Scala Machine Learning Projects

More Information
Learn
  • Apply advanced regression techniques to boost the performance of predictive models
  • Use different classification algorithms for business analytics
  • Generate trading strategies for Bitcoin and stock trading using ensemble techniques
  • Train Deep Neural Networks (DNN) using H2O and Spark ML
  • Utilize NLP to build scalable machine learning models
  • Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application
  • Learn how to use autoencoders to develop a fraud detection application
  • Implement LSTM and CNN models using DeepLearning4j and MXNet
About

Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development.

If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet.

At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment.

Features
  • Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j
  • Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way
  • Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework.
Page Count 470
Course Length 14 hours 6 minutes
ISBN 9781788479042
Date Of Publication 31 Jan 2018

Authors

Md. Rezaul Karim

Md. Rezaul Karim has more than 8 years of experience in the area of research and development with a solid knowledge of algorithms and data structures in C/C++, Java, Scala, R, and Python focusing Big Data technologies: Spark, Kafka, DC/OS, Docker, Mesos, Zeppelin, Hadoop, and MapReduce and Deep Learning technologies: TensorFlow, DeepLearning4j and H2O-Sparking Water. His research interests include Machine Learning, Deep Learning, Semantic Web/Linked Data, Big Data, and Bioinformatics.

He is a Research Scientist at Fraunhofer Institute for Applied Information Technology-FIT, Germany. He is also a Ph.D. candidate at the RWTH Aachen University, Aachen, Germany.

He holds a BS and an MS degree in Computer Engineering. Before joining the Fraunhofer-FIT, he had been working as a Researcher at the Insight Centre for Data Analytics, Ireland. Before that, he worked as a Lead Engineer with Samsung Electronics’ distributed R&D Institutes in Korea, India, Vietnam, Turkey, and Bangladesh.

Before that, he worked as a Research Assistant in the Database Lab at Kyung Hee University, Korea. He also worked as an R&D Engineer with BMTech21 Worldwide, Korea. Even before that, he worked as a Software Engineer with i2SoftTechnology, Dhaka, Bangladesh.