Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Parallel Programming with Python

You're reading from   Parallel Programming with Python Develop efficient parallel systems using the robust Python environment.

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783288397
Length 124 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 Palach Palach
Author Profile Icon Palach
Palach
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Contextualizing Parallel, Concurrent, and Distributed Programming 2. Designing Parallel Algorithms FREE CHAPTER 3. Identifying a Parallelizable Problem 4. Using the threading and concurrent.futures Modules 5. Using Multiprocessing and ProcessPoolExecutor 6. Utilizing Parallel Python 7. Distributing Tasks with Celery 8. Doing Things Asynchronously Index

Why use parallel programming?

Since computing systems have evolved, they have started to provide mechanisms that allow us to run independent pieces of a specific program in parallel with one another, thus enhancing the response and the general performance. Moreover, we can easily verify that the machines are equipped with more processors and these with plenty of more cores. So, why not take advantage of this architecture?

Parallel programming is a reality in all contexts of system development, from smart phones and tablets, to heavy duty computing in research centers. A solid basis in parallel programming will allow a developer to optimize the performance of an application. This results in enhancement of user experience as well as consumption of computing resources, thereby taking up less processing time for the accomplishment of complex tasks.

As an example of parallelism, let us picture a scenario in which an application that, amongst other tasks, selects information from a database, and this database has considerable size. Consider as well, the application being sequential, in which tasks must be run one after another in a logical sequence. When a user requests data, the rest of the system will be blocked until the data return is not concluded. However, making use of parallel programming, we will be allowed to create a new worker that which will seek information in this database without blocking other functions in the application, thus enhancing its use.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime
Modal Close icon
Modal Close icon