Hands-On Deep Learning with R

By Michael Pawlus , Rodger Devine
    What do you get with a Packt Subscription?

  • Instant access to this title and 7,500+ eBooks & Videos
  • Constantly updated with 100+ new titles each month
  • Breadth and depth in over 1,000+ technologies
  1. Free Chapter
    Section 1: Deep Learning Basics
About this book

Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.

This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You’ll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you’ll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.

By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

Publication date:
April 2020
Publisher
Packt
Pages
330
ISBN
9781788996839

 

Section 1: Deep Learning Basics

This section provides a brief overview of deep learning as it relates to machine learning. In this section of the book, you will learn how to get set up to do deep learning in R and build your first neural network, which is the building block of all the deep learning to follow.

This section comprises the following chapters:

About the Authors
  • Michael Pawlus

    Michael Pawlus is a data scientist at The Ohio State University where he is currently part of the team building of the data science infrastructure for the Advancement department while also leading the implementation of innovative projects there. Prior to this, Michael was a data scientist at the University of Southern California. In addition to this work, Michael has chaired data science education conferences, published articles on the role of data science within fundraising and currently serves on committees where he is focused on providing a wider variety of educational offerings as well as increasing the diversity of content creators in this space. Michael holds degrees from Grand Valley State University and the University of Sheffield.

    Browse publications by this author
  • Rodger Devine

    Rodger Devine is the Associate Dean of External Affairs for Strategy and Innovation at the USC Dornsife College of Letters, Arts, and Sciences. Rodger’s portfolio includes advancement operations, BI, leadership annual giving, program innovation, prospect development, and strategic information management. Prior to USC, Rodger served as the Director of Information, Analytics, and Annual Giving at the Michigan Ross School of Business. Rodger brings nearly 20 years of experience in software engineering, IT operations, BI, project management, organizational development, and leadership. Rodger completed his Masters in data science at the University of Michigan and is a doctoral student in the OCL program at the USC Rossier School of Education.

    Browse publications by this author
Hands-On Deep Learning with R
Unlock this book and the full library FREE for 7 days
Start now