Python: Advanced Predictive Analytics

More Information
Learn
  • Understand the statistical and mathematical concepts behind predictive analytics algorithms and implement them using Python libraries
  • Get to know various methods for importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and NumPy
  • Master the use of Python notebooks for exploratory data analysis and rapid prototyping
  • Get to grips with applying regression, classification, clustering, and deep learning algorithms
  • Discover advanced methods to analyze structured and unstructured data
  • Visualize the performance of models and the insights they produce
  • Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis
About

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python.

You'll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling.

Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books:

  1. Learning Predictive Analytics with Python
  2. Mastering Predictive Analytics with Python
Features
  • A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices
  • Learn how to use popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering
  • Master open source Python tools to build sophisticated predictive models
Page Count 660
Course Length 19 hours 48 minutes
ISBN 9781788992367
Date Of Publication 27 Dec 2017

Authors

Ashish Kumar

Ashish Kumar is a seasoned data science professional, a publisher author and a thought leader in the field of data science and machine learning. An IIT Madras graduate and a Young India Fellow, he has around 7 years of experience in implementing and deploying data science and machine learning solutions for challenging industry problems in both hands-on and leadership roles. Natural Language Procession, IoT Analytics, R Shiny product development, Ensemble ML methods etc. are his core areas of expertise. He is fluent in Python and R and teaches a popular ML course at Simplilearn. When not crunching data, Ashish sneaks off to the next hip beach around and enjoys the company of his Kindle. He also trains and mentors data science aspirants and fledgling start-ups.

Joseph Babcock

Joseph Babcock has spent almost a decade exploring complex datasets and combining predictive modeling with visualization to understand correlations and forecast anticipated outcomes. He received a PhD from the Solomon H. Snyder Department of Neuroscience at The Johns Hopkins University School of Medicine, where he used machine learning to predict adverse cardiac side effects of drugs. Outside the academy, he has tackled big data challenges in the healthcare and entertainment industries.