"When the winds of change blow, some people build walls and others build windmills."
–Chinese proverb
While any new generation prides itself on the technological advancements it enjoys compared to its forebears, it is not uncommon for each to dismiss or simply not acknowledge the enormity of thought, innovation, collaboration, competition, and connections throughout history that made, say, smartphones or unmanned aircraft possible. The reality is that, while previous generations may not have enjoyed the realizations in gadgetry we have today, they most certainly did envision them. Science fiction has always served as a frighteningly predictive medium, whether it's Arthur C. Clarke envisioning Earth-orbiting satellites or E.E. Doc Smith's classic sci-fi stories melding the universe of thought and action together (reminiscent of today's phenomenal, new brain-machine interfaces).
While the term Internet of Things (IoT) is new, the ideas of today's and tomorrow's IoT are not. Consider one of the greatest engineering pioneers, Nikola Tesla, who, in a 1926 interview with Colliers magazine, said the following:
"When wireless is perfectly applied the whole earth will be converted into a huge brain, which in fact it is, all things being particles of a real and rhythmic whole and the instruments through which we shall be able to do this will be amazingly simple compared with our present telephone. A man will be able to carry one in his vest pocket."
Source: http://www.tfcbooks.com/tesla/1926-01-30.htm
In 1950, the British scientist, Alan Turing, stated the following:
"It can also be maintained that it is best to provide the machine with the best sense organs that money can buy, and then teach it to understand and speak English. This process could follow the normal teaching of a child."
(Source: "Computing Machinery and Intelligence." Mind 49: 433-460.)
No doubt, the incredible advancements in digital processing, communications, manufacturing, sensors, and control are bringing to life the realistic imaginings of both our current generation and our forebears. Such advancements provide us with a powerful example of the very ecosystem of the thoughts, needs, and wants that drive us to build the new tools and solutions that we want for enjoyment and need for survival.
We must counterbalance all of our dreamy, hopeful thoughts about humanity's future by the fact that human consciousness and behavior always has, and always will, fall short of Utopian ideals. There will always be overt and concealed criminal activity; there will always be otherwise decent citizens who find themselves entangled in plots, financial messes, and blackmail; there will always be accidents; there will always be profiteers and scammers willing to hurt and benefit from the misery of others. In short, there will always be some individuals motivated to break in and compromise devices and systems for the same reason a burglar breaks into your house to steal your most prized possessions. Your loss is their gain. Worse, with the IoT, the motivation may extend to imposing physical injury or even death. A keystroke today can save a human life when properly configuring a pacemaker; it can also disable your car's braking system or hobble an Iranian nuclear research facility.
IoT security is clearly important, but before we can delve into the practical aspects of IoT security, we will take a look at the following:
- Defining the IoT
- Cybersecurity versus IoT security
- The IoT of today
- The IoT ecosystem
- The IoT of tomorrow
We arrive then at the problem of how to define the IoT and how to distinguish the IoT from today's internet of, well, computers. The IoT is certainly not a new term for mobile-to-mobile technology. It is far more. While many definitions of the IoT exist, we will primarily lean on the following three throughout this book.
The ITU's member-approved definition defines the IoT as follows:
"A global infrastructure for the information society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving, interoperable information and communication technologies."
The IEEE's small environment description of the IoT is as follows:
"An IoT is a network that connects uniquely identifiable 'things' to the internet. The 'things' have sensing/actuation and potential programmability capabilities. Through the exploitation of the unique identification and sensing, information about the 'thing' can be collected and the state of the 'thing' can be changed from anywhere, anytime, by anything."
The IEEE's large environment scenario describes the IoT as follows:
"The Internet of Things envisions a self-configuring, adaptive, complex network that interconnects things to the internet through the use of standard communication protocols. The interconnected things have physical or virtual representation in the digital world, sensing/actuation capability, a programmability feature, and are uniquely identifiable. The representation contains information including the thing's identity, status, location, or any other business, social or privately relevant information. The things offer services, with or without human intervention, through the exploitation of unique identification, data capture and communication, and actuation capability. The service is exploited through the use of intelligent interfaces and is made available anywhere, anytime, and for anything taking security into consideration."
