Hands-On Artificial Intelligence for Banking

5 (1 reviews total)
By Jeffrey Ng , Subhash Shah
  • Instant online access to over 7,500+ books and videos
  • Constantly updated with 100+ new titles each month
  • Breadth and depth in over 1,000+ technologies
  1. Section 1: Quick Review of AI in the Finance Industry

About this book

Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI.

You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking.

By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI.

Publication date:
July 2020
Publisher
Packt
Pages
240
ISBN
9781788830782

 
Section 1: Quick Review of AI in the Finance Industry

The section gives a general economic and financial overview of the banking industry—which rarely happens in an IT programming book. It exists to give both technologists and business professionals a taste of both sides.

This section comprises the following chapter:

About the Authors

  • Jeffrey Ng

    Jeffrey Ng, CFA, works at Ping An OneConnect Bank (Hong Kong) Limited as Head of FinTech Solutions. His mandate is to advance the use of AI in banking and financial ecosystems. Prior to this, he headed up the data lab of BNP Paribas Asia Pacific, which constructed an AI and data analytics solution for business, and was the vice-chair of the French Chamber of Commerce's FinTech Committee in Hong Kong. In 2010, as one of the pioneers in applying client analytics to investment banking, he built the analytics team for the bank. He has undertaken AI projects in retail and commercial banks with PwC Consulting and GE Money. He graduated from Hong Kong Polytechnic University in computing and management and holds an MBA in finance from the Chinese University of Hong Kong.

    Browse publications by this author
  • Subhash Shah

    Subhash Shah is an experienced solution architect. With 14 years of experience in software development, he works as an independent technical consultant now. He is an advocate of open source development and its utilization in solving critical business problems. His interests include Microservices architecture, Enterprise solutions, Machine Learning, Integrations and Databases. He is an admirer of quality code and test-driven development (TDD). His technical skills include translating business requirements into scalable architecture and designing sustainable solutions. He is a co-author of Hands-On High Performance with Spring 5, Hands-On AI for Banking and MySQL 8 Administrator’s Guide. He has also been a technical reviewer for other books.

    Browse publications by this author

Latest Reviews

(1 reviews total)
Perfect!!! Out of this world!!!

Recommended For You

Machine Learning for Finance

A guide to advances in machine learning for financial professionals, with working Python code

By Jannes Klaas
Python Machine Learning - Third Edition

Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning.

By Sebastian Raschka and 1 more
Learn Algorithmic Trading

Understand the fundamentals of algorithmic trading to apply algorithms to real market data and analyze the results of real-world trading strategies

By Sebastien Donadio and 1 more
Deep Learning with TensorFlow 2 and Keras - Second Edition

Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices

By Antonio Gulli and 2 more