Machine learning is everywhere. When you book a flight ticket, an algorithm decides the price you are going to pay for it. When you apply for a loan, machine learning may decide whether you are going to get it or not. When you scroll through your Facebook timeline, it picks which advertisements to show to you. Machine learning also plays a big role in your Google search results. It organizes your email's inbox and filters out spam, it goes through your resumé before recruiters when you apply for a job, and, more recently, it has also started to play the role of your personal assistant in the form of Siri and other virtual assistants.
In this book, we will learn about the theory and practice of machine learning. We will understand when and how to apply it. To get started, we will look at a high-level introduction to how machine learning works. You will then be able to differentiate...
Understanding machine learning
You may be wondering how machines actually learn. To get the answer to this query, let's take the following example of a fictional company. Space Shuttle Corporation has a few space vehicles to rent. They get applications every day from clients who want to travel to Mars. They are not sure whether those clients will ever return the vehicles—maybe they'll decide to continue living on Mars and never come back again. Even worse, some of the clients may be lousy pilots and crash their vehicles on the way. So, the company decides to hire shuttle rent-approval officers whose job is to go through the applications and decide who is worthy of a shuttle ride. Their business, however, grows so big that they need to formulate the shuttle-approval process.
A traditional shuttle company would start by having business rules and hiring junior employees to execute those rules. For example, if you are an alien, then sorry, you cannot rent...
The model development life cycle
When asked to solve a problem using machine learning, data scientists achieve this by following a sequence of steps. In this section, we are going to discuss those iterative steps.
Understanding a problem
The first thing to do when developing a model is to understand the problem you are trying to solve thoroughly. This not only involves understanding what problem you are solving, but also why you are solving it, what impact are you expecting to have, and what the currently available solution isthat you are comparing your new solution to. My understanding of what Box said when he stated that all models are wrong is that a model is just an approximation of reality by modeling one or more angles of it. By understanding the problem you are trying to solve, you can decide which angles of reality you need to model, and which ones you can tolerate...