About this video

Supervised machine learning is used in a wide range of industries across sectors such as finance, online advertising, and analytics, and it’s here to stay. Supervised learning allows you to train your system to make pricing predictions, campaign adjustments, customer recommendations, and much more, while allowing the system to self-adjust and make decisions on its own. This makes it crucial to know how a machine “learns” under the hood.

This course will guide you through the implementation and nuances of many popular supervised machine learning algorithms while facilitating a deep understanding along the way. You’ll embark on this journey with a quick course overview and see how supervised machine learning differs from unsupervised learning.

Next, we’ll explore parametric models such as linear and logistic regression, non-parametric methods such as decision trees, and various clustering techniques to facilitate decision-making and predictions. As we proceed, you’ll work hands-on with recommender systems, which are widely used by online companies to increase user interaction and enrich shopping potential. Finally, you’ll wrap up with a brief foray into neural networks and transfer learning.

By the end of the video course, you’ll be equipped with hands-on techniques to gain the practical know-how needed to quickly and powerfully apply these algorithms to new problems.

All the codes of the course are uploaded on GitHub: https://bit.ly/2nR4aMU

Style and Approach

This course is a step-by-step guide to help you understand complex mathematical concepts in a practical fashion. Though solutions may exist (i.e., implementations in various other Python libraries), this course adheres to a “learning by doing” pattern. We won’t implement everything there is to learn, and we certainly won’t be able to write everything in its most flexible or efficient form (i.e., no C or C++) in the time we have, but you’ll walk away with a great understanding and foundation of how things work under the hood.

Most algorithms we cover will be introduced first by theory and math slides, then by practical implementation and example. By the end, the hope is that you understand these algorithms in a thorough fashion.

Publication date:
August 2018
Publisher
Packt
Duration
3 hours 6 minutes
ISBN
9781789347654

About the Author

  • Taylor Smith

    Taylor Smith is a machine learning enthusiast with over five years of experience who loves to apply interesting computational solutions to challenging business problems. Currently working as a principal data scientist, Taylor is also an active open source contributor and staunch Pythonista.

    Browse publications by this author
Book Title
Access this video and the full library for just $5/m.
Access now