Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python Unleash the power and flexibility of the Bayesian framework

Arrow left icon
Product type Paperback
Published in Nov 2016
Last Updated in Feb 2025
Publisher Packt
ISBN-13 9781785883804
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (10) Chapters Close

Preface 1. Thinking Probabilistically - A Bayesian Inference Primer 2. Programming Probabilistically – A PyMC3 Primer FREE CHAPTER 3. Juggling with Multi-Parametric and Hierarchical Models 4. Understanding and Predicting Data with Linear Regression Models 5. Classifying Outcomes with Logistic Regression 6. Model Comparison 7. Mixture Models 8. Gaussian Processes Index

Simple linear regression

Many problems we find in science, engineering, and business are of the following form. We have a continuous variable, and by continuous we mean a variable represented using real numbers (or floats if you wish). We call this variable the dependent, predicted, or outcome variable. And we want to model how this dependent variable depends on one or more variables, which we call independent, predictor, or input variables. The independent variable can be continuous or it can be categorical. These type of problems can be modeled using linear regression. If we have only one independent variable we may use a simple linear regression model problem; if we have more than one independent variable then we may apply a multiple linear regression model. Some typical situations that linear regression models can be used in are as follows:

  • Model the relationship between factors like rain, soil salinity, and the presence/absence of fertilizer in crop productivity. Then answer questions...
lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Bayesian Analysis with Python
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon