Learning ROS for Robotics Programming

More Information
Learn
  • Install a complete ROS Fuerte system
  • Create ROS packages and stacks, using and debugging them in real time
  • Create, handle, and debug ROS nodes
  • Design your 3D robot model and simulate it in a virtual environment within Gazebo
  • Use cameras to give vision to your robots, and calibrate and perform Computer Vision tasks with them
  • Use and integrate different sensors like Range Laser, Arduino, and Kinect with your robot
  • Create and adapt the navigation stack to work with your robot
  • Share your knowledge with the ROS community
About

Both the amateur and the professional roboticist who has ever tried their hand at robotics programming will have faced with the cumbersome task of starting from scratch, usually reinventing the wheel. ROS comes with a great number of already working functionalities, and this book takes you from the first steps to the most elaborate designs possible within this software framework.

"Learning ROS for Robotics Programming" is full of practical examples that will help you to understand the framework from the very beginning. Build your own robot applications in a simulated environment and share your knowledge with the large community supporting ROS.

"Learning ROS for Robotics Programming" starts with the basic concepts and usage of ROS in a very straightforward and practical manner. It is a painless introduction to the fascinating world of robotics, covering sensor integration, modeling, simulation, computer vision, and navigation algorithms, among other topics.

After the first two chapters, concepts like topics, messages, and nodes will become daily bread. Make your robot see with HD cameras, or navigate avoiding obstacles with range sensors. Furthermore, thanks to the contributions of the vast ROS community, your robot will be able to navigate autonomously, and even recognize and interact with you, in a matter of minutes.

"Learning ROS for Robotics Programming" will give you all the background you need to know in order to start in the fascinating world of robotics and program your own robot. Simply, you put the limit!

Features
  • Model your robot on a virtual world and learn how to simulate it
  • Carry out state-of-the-art Computer Vision tasks
  • Easy-to-follow, practical tutorials to program your own robots
Page Count 332
Course Length 9 hours 57 minutes
ISBN 9781782161448
Date Of Publication 24 Sep 2013

Authors

Aaron Martinez

Aaron Martinez is a computer engineer, entrepreneur, and expert in digital fabrication. He did his master's thesis in 2010 at the IUCTC (Instituto Universitario de Ciencias y Tecnologias Ciberneticas) in the University of Las Palmas de Gran Canaria. He prepared his master's thesis in the field of telepresence using immersive devices and robotic platforms. After completing his academic career, he attended an internship program at The Institute for Robotics in the Johannes Kepler University in Linz, Austria. During his internship program, he worked as part of a development team of a mobile platform using ROS and the navigation stack. After that, he was involved in some projects related to robotics; one of them is the AVORA project in the University of Las Palmas de Gran Canaria. In this project, he worked on the creation of an AUV to participate in the Student Autonomous Underwater Challenge-Europe (SAUC-E) in Italy. In 2012, he was responsible for manufacturing this project; in 2013, he helped to adapt the navigation stack and other algorithms from ROS to the robotic platform.

Recently, Aaron created his own company named SubSeaMechatronics, SL. This company works with projects related with underwater robotics and telecontrol systems. They are also designing and manufacturing subsea sensors. The company manufactures devices for other companies and research and development institutes.

Aaron has experience in many fields, such as programming, robotics, mechatronics, and digital fabrication as well as many devices, such as Arduino, BeagleBone, Servers, and LIDAR, and nowadays he is designing in SubSeaMechatronics SL some robotics platforms for underwater and aerial environments.

Enrique Fernández

Enrique Fernández has a PhD in computer engineering and an extensive background in robotics. His PhD thesis addressed the problem of Path Planning for Autonomous Underwater Gliders, but he also worked on other robotics projects, including SLAM, perception, vision, and control. During his doctorate, he joined the Center of Underwater Robotics Research in the University of Girona, where he developed Visual SLAM and INS modules in ROS for Autonomous Underwater Vehicles (AUVs), and participated in the Student Autonomous Underwater Challenge, Europe (SAUC-E) in 2012, and collaborated in the 2013 edition; in 2012, he was awarded a prize.

During his PhD, Enrique published several conference papers and publications to top robotics conferences, such as the International Conference of Robotics and Automation (ICRA). He has also authored some book chapters and ROS books.

Later, Enrique joined PAL Robotics as a SLAM engineer in June 2013. There he worked with the REEM and REEM-C humanoid robots using ROS software and also contributed to the open source community, mainly to ROS Control repository, being one of the maintainers nowadays. In 2015, he joined Clearpath Robotics to work on the Autonomy team, developing perception algorithms. He has worked on the software that runs on the industrial mobile robots OTTO 1500 and OTTO 100, which has been deployed into the facilities of multiple large industry companies, such as General Electric and John Deere.