Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hyperparameter Tuning with Python

You're reading from   Hyperparameter Tuning with Python Boost your machine learning model's performance via hyperparameter tuning

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803235875
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Louis Owen Louis Owen
Author Profile Icon Louis Owen
Louis Owen
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1:The Methods
2. Chapter 1: Evaluating Machine Learning Models FREE CHAPTER 3. Chapter 2: Introducing Hyperparameter Tuning 4. Chapter 3: Exploring Exhaustive Search 5. Chapter 4: Exploring Bayesian Optimization 6. Chapter 5: Exploring Heuristic Search 7. Chapter 6: Exploring Multi-Fidelity Optimization 8. Section 2:The Implementation
9. Chapter 7: Hyperparameter Tuning via Scikit 10. Chapter 8: Hyperparameter Tuning via Hyperopt 11. Chapter 9: Hyperparameter Tuning via Optuna 12. Chapter 10: Advanced Hyperparameter Tuning with DEAP and Microsoft NNI 13. Section 3:Putting Things into Practice
14. Chapter 11: Understanding the Hyperparameters of Popular Algorithms 15. Chapter 12: Introducing Hyperparameter Tuning Decision Map 16. Chapter 13: Tracking Hyperparameter Tuning Experiments 17. Chapter 14: Conclusions and Next Steps 18. Other Books You May Enjoy

Chapter 4: Exploring Bayesian Optimization

Bayesian optimization (BO) is the second out of four groups of hyperparameter tuning methods. Unlike grid search and random search, which are categorized as uninformed search methods, all of the methods that belong to the BO group are categorized as informed search methods, meaning they are learning from previous iterations to (hopefully) provide a better search space in the future.

In this chapter, we will discuss several methods that belong to the BO group, including Gaussian process (GP), sequential model-based algorithm configuration (SMAC), Tree-structured Parzen Estimators (TPE), and Metis. Similar to Chapter 3, Exploring Exhaustive Search, we will discuss the definition of each method, the differences between them, how they work, and the pros and cons of each method.

By the end of this chapter, you will be able to explain BO and its variations when someone asks you. You will not only be able to explain what they are, but also...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hyperparameter Tuning with Python
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon