Switch to the store?

Machine Learning with scikit-learn Quick Start Guide

More Information
  • Learn how to work with all scikit-learn's machine learning algorithms
  • Install and set up scikit-learn to build your first machine learning model
  • Employ Unsupervised Machine Learning Algorithms to cluster unlabelled data into groups
  • Perform classification and regression machine learning
  • Use an effective pipeline to build a machine learning project from scratch

Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides.

This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models.

Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions.

  • Build your first machine learning model using scikit-learn
  • Train supervised and unsupervised models using popular techniques such as classification, regression and clustering
  • Understand how scikit-learn can be applied to different types of machine learning problems
Page Count 172
Course Length 5 hours 9 minutes
Date Of Publication 30 Oct 2018
Technical requirements
The Naive Bayes algorithm 
Support vector machines


Kevin Jolly

Kevin Jolly is a formally educated data scientist with a master's degree in data science from the prestigious King's College London. Kevin works as a statistical analyst with a digital healthcare start-up, Connido Limited, in London, where he is primarily involved in leading the data science projects that the company undertakes. He has built machine learning pipelines for small and big data, with a focus on scaling such pipelines into production for the products that the company has built.

Kevin is also the author of a book titled Hands-On Data Visualization with Bokeh, published by Packt. He is the editor-in-chief of Linear, a weekly online publication on data science software and products.