Principles of Data Science

More Information
Learn
  • Get to know the five most important steps of data science
  • Use your data intelligently and learn how to handle it with care
  • Bridge the gap between mathematics and programming
  • Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results
  • Build and evaluate baseline machine learning models
  • Explore the most effective metrics to determine the success of your machine learning models
  • Create data visualizations that communicate actionable insights
  • Read and apply machine learning concepts to your problems and make actual predictions
About

Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you’ll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas.

With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you’ll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You’ll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means.

Features
  • Enhance your knowledge of coding with data science theory for practical insight into data science and analysis
  • More than just a math class, learn how to perform real-world data science tasks with R and Python
  • Create actionable insights and transform raw data into tangible value
Page Count 388
Course Length 11 hours 38 minutes
ISBN 9781785887918
Date Of Publication 16 Dec 2016
Case study 1 – predicting stock prices based on social media
Case study 2 – why do some people cheat on their spouses?
Case study 3 – using tensorflow
Summary

Authors

Sinan Ozdemir

Sinan Ozdemir is a data scientist, start-up founder, and educator living in the San Francisco Bay Area. He studied pure mathematics at the Johns Hopkins University. He then spent several years conducting lectures on data science there, before founding his own start-up, Kylie ai, which uses artificial intelligence to clone brand personalities and automate customer service communications. He is also the author of Principles of Data Science, available through Packt.