Video Description
Python has become one of any data scientist's favorite tools for doing Predictive Analytics. In this hands-on course, you will learn how to build predictive models with Python.
During the course, we will talk about the most important theoretical concepts that are essential when building predictive models for real-world problems. The main tool used in this course is scikit -learn, which is recognized as a great tool: it has a great variety of models, many useful routines, and a consistent interface that makes it easy to use. All the topics are taught using practical examples and throughout the course, we build many models using real-world datasets.
By the end of this course, you will learn the various techniques in making predictions about bankruptcy and identifying spam text messages and then use our knowledge to create a credit card using a linear model for classification along with logistic regression.
Style and Approach
This course introduces the main concepts, techniques, and best practices for doing Predictive Analytics with Python. Using an example-based approach, it covers all the stages in the process of building predictive models with Python. By the end of the course you will be able to build Predictive Analytics models using real-world data.