Each of these definitions is complementary. They overlap and describe just about anything that can be dreamed up and can be physically or logically connected to anything else over the internet or wireless networks. Regardless of definition nuances, the services that the IoT provides to a business, government, or private citizen are the truly valuable aspects of the IoT that we must assure. As security practitioners, we must be able to understand the value of these services and ensure that they are kept available and secure.
Cyber-Physical Systems (CPSes) are a huge, overlapping subset of the IoT. They fuse a broad range of engineering disciplines, each with a historically well-defined scope that includes the essential theory, lore, application, and relevant subject matter needed by their respective practitioners. These topics include engineering dynamics, fluid dynamics, thermodynamics, control theory, digital design, and many others. So, what is the difference between IoT and CPS? Borrowing from the IEEE, the principal difference is that a CPS—comprising connected sensors, actuators, monitoring and control systems—does not necessarily have to be connected to the internet. A CPS can be isolated from the internet and still achieve its business objective. From a communications perspective, the IoT is comprised of things that, necessarily and by definition, are connected to the internet and, through some aggregation of applications, achieve some business objective:

Note
The CPS, even if technically air-gapped from the internet, will almost always be connected in some way to the internet, whether through its supply chain, operating personnel, or out-of-band software patch management system. On-going research in the field of cybersecurity continues to demonstrate effective methods of jumping air-gaps to compromise isolated systems.
It is worthwhile to think of the IoT as a super-set of CPSes, as CPSes can be enveloped into the IoT simply by connectivity to the internet. A CPS is generally a rigorously engineered system designed for safety, security, availability, and functionality. Emergent enterprise IoT deployments should take note of the lessons learned through the engineering rigor associated with CPSes. For more information on building resilient CPSes, consult the National Institute of Standards and Technology (NIST) Framework for Cyber Physical Systems (https://s3.amazonaws.com/nist-sgcps/cpspwg/files/pwgglobal/CPS_PWG_Framework_for_Cyber_Physical_Systems_Release_1_0Final.pdf) and its related efforts to the IoT-Enabled Smart Cities Framework and others (https://www.nist.gov/el/cyber-physical-systems).
IoT security is not traditional cybersecurity, but a fusion of cybersecurity with other engineering disciplines. It addresses much more than mere data, servers, network infrastructure, and information security. Rather, it includes the direct or distributed monitoring and/or control of the state of physical systems connected over the internet. Cybersecurity, if you like that term at all, frequently does not address the physical and security aspects of the hardware device or the physical world interactions it can have. Digital control of physical processes over networks makes the IoT unique in that the security equation is limited not only to the basic information assurance principles of confidentiality, integrity, non-repudiation, and so on, but also to the physical resources and machines that originate and receive that information in the real world. In other words, the IoT has very real analog and physical elements. IoT devices are physical things, many of which are safety-related. Therefore, if such devices are compromised, it may lead to physical harm of persons and property, even death.
The subject of IoT security, then, is not the application of a single, static set of meta-security rules as they apply to networked devices and hosts. It requires a unique application for each system and system-of-systems in which IoT devices participate. Anything physical today can be connected to the internet with the appropriate electronic interfaces. The security of the IoT device is then a function of the device's use, the physical process or state impacted by or controlled by the device, and the sensitivity of the systems to which the device connects.
Cyber-physical and many IoT systems frequently invoke an intersection of safety and security engineering, two disciplines that have developed on very different evolutionary paths but which possess partially overlapping goals. We will delve more into safety aspects of IoT security engineering later in this book, but for now we point out an elegantly expressed distinction between safety and security provided by the noted academic Dr. Barry Boehm, Axelrod, W. C., Engineering Safe and Secure Software Systems, p.61, Massachusetts, Artech House, 2013. He poignantly but beautifully expressed the relationship as follows:
- Safety: The system must not harm the world
- Security: The world must not harm the system
Hence, it is clear that the IoT and IoT security are much more complex than traditional networks, hosts, and cybersecurity. Safety-conscious industries such as aerospace have evolved highly effective safety engineering approaches and standards because aircraft can harm the world and the people in it. The aircraft industry today, like the automotive industry, is now playing catch-up with regard to security because of the accelerating growth of network connectivity to their vehicles.