Switch to the store?

Mastering Machine Learning with R - Third Edition

More Information
Learn
  • Prepare data for machine learning methods with ease
  • Learn to write production-ready code and package it for use
  • Produce simple and effective data visualizations for improved insights
  • Master advanced methods such as Boosted Trees and deep neural networks
  • Use natural language processing to extract insights for text
  • Implement tree-based classifiers including Random Forest and Boosted Tree
About

Given the growing popularity of R-zero-cost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML with the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning and reinforcement learning algorithms to design efficient and powerful ML models.

This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support such as TensorFlow and Keras-R for performing advanced computations. Additionally, you’ll explore complex topics such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning along with its various use cases and models. Towards the concluding chapters, you’ll get a glimpse into how some of these black-box models can be diagnosed and understood.

By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work.

Features
  • Build independent machine learning (ML) systems leveraging the best features of R 3.5
  • Understand and apply different machine learning techniques using real-world examples
  • Use methods such as multi-class classification, regression, and clustering
Page Count 354
Course Length 10 hours 37 minutes
ISBN9781789618006
Date Of Publication 31 Jan 2019

Authors

Cory Lesmeister

Cory Lesmeister has over fourteen years of quantitative experience and is currently a senior data scientist for the Advanced Analytics team at Cummins, Inc. in Columbus, Indiana. Cory spent 16 years at Eli Lilly and Company in sales, market research, Lean Six Sigma, marketing analytics, and new product forecasting. He also has several years of experience in the insurance and banking industries, both as a consultant and as a manager of marketing analytics. A former US Army active duty and reserve officer, Cory was stationed in Baghdad, Iraq, in 2009 serving as the strategic advisor to the 29,000-person Iraqi Oil Police, succeeding where others failed by acquiring and delivering promised equipment to help the country secure and protect its oil infrastructure. Cory has a BBA in Aviation Administration from the University of North Dakota and a commercial helicopter license.