About this video

R has been the go-to language in data science for the last decade. However, given the latest developments and enhancements in Python's capabilities and its numerous supportive libraries, Python has dethroned R and is the first choice for data science enthusiasts, especially those working on descriptive and prescriptive analytics.

In this course, you will be performing data analysis on some popular datasets from Kaggle such as the Red Wine and White Wine analysis datasets. You will see how the coding structure for Python analyses on Jupyter notebooks is drastically simplified using fewer lines of code, with far fewer dependencies. While working with powerful libraries (NumPy and pandas), you will slice and dice data for relevant insights. Moving on, you will also learn about great visualization features which are greatly enhanced, faster, and easier to use in Python 3.

By the end of this course, you will be familiar with Python functions and will be able to transform your R code into Python with far fewer lines of code, better performance, and increased speed.

All the related code files are placed on GitHub repository at: https://github.com/PacktPublishing/Migrating-from-R-to-Python-for-Data-Analysis

Publication date:
October 2019
2 hours 57 minutes

About the Author

  • Rajat Jatana

    Rajat Jatana is a data scientist and is extremely passionate about data science. His area of specialization is Machine Learning, predictive analytics, R, Python, and Tableau. He has also equipped himself with Deep Learning specializations. He is a voracious reader and keeps himself up-to-date with the latest developments in data science. He is also passionate about teaching it and believes that the best way to learn is by sharing what you know with others. Rajat likes to play chess in his free time and is a national-level player. https://www.linkedin.com/in/rajat-jatana/

    Browse publications by this author