Hands-On Generative Adversarial Networks with PyTorch 1.x

4.5 (2 reviews total)
By John Hany , Greg Walters
    Advance your knowledge in tech with a Packt subscription

  • Instant online access to over 7,500+ books and videos
  • Constantly updated with 100+ new titles each month
  • Breadth and depth in over 1,000+ technologies
  1. Section 1: Introduction to GANs and PyTorch

About this book

With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples.

This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models.

By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems.

Publication date:
December 2019


Section 1: Introduction to GANs and PyTorch

In this section, you will be introduced to the basic concepts of GANs, how to install PyTorch 1.0, and how you can build your own models with PyTorch.

This section contains the following chapters:

  • Chapter 1, Generative Adversarial Networks Fundamentals
  • Chapter 2, Getting Started with PyTorch 1.3
  • Chapter 3, Best Practices in Model Design and Training

About the Authors

  • John Hany

    John Hany received his master's degree and bachelor's degree in calculational mathematics at the University of Electronic Science and Technology of China. He majors in pattern recognition and has years of experience in machine learning and computer vision. He has taken part in several practical projects, including intelligent transport systems and facial recognition systems. His current research interests lie in reducing the computation costs of deep neural networks while improving their performance on image classification and detection tasks. He is enthusiastic about open source projects and has contributed to many of them.

    Browse publications by this author
  • Greg Walters

    Greg Walters has been involved with computers and computer programming since 1972. He is well-versed in Visual Basic, Visual Basic .NET, Python, and SQL and is an accomplished user of MySQL, SQLite, Microsoft SQL Server, Oracle, C++, Delphi, Modula-2, Pascal, C, 80x86 Assembler, COBOL, and Fortran. He is a programming trainer and has trained numerous people on many pieces of computer software, including MySQL, Open Database Connectivity, Quattro Pro, Corel Draw!, Paradox, Microsoft Word, Excel, DOS, Windows 3.11, Windows for Workgroups, Windows 95, Windows NT, Windows 2000, Windows XP, and Linux. He is semi-retired and has written over 100 articles for Full Circle Magazine. He is also a musician and loves to cook. He is open to working as a freelancer on various projects.

    Browse publications by this author

Latest Reviews

(2 reviews total)
Great book, high quality technical content and editing.
Good book for anyone start diving into GAN fields

Recommended For You

Book Title
Unlock this book and the full library for FREE
Start free trial