Python Deep Learning Projects

More Information
  • Set up a deep learning development environment on Amazon Web Services (AWS)
  • Apply GPU-powered instances as well as the deep learning AMI
  • Implement seq-to-seq networks for modeling natural language processing (NLP)
  • Develop an end-to-end speech recognition system
  • Build a system for pixel-wise semantic labeling of an image
  • Create a system that generates images and their regions

Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier.

Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system.

Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects.

By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way

  • Explore deep learning across computer vision, natural language processing (NLP), and image processing
  • Discover best practices for the training of deep neural networks and their deployment
  • Access popular deep learning models as well as widely used neural network architectures
Page Count 472
Course Length 14 hours 9 minutes
ISBN 9781788997096
Date Of Publication 31 Oct 2018


Matthew Lamons

Matthew Lamons's background is in experimental psychology and deep learning. Founder and CEO of Skejul—the AI platform to help people manage their activities. Named by Gartner, Inc. as a "Cool Vendor" in the "Cool Vendors in Unified Communication, 2017" report. He founded The Intelligence Factory to build AI strategy, solutions, insights, and talent for enterprise clients and incubate AI tech startups based on the success of his Applied AI MasterMinds group. Matthew's global community of more than 85 K are leaders in AI, forecasting, robotics, autonomous vehicles, marketing tech, NLP, computer vision, reinforcement, and deep learning. Matthew invites you to join him on his mission to simplify the future and to build AI for good.

Rahul Kumar

Rahul Kumar is an AI scientist, deep learning practitioner, and independent researcher. His expertise in building multilingual NLU systems and large-scale AI infrastructures has brought him to Copenhagen, where he leads a large team of AI engineers as Chief AI Scientist at Jatana. Often invited to speak at AI conferences, he frequently travels between India, Europe, and the US where, among other research initiatives, he collaborates with The Intelligence Factory as NLP data science fellow. Keen to explore the ramifications of emerging technologies for his next book, he's currently involved in various research projects on Quantum Computing (QC), high-performance computing (HPC), and the brain-computer interaction (BCI).

Abhishek Nagaraja

Abhishek Nagaraja was born and raised in India. Graduated Magna Cum Laude from the University of Illinois at Chicago, United States, with a Masters Degree in Mechanical Engineering with a concentration in Mechatronics and Data Science. Abhishek specializes in Keras and TensorFlow for building and evaluation of custom architectures in deep learning recommendation models. His deep learning skills and interest span computational linguistics and NLP to build chatbots to computer vision and reinforcement learning. He has been working as a Data Scientist for Skejul Inc. building an AI-powered activity forecast engine and engaged as a Deep Learning Data Scientist with The Intelligence Factory building solutions for enterprise clients.