Building Recommender Systems with Machine Learning and AI [Video]

By Frank Kane
    What do you get with a Packt Subscription?

  • Instant access to this title and 7,500+ eBooks & Videos
  • Constantly updated with 100+ new titles each month
  • Breadth and depth in over 1,000+ technologies
  1. Free Chapter
    Getting Started
About this video

This course will teach you how to use Python, artificial intelligence (AI), machine learning, and deep learning to build a recommender system. From creating a simple recommendation engine to building hybrid ensemble recommenders, you will learn key concepts effectively and in a real-world context.

The course starts with an introduction to the recommender system and Python. Learn how to evaluate recommender systems and explore the architecture of the recommender engine framework. Next, you will learn to understand how content-based recommendations work and get to grips with neighborhood-based collaborative filtering. Moving along, you will learn to grasp model-based methods used in recommendations, such as matrix factorization and Singular Value Decomposition (SVD).

Next, you will learn to apply deep learning, artificial intelligence (AI), and artificial neural networks to recommendations and learn how to scale massive datasets with Apache Spark machine learning. Later, you will encounter real-world challenges of recommender systems and learn how to solve them. Finally, you will study the recommendation system of YouTube and Netflix and find out what a hybrid recommender is.

By the end of this course, you will be able to build real-world recommendation systems that will help users discover new products and content online.

All the resource files are added to the GitHub repository at:

Publication date:
September 2018
11 hours 24 minutes

About the Author
  • Frank Kane

    Frank Kane has spent nine years at Amazon and IMDb, developing and managing the technology that automatically delivers product and movie recommendations to hundreds of millions of customers all the time. He holds 17 issued patents in the fields of distributed computing, data mining, and machine learning. In 2012, Frank left to start his own successful company, Sundog Software, which focuses on virtual reality environment technology and teaches others about big data analysis.

    Browse publications by this author
Building Recommender Systems with Machine Learning and AI [Video]
Unlock this video and the full library FREE for 7 days
Start now