluency consumers and customers alike have with the capabilities and specifics of AI, machine learning (ML), and data science, the more we should see clarity about how products are built and optimized. Understanding the context of AI is important for anyone considering building or supporting an AI product.

In this chapter, we will cover the following topics:

  • Definitions – what is and is not AI
  • ML versus DL – understanding the difference
  • Learning types in ML
  • The order – what is the optimal flow and where does every part of the process live?
  • DB 101 – databases, warehouses, data lakes, and lakehouses
  • Managing projects – IaaS
  • Deployment strategies – what do we do with these outputs?
  • Succeeding in AI – how well-managed AI companies do infrastructure right
  • The promise of AI – where is AI taking us?
 

Definitions – what is and is not AI

In 1950, a mathematician and world war II war hero Alan Turing asked a simple question in his paper Computing Machinery and IntelligenceCan machines think?. Today, we’re still grappling with that same question. Depending on who you ask, AI can be many things. Many maps exist out there on the internet, from expert systems used in healthcare and finance to facial recognition to natural language processing to regression models. As we continue with this chapter, we will cover many of the facets of AI that apply to products emerging in the market.

For the purposes of applied AI in products across industries, in this book, we will focus primarily on ML and deep learning (DL) models used in various capacities because these are often used in production anywhere AI is referenced in any marketing capacity. We will use AI/ML as a blanket term covering a span of ML applications and we will cover the major areas most people would consider ML, such as DL, computer vision, natural language processing, and facial recognition. These are the methods of applied AI that most people will come across in the industry, and familiarity with these applications will serve any product manager looking to break into AI. If anything, we’d like to help anyone who’s looking to expand into the field from another product management background to choose which area of AI appeals to them most.

We’d also like to cover what is and what isn’t ML. The best way for us to express it as simply as we can is: if a machine is learning from some past behavior and if its success rate is improving as a result of this learning, it is ML! Learning is the active element. No models are perfect but we do learn a lot from employing models. Every model will have some element of hyperparameter tuning, and the use of each model will yield certain results in performance. Data scientists and ML engineers working with these models will be able to benchmark performance and see how performance is improving. If there are fixed, hardcoded rules that don’t change, it’s not ML.

AI is a subset of computer science, and all programmers are effectively doing just that: giving computers a set of instructions to fire away on. If your current program doesn’t learn from the past in any way, if it simply executes on directives it was hardcoded with, we can’t call this ML. You may have heard the terms rules-based engine or expert system thrown around in other programs. They are considered forms of AI, but they're not ML because although they are a form of AI, the rules are effectively replicating the work of a person, and the system itself is not learning or changing on its own.

We find ourselves in a tricky time in AI adoption where it can be very difficult to find information online about what makes a product AI. Marketing is eager to add the AI label to their products but there still isn’t a baseline of explainability with what that means out in the market. This further confuses the term AI for consumers and technologists alike. If you’re confused by the terms, particularly when they’re applied to products you see promoted online, you’re very much not alone.

Another area of confusion is the general term that is AI. For most people, the concept of AI brings to mind the Terminator franchise from the 1980s and other futurist depictions of inescapable technological destruction. While there certainly can be a lot of harm to come from AI, this depiction represents what’s referred to as strong AI or artificial general intelligence (AGI). We still have ways to go for something such as AGI but we’ve got plenty of what’s referred to as artificial narrow intelligence or narrow AI (ANI).

ANI is also commonly expressed as weak AI and is what’s generally meant when you see AI plastered all over products you find online. ANI is exactly what it sounds like: a narrow application of AI. Maybe it’s good at talking to you, at predicting some future value, or at organizing things; maybe it’s an expert at that, but its expertise won’t bleed into other areas. If it could, it would stop being ANI. These major areas of AI are referred to as strong and weak in comparison to human intelligence. Even the most convincing conversational AIs out there, and they are quite convincing, are demonstrating an illusionary intelligence. Effectively, all AI that exists at the moment is weak or ANI. Our Terminator days are still firmly in our future, perhaps never to be realized.

For every person out there that’s come across Reddit threads about AI being sentient or somehow having ill will toward us, we want to make the following statement very clear. AGI does not exist and there is no such thing as sentient AI. This does not mean AI doesn’t actively and routinely cause humans harm, even in its current form. The major caveat here is that unethical, haphazard applications of AI already actively cause us both minor inconveniences and major upsets. Building AI ethically and responsibly is still a work in progress. While AI systems may not be sentiently plotting the downfall of humanity, when they’re left untested, improperly managed, and inadequately vetted for bias, the applications of ANI that are deployed already have the capacity to do real damage in our lives.

For now, can machines think like us? No, they don’t think like us. Will they someday? We hope not. It’s my personal opinion that the insufferable aspects of the human condition end with us. But we do very much believe that we will experience some of our greatest ails, as well as our wildest curiosities, to be impacted considerably by the benevolence of AI and ML.

 

ML versus DL – understanding the difference

As a product manager, you’re going to need to build a lot of trust with your technical counterparts so that, together, you can build an amazing product that works as well as it can technically. If you’re reading this book, you’ve likely come across the phrase ML and DL. We will use the following sections titled ML and DL to go over some of the basics but keep in mind that we will be elaborating on these concepts further down in Chapter 3.

ML

In its basic form, ML is made up of two essential components: the models used and the training data it’s learning from. These data are historical data points that effectively teach machines a baseline foundation from which to learn, and every time you retrain the models, the models are theoretically improving. How the models are chosen, built, tuned, and maintained for optimized performance is the work of data scientists and ML engineers. Using this knowledge of performance toward the optimization of the product experience itself is the work of product managers. If you’re working in the field of AI product management, you’re working incredibly closely with your data science and ML teams.

We’d like to also make a distinction about the folks you’ll be working with as an AI product manager. Depending on your organization, you’re either working with data scientists and developers to deploy ML or you’re working with ML engineers who can both train and upkeep the models as well as deploy them into production. We highly suggest maintaining strong relationships with any and all of these impacted teams, along with DevOps.

All ML models can be grouped into the following four major learning categories:

  • Supervised learning
  • Unsupervised learning
  • Semi-supervised learning
  • Reinforcement learning

These are the four major areas of ML and each area is going to have its particular models and algorithms that are used in each specialization. The learning type has to do with whether or not you’re labeling the data and the method you’re using to reward the models you’ve used for good performance. These learning types are relevant whether your product is using a DL model or not, so they’re inclusive of all ML models. We will be covering the learning types in more depth in the following section titled Learning types in ML.

DL

DL is a subset of ML, but the terms are often used colloquially as almost separate expressions. The reason for this is DL is based on neural network algorithms and ML can be thought of as… the rest of the algorithms. In the preceding section covering ML, we looked at the process of taking data, using it to train our models, and using that trained model to predict new future data points. Every time you use the model, you see how off it was from the correct answer by getting some understanding of the rate of error so you can iterate back and forth until you have a model that works well enough. Every time, you are creating a model based on data that has certain patterns or features.

This process is the same in DL, but one of the key differences of DL is that patterns or features in your data are largely picked up by the DL algorithm through what’s referred to as feature learning or feature engineering through a hierarchical layered system. We will go into the various algorithms that are used in the following section because there are a few nuances between each, but as you continue developing your understanding of the types of ML out there, you’ll also start to group the various models that make up these major areas of AI (ML and DL). For marketing purposes, you will for the most part see terms such as ML, DL/neural networks, or just the general umbrella term of AI referenced where DL algorithms are used.

It’s important to know the difference between what these terms mean in practice and at the model level and how they’re communicated by non-technical stakeholders. As product managers, we are toeing the line between the two worlds: what engineering is building and what marketing is communicating. Anytime you’ve heard the term black box model, it’s referring to a neural network model, which is DL. The reason for this is DL engineers often can’t determine how their models are arriving at certain conclusions that are creating an opaque view of what the model is doing. This opacity is double-sided, both for the engineers and technologists themselves, as well as for the customers and users downstream who are experiencing the effects of these models without knowing how they make certain determinations. The DL neural networks are mimicking the structure of the way humans are able to think using a variety of layers of neural networks.

For product managers, DL poses a concern for explainability because there’s very little we can understand about how and why a model is arriving at conclusions, and, depending on the context of your product, the importance of explainability could vary. Another inherent challenge is these models essentially learn autonomously because they aren’t waiting for their engineer to choose the features that are most relevant in the data for them; the neural networks themselves do the feature selection. It learns with very little input from an engineer. Think of the models as the what and the following section of learning types as the how. A quick reminder that as we move on to cover the learning styles (whether a model is used in a supervised, unsupervised, semi-supervised, or reinforcement learning capacity), these learning styles apply to both DL and traditional ML models.

Let’s look at the different learning types in ML.

                 
About the Author
  • Irene Bratsis

    Irene Bratsis is a director of digital product and data at the International WELL Building Institute (IWBI). She has a bachelor's in economics, and after completing various MOOCs in data science and big data analytics, she completed a data science program with Thinkful. Before joining IWBI, Irene worked as an operations analyst at Tesla, a data scientist at Gesture, a data product manager at Beekin, and head of product at Tenacity. Irene volunteers as NYC chapter co-lead for Women in Data, has coordinated various AI accelerators, moderated countless events with a speaker series with Women in AI called WaiTalk, and runs a monthly book club focused on data and AI books.

    Browse publications by this author
The AI Product Manager's Handbook
Unlock this book and the full library FREE for 7 days
Start now